JPS6252394B2 - - Google Patents

Info

Publication number
JPS6252394B2
JPS6252394B2 JP55017620A JP1762080A JPS6252394B2 JP S6252394 B2 JPS6252394 B2 JP S6252394B2 JP 55017620 A JP55017620 A JP 55017620A JP 1762080 A JP1762080 A JP 1762080A JP S6252394 B2 JPS6252394 B2 JP S6252394B2
Authority
JP
Japan
Prior art keywords
conductor layer
bubble
magnetic field
magnetic domain
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55017620A
Other languages
Japanese (ja)
Other versions
JPS56114190A (en
Inventor
Haruo Urai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1762080A priority Critical patent/JPS56114190A/en
Publication of JPS56114190A publication Critical patent/JPS56114190A/en
Publication of JPS6252394B2 publication Critical patent/JPS6252394B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0808Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation
    • G11C19/0841Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation using electric current

Description

【発明の詳細な説明】 本発明は電流アクセス型バブル磁区素子に関す
る。更に詳しく述べればバブル材料上に設けられ
た孔あき導体層に電流パルス列を通じることによ
つてバブル磁区を転送する方式のバブル磁区素子
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a current access type bubble magnetic domain device. More specifically, the present invention relates to a bubble magnetic domain element in which a bubble magnetic domain is transferred by passing a current pulse train through a perforated conductor layer provided on a bubble material.

バブル磁区を情報の担体として用いる記憶素子
において、バブル磁区の転送方式は、パーマロイ
の如き軟磁性膜でできたシエブロン型やY―型を
呈したパタンを外部より印加する面内回転磁界に
よつて順次磁化することによつて生じる磁極にバ
ブル磁区を引きつけて転送させる、いわゆるフイ
ールドアクセス方式が一般的であつた。
In a storage device that uses bubble magnetic domains as information carriers, the bubble magnetic domain transfer method uses an in-plane rotating magnetic field that externally applies a chevron-shaped or Y-shaped pattern made of a soft magnetic film such as permalloy. The so-called field access method, in which bubble magnetic domains are attracted and transferred to magnetic poles generated by sequential magnetization, has been common.

しかし乍らこのフイールドアクセス方式は、情
報記憶密度を大きくするためにバブル磁区径を小
さくするに従つて、円筒磁区転送に必要な面内回
転磁界が急激に大きくなり消費電力が増大すると
ともに面内回転磁界発生用コイル等に印加する電
圧が増大し高速転送に適さなくなるという大きな
欠点を持つていることはよく知られている。更
に、バブル磁区径が小さくなるにつれて、パーマ
ロイパタン形成に必要な最小寸法が小さくなり、
2μm径以下のバブル磁区を用いる素子の製造は
非常に困難となる。
However, with this field access method, as the bubble domain diameter is reduced to increase information storage density, the in-plane rotating magnetic field required for cylindrical domain transfer increases rapidly, resulting in increased power consumption and in-plane It is well known that this method has a major disadvantage in that the voltage applied to the rotating magnetic field generating coil increases, making it unsuitable for high-speed transfer. Furthermore, as the bubble magnetic domain diameter becomes smaller, the minimum dimension required to form a permalloy pattern becomes smaller.
It is extremely difficult to manufacture an element using a bubble magnetic domain with a diameter of 2 μm or less.

この様な従来のフイールドアクセス型バブル磁
区素子の欠点を克服するバブル磁区転送方式とし
て電流アクセス方式をもつバブル磁区素子がエ
イ・エイツチ・ボベツク(A.H.Bobeck)によつ
て1979年8月にザ・ベル・システム・テクニカ
ル・ジヤーナル(The・ Bell System
Technical Journal)第58巻第6号第1453頁〜
1540頁に発表された。
A bubble magnetic domain element with a current access method as a bubble magnetic domain transfer method that overcomes the drawbacks of the conventional field access type bubble magnetic domain element was developed by AH Bobeck in August 1979 at The Bell. System Technical Journal (The Bell System)
Technical Journal) Vol. 58 No. 6 No. 1453~
Published on page 1540.

この電流アクセス型バブル磁区素子の本質はバ
ブル材料上に設けられた導体層に矩形或いは長円
状の貫通孔列を作り、この導体層に電流を通じた
ときその孔周囲に生じる電流分布によるバイアス
磁界分布を用いてバブル磁区の駆動を行うことに
ある。
The essence of this current access type bubble magnetic domain element is that a rectangular or elliptical through-hole array is formed in a conductor layer provided on a bubble material, and when a current is passed through this conductor layer, a bias magnetic field is generated due to the current distribution around the hole. The aim is to drive the bubble magnetic domain using the distribution.

このため面内回転磁界が不要で高速アクセスに
適したバブル磁区の駆動方式である。電流アクセ
ス型バブル磁区転送方式には前記文献に述べられ
た様に1層の導体層を用いるもので2層の導体層
を用いる方式とがある。そのいずれの方式におい
ても、バブル磁区素子の動作特性を悪化させる要
因がある。即ち、このバブル磁区駆動用導体層
(以下駆動用導体層という)に駆動電流を通じた
ときに駆動用導体層の電流に平平行な周近傍に大
きなバイアス磁界成分が発生し、バブル素子動作
バイアス磁界マージンがこの駆動用導体層周辺部
で非常に低下する現象である。このため駆動用導
体層の中央部の限られた狭い領域しかバブル磁区
転送に使えない。換言すれば、この電流アクセス
型バブル磁区素子チツプ面積の観点からの使用効
率が良くないことにつながる。
Therefore, this bubble domain drive method does not require an in-plane rotating magnetic field and is suitable for high-speed access. As described in the above-mentioned literature, the current access type bubble magnetic domain transfer method includes a method using one conductor layer and a method using two conductor layers. In either method, there are factors that deteriorate the operating characteristics of the bubble magnetic domain element. That is, when a driving current is passed through this bubble magnetic domain driving conductor layer (hereinafter referred to as the driving conductor layer), a large bias magnetic field component is generated near the circumference parallel to the current of the driving conductor layer, and the bubble element operating bias magnetic field is generated. This is a phenomenon in which the margin is extremely reduced around the driving conductor layer. For this reason, only a narrow, limited area at the center of the driving conductor layer can be used for bubble domain transfer. In other words, this current access type bubble magnetic domain element is not very efficient in terms of chip area.

本発明の目的は上記の如き欠点を取り除いた電
流アクセス型バブル磁区素子を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a current access type bubble magnetic domain element which eliminates the above-mentioned drawbacks.

すなわち、本発明は駆動用導体層の周辺部から
生じる大きなバイアス磁界成分を軽減するバイア
ス磁界成分補償用導体層(以下補償用導体層とい
う)を有する電流アクセス型バブル磁区素子であ
る。また、本発明は補償用導体層をもつ前記バブ
ル磁区素子の製造をも容易にすることにある。
That is, the present invention is a current access bubble magnetic domain element having a bias magnetic field component compensating conductor layer (hereinafter referred to as a compensating conductor layer) that reduces a large bias magnetic field component generated from the peripheral portion of a driving conductor layer. Another object of the present invention is to facilitate the manufacture of the bubble magnetic domain element having a compensating conductor layer.

次に図面を用いて本発明を従来例と比較しつつ
詳細に説明する。
Next, the present invention will be explained in detail while comparing it with a conventional example using the drawings.

第1図Aは上記引用文献に述べられている従来
の電流アクセス型バブル磁区素子を示すものであ
る。
FIG. 1A shows a conventional current access type bubble magnetic domain element described in the above cited document.

基板材料2上にバブル磁区を保持しうるバブル
材料1が成長されており、その上第一層目の駆動
用導体層31が設けられ、さらにその上に絶縁層
(図では省略)を介して第二層目の駆動用導体層
32が設けられている。駆動用導体層31,32
には長円形の孔パタン30が設けられている。4
1,42はそれぞれ第一層目、第二層目に流す電
流で、J1,J2はそれぞれの電流密度を表わす。1
1はバブル磁区で、バブル材料1中の矢印は磁化
方向を表わしている。
A bubble material 1 capable of holding a bubble magnetic domain is grown on a substrate material 2, on which a first driving conductor layer 31 is provided, and an insulating layer (not shown) is provided on top of the first driving conductor layer 31. A second driving conductor layer 32 is provided. Drive conductor layers 31, 32
is provided with an oval hole pattern 30. 4
1 and 42 are currents flowing through the first layer and second layer, respectively, and J 1 and J 2 represent the respective current densities. 1
1 is a bubble magnetic domain, and the arrow in the bubble material 1 represents the magnetization direction.

駆動用導体層31についてみると、電流41
(J1=1mA/μm)により第1図Bに示すバイア
ス磁界成分10を発生する。駆動用導体層31の
周辺部では第1図Bで判る様に極めて大きな磁界
成分をもつている。このバイアス磁界成分は駆動
用導体層の中心近傍5を除くと大きな値である。
Looking at the driving conductor layer 31, the current 41
(J 1 =1 mA/μm), a bias magnetic field component 10 shown in FIG. 1B is generated. As can be seen from FIG. 1B, the peripheral portion of the driving conductor layer 31 has an extremely large magnetic field component. This bias magnetic field component has a large value except in the vicinity 5 of the center of the driving conductor layer.

2μm径のバブル磁区の場合、バブル磁区が存
在するバイアス磁界マージンは40〜50エルステツ
ド(Oe)程度で、10%程度の駆動バイアスマー
ジンの減少に抑える必要があるため、電流による
磁界は±4〜5エルステツド以下でなければなら
ない。即ち第1図Bに示すバイアス磁界成分Hg
の値が±1エルステツド以下の領域が実際の素子
として利用出来るだけである。この領域5は本例
の場合駆動用導体層の幅の約30%にしかすぎな
い。
In the case of a bubble magnetic domain with a diameter of 2 μm, the bias magnetic field margin where the bubble magnetic domain exists is about 40 to 50 oersteds (Oe), and it is necessary to suppress the decrease in the drive bias margin to about 10%, so the magnetic field due to the current is ±4 to 50 Oe. Must be less than 5 oersted. That is, the bias magnetic field component Hg shown in FIG.
Only a region where the value of is less than ±1 oersted can be used as an actual device. In this example, this region 5 is only about 30% of the width of the driving conductor layer.

以上の事情は第二層目の駆動用導体層32につ
いても全く同じである。
The above situation is exactly the same for the second driving conductor layer 32.

このバブル磁区駆動に対する有効領域を拡大す
るには、駆動用導体層31或いは32から発生す
るバイアス磁界成分を打消す様に電流を流し得る
別の補償用導体層を設けることが有効である。
In order to expand the effective area for this bubble magnetic domain drive, it is effective to provide another compensation conductor layer through which current can flow so as to cancel the bias magnetic field component generated from the drive conductor layer 31 or 32.

補償用導体層の設け方には次の2通りの方法が
考られる。
The following two methods can be considered for providing the compensation conductor layer.

第一は駆動用導体層に重ねて同じ幅の補償用導
体層を設け、その補償用導体層に駆動用導体層と
逆方向の電流を通じることにより駆動用導体層か
らの発生バイアス磁界成分を低減する方法であ
る。
First, a compensating conductor layer of the same width is provided over the driving conductor layer, and a current is passed through the compensation conductor layer in the opposite direction to that of the driving conductor layer, thereby reducing the bias magnetic field component generated from the driving conductor layer. This is a method to reduce

第二は、駆動用導体層の両側にそれと平行に補
償用導体層を設け、その補償用導体層に駆動用導
体層と同じ方向の適当な密度をもつ電流を通じる
ことにより生じる補償用導体層間の逆成分磁界で
駆動用導体層からの発生バイアス磁界成分を低減
する方法である。
The second method is to provide a compensation conductor layer on both sides of the drive conductor layer in parallel with it, and to pass a current with an appropriate density in the same direction as the drive conductor layer through the compensation conductor layer, thereby creating a gap between the compensation conductor layers. This is a method of reducing the bias magnetic field component generated from the driving conductor layer using the opposite component magnetic field.

上述のバイアス磁界成分補償法を、第1図で示
す如き二層の駆動用導体層を有するバブル磁区素
子に適用する際、個々の駆動用導体層についてそ
れぞれ前記の補償用導体層を設けるのは、バブル
磁区素子製造の工程が複雑になるので好ましくな
い。
When applying the bias magnetic field component compensation method described above to a bubble magnetic domain element having two driving conductor layers as shown in FIG. This is not preferable because it complicates the process of manufacturing the bubble magnetic domain element.

本発明によれば、バブル磁区駆動に有効で素子
として利用可能な駆動用導体層領域を拡大するこ
とが容易に実現するばかりでなく、この様な大き
な利用可能な駆動用導体層領域を有するバブル磁
区素子の製造を容易にすることが出来る。
According to the present invention, it is not only possible to easily expand the driving conductor layer area that is effective for driving bubble magnetic domains and usable as an element, but also to expand the area of the driving conductor layer that can be used as a bubble magnetic domain. Manufacture of magnetic domain elements can be facilitated.

本発明は次の原理に基く。2層の駆動用導体層
に夫々バブル駆動電流を通じたときに生じる駆動
用導体層領域のバイアス磁界成分の分布は、個々
の駆動用導体層に別個に電流を通じたときに生じ
る磁界分布の和に等しい。従つて補償用導体層が
一層であつても、それに通じる補償用電流が個々
の駆動用導体層の電流による発生バイアス磁界を
補償し得る電流の和になつていれば、2層の駆動
用導体層からのバイアス磁界成分は一層の補償用
導体層からの磁界で補償することが出来る。
The invention is based on the following principle. The distribution of the bias magnetic field component in the driving conductor layer region that occurs when a bubble drive current is passed through each of the two driving conductor layers is the sum of the magnetic field distributions that occur when current is passed through each drive conductor layer separately. equal. Therefore, even if the compensating conductor layer is one layer, if the compensating current flowing through it is the sum of the currents that can compensate for the bias magnetic field generated by the current of the individual driving conductor layers, then the two-layer driving conductor layer can be used. The bias magnetic field components from the layers can be compensated by the magnetic field from one compensating conductor layer.

本発明のバブル磁区素子はバブル磁区材料とそ
の上に設けられた少くとも2層の駆動用導体層と
その近傍に設けられた1層の補償用導体層より構
成され、該補償用導体層には前記全駆動用導体層
に流れる全合成電流を通ずることを特徴とするも
のである。
The bubble magnetic domain element of the present invention is composed of a bubble magnetic domain material, at least two driving conductor layers provided thereon, and one compensation conductor layer provided in the vicinity thereof. is characterized in that a total combined current flowing through all of the drive conductor layers is passed.

次に本発明の実施例を図面を用いて説明する。
第2図Aは本発明の第1の実施例を示す。本実施
例においては、バブル磁区素子は基板材料2上に
育成されたバブル材料1とその上に設けられた第
1の駆動用導体層31、第2の駆動用導体層3
2、補償用導体層33及び、各導体層間に設けら
れた電気絶縁層36により構成されている。
Next, embodiments of the present invention will be described using the drawings.
FIG. 2A shows a first embodiment of the invention. In this embodiment, the bubble magnetic domain element includes a bubble material 1 grown on a substrate material 2, a first driving conductor layer 31 provided thereon, and a second driving conductor layer 3 provided thereon.
2. It is composed of a compensation conductor layer 33 and an electrical insulating layer 36 provided between each conductor layer.

この素子において、バブル磁区は駆動用導体層
31,32に通じる駆動電流41,42により駆
動される。駆動電流41,42はそれぞれJ1,J2
で示されるシークエンスとして与えられる。この
駆動用電流41,42によつてバブル材料1に生
じるバイアス磁界成分は、補償用導体層33に上
記駆動電流の和J1+J2と逆方向(反対符号)に第
2図牢BのJ3で示すシークエンス〔J3=−(J1
J2)〕で流すことにより殆んど0に補償される。
In this element, the bubble magnetic domain is driven by drive currents 41 and 42 that pass through drive conductor layers 31 and 32. Drive currents 41 and 42 are J 1 and J 2 respectively
It is given as a sequence shown by . The bias magnetic field component generated in the bubble material 1 by the drive currents 41 and 42 is applied to the compensating conductor layer 33 in the opposite direction (opposite sign) to the sum of the drive currents J 1 +J 2 in the direction J of cell B in FIG. The sequence shown in 3 [J 3 = - (J 1 +
J 2 )], it is compensated to almost 0.

第3図は本発明の第2の実施例を示す。本実施
例においては第1の実施例と同様な素子構造を有
するが、3層の導体層、すなわち、駆動用導体層
31,32および補償用導体層33が素子上の部
分3で電気的に接触を保つている。本実施例にお
いて補償用導体層33を駆動用導体層31,32
に対する共通電流路に設定することによつて自動
的に補償用導体層33の電流43の密度J3は駆動
用導体層31,32の電流41,42の密度J1
J2とJ3=−(J1+J2)の関係を満たす。即ち、補償
用導体層33は駆動用導体層31,32に対する
バイアス磁界成分の補償を行つている。
FIG. 3 shows a second embodiment of the invention. This embodiment has the same element structure as the first embodiment, but three conductor layers, namely, driving conductor layers 31 and 32 and compensation conductor layer 33, are electrically connected to the portion 3 on the element. Keeping in touch. In this embodiment, the compensation conductor layer 33 is replaced by the drive conductor layers 31 and 32.
By setting the common current path to the current path, the density J 3 of the current 43 in the compensation conductor layer 33 is automatically changed to the density J 1 of the current 41, 42 in the drive conductor layers 31, 32,
The relationship J 2 and J 3 =-(J 1 + J 2 ) is satisfied. That is, the compensation conductor layer 33 compensates for the bias magnetic field component for the drive conductor layers 31 and 32.

第4図は本発明の第3の実施例を示す。本実施
例は、第3図に示す実施例の上下を逆にし、補償
用導体層がバブル磁区素子チツプ支持基板6に接
するように装着された構造をなしている。
FIG. 4 shows a third embodiment of the invention. This embodiment has a structure in which the embodiment shown in FIG. 3 is turned upside down, and the compensating conductor layer is attached so as to be in contact with the bubble magnetic domain element chip support substrate 6.

一端で電気接触を保つて接続している駆動用導
体層31及び32は、補償用導体層33と部分3
でその一端において電気接触を有している。この
とき補償用導体層33を駆動用導体層31,32
に対する共通電流路とする第2の実施例と同様
に、補償用導体層33はバイアス磁界成分の補償
を行うことになる。
The driving conductor layers 31 and 32, which are connected at one end while maintaining electrical contact, are connected to the compensation conductor layer 33 and the portion 3.
and has an electrical contact at one end. At this time, the compensation conductor layer 33 is replaced by the drive conductor layers 31 and 32.
Similarly to the second embodiment in which a common current path is provided for the two, the compensation conductor layer 33 compensates for the bias magnetic field component.

上記の三実施例においては、補償用導体層は駆
動用導体層の間にあつても、また第一層目の駆動
用導体層とバブル材料との間にあつてもバイアス
磁界成分補償効果は同じであることは言うまでも
ない。
In the above three embodiments, even if the compensation conductor layer is between the drive conductor layers or between the first drive conductor layer and the bubble material, the bias magnetic field component compensation effect is not achieved. Needless to say, they are the same.

第5図は本発明の第4の実施例を示す。本実施
例においては、補償用導体層33が駆動用導体層
31,32の両側にそれとほぼ平行に設けられて
いる。本実施例では補償用導体層33は、基板材
料2とバブル材料1とこれらの上に設けられた駆
動用導体層31,32とを有するバブル磁区素子
チツプの支持基板6上に設けられている。また、
補償用導体層33はバブル磁区素子チツプ上に設
けられていてもバイアス磁界成分の補償効果は同
様に得られることは言うまでもない。
FIG. 5 shows a fourth embodiment of the invention. In this embodiment, the compensation conductor layer 33 is provided on both sides of the drive conductor layers 31 and 32 substantially parallel to them. In this embodiment, the compensation conductor layer 33 is provided on the support substrate 6 of the bubble magnetic domain element chip, which has the substrate material 2, the bubble material 1, and the driving conductor layers 31 and 32 provided thereon. . Also,
It goes without saying that even if the compensation conductor layer 33 is provided on the bubble magnetic domain element chip, the same compensation effect for the bias magnetic field component can be obtained.

本実施例のバイアス磁界成分の補償は次の様に
して行われる。いま第一層目の駆動用導体層31
に密度J1をもつバブル磁区駆動電流41を通じて
生じるバイアス磁界成分はその両側の補償用導体
層33に密度J3をもつ補償用電流43を電流41
と同方向に通じることにより補償される。このと
きJ3=aJ1であれば、電流41によるバブル磁区
材料1でのバイアス磁界成分と電流43によるバ
ブル磁区材料1でのバイアス磁界成分は互に逆方
向になりトータルのバイアス磁界成分は非常に小
さくなる。この定数aは駆動用導体層31の幅
W1と補償用導体層33の幅W3に依存し、ほぼa
=k(W1/W3)1/2の関係をもつことが検討の結果 明らかになつた。ここでk=0.5〜2.0の定数であ
る。比(W1/W3)は5〜20が適当な範囲である
ことが同様に明らかになつた。
Compensation for the bias magnetic field component in this embodiment is performed as follows. Now the first driving conductor layer 31
The bias magnetic field component generated through the bubble magnetic domain driving current 41 having a density J 1 causes a compensating current 43 having a density J 3 to flow into the compensating conductor layer 33 on both sides of the current 41.
This is compensated for by leading in the same direction as. At this time, if J 3 = aJ 1 , the bias magnetic field component in the bubble magnetic domain material 1 due to the current 41 and the bias magnetic field component in the bubble magnetic domain material 1 due to the current 43 are in opposite directions, and the total bias magnetic field component is extremely becomes smaller. This constant a is the width of the driving conductor layer 31.
Depends on W 1 and the width W 3 of the compensation conductor layer 33, approximately a
As a result of the study, it became clear that there is a relationship of =k(W 1 /W 3 )1/2. Here, k is a constant of 0.5 to 2.0. It has also been found that a suitable range for the ratio (W 1 /W 3 ) is 5 to 20.

第二層目の駆動用導体層32にも密度J2のバブ
ル磁区駆動電流42を通じたとき、バブル材料1
でのバイアス磁界成分は電流41と42によるも
のの和となる。従つて補償用導体層33に、夫々
に対する補償電流aJ1とaJ2の和J3=a(J1+J2)を
通じれば、1層の補償用導体層で2層の駆動用導
体層からのバイアス磁界成分が補償されることに
なる。
When a bubble magnetic domain drive current 42 with a density J 2 is also passed through the second driving conductor layer 32, the bubble material 1
The bias magnetic field component at is the sum of the currents 41 and 42. Therefore, if the sum of the compensation currents aJ 1 and aJ 2 for each of them J 3 =a(J 1 +J 2 ) is passed through the compensation conductor layer 33, one compensation conductor layer can be used to generate a voltage from two driving conductor layers. The bias magnetic field component of is compensated.

以上の実施例では駆動用導体層が2層の場合に
ついて述べてきたが3層以上の場合も同様に一層
の補償用導体層を設けることで、バイアス磁界成
分を補償し得ることは明白である。
In the above embodiments, we have described the case where there are two drive conductor layers, but it is clear that even in the case of three or more layers, the bias magnetic field component can be compensated for by providing one compensation conductor layer. .

この様に本発明を用いれば、少ない製造プロセ
スで、有効利用領域の大きな電流アクセス型バブ
ル磁区素子が容易に実現する。
As described above, by using the present invention, a current access type bubble magnetic domain element with a large effective usable area can be easily realized with a small number of manufacturing processes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは従来電流アクセス型バブル磁区素子
を示す斜視図、第1図Bはその導体層によるバイ
アス磁界成分を示す図、第2図Aは本発明の第1
の実施例を示す斜視図、第2図Bはその各導体層
に通ずる電流波形を示す図、第3図は本発明の第
2の実施例を、第4図は第3の実施例を、第5図
は第4の実施例をそれぞれ示す斜斜視図である。 1はバブル磁区材料、11はバブル磁区、2は
バブル磁区材料の基板、31,32は駆動用導体
層、30はバブル駆動層に設けられた開孔パタ
ン、33は補償用導体層、41,42,43は
夫々導体層31,32,33に流れる電流、3
6,37は絶縁層、5はバブル磁区素子の有効利
用領域、6はバブル磁区素子チツプ支持基板、1
0は駆動用導体層によるバイアス磁界成分の分
布、J1,J2,J3は各導体層に流れる電流密度、3
は駆動用導体層31,32と補償用導体層33と
の電気的接合部を示す。
FIG. 1A is a perspective view showing a conventional current access type bubble magnetic domain element, FIG. 1B is a diagram showing a bias magnetic field component due to its conductor layer, and FIG.
FIG. 2B is a diagram showing current waveforms passing through each conductor layer, FIG. 3 is a perspective view of the second embodiment of the present invention, and FIG. 4 is a third embodiment of the present invention. FIG. 5 is a perspective view showing the fourth embodiment. 1 is a bubble magnetic domain material, 11 is a bubble magnetic domain, 2 is a substrate made of bubble magnetic domain material, 31 and 32 are drive conductor layers, 30 is an opening pattern provided in the bubble drive layer, 33 is a compensation conductor layer, 41, 42 and 43 are currents flowing through the conductor layers 31, 32, and 33, respectively;
6 and 37 are insulating layers, 5 is an effective use area of the bubble magnetic domain element, 6 is a bubble magnetic domain element chip support substrate, 1
0 is the distribution of the bias magnetic field component due to the driving conductor layer, J 1 , J 2 , J 3 is the current density flowing in each conductor layer, 3
indicates an electrical connection between the driving conductor layers 31 and 32 and the compensation conductor layer 33.

Claims (1)

【特許請求の範囲】[Claims] 1 バブル磁区材料とその上に設けられた少くと
も2層のバブル磁区駆動用導体層とその近傍に設
けられた1層のバイアス磁界成分補償用導体層よ
り構成されるバブル磁区素子に於いて、該バイア
ス磁界成分補償用導体層には前記全駆動用導体層
に流れる全合成電流を通ずることを特徴とする電
流アクセス型バブル磁区素子。
1. In a bubble magnetic domain element composed of a bubble magnetic domain material, at least two conductor layers for driving bubble magnetic domains provided thereon, and one conductor layer for bias magnetic field component compensation provided in the vicinity thereof, A current access type bubble magnetic domain element, characterized in that a total combined current flowing through all of the drive conductor layers is passed through the bias magnetic field component compensation conductor layer.
JP1762080A 1980-02-15 1980-02-15 Current access type bubble magnetic-domain element Granted JPS56114190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1762080A JPS56114190A (en) 1980-02-15 1980-02-15 Current access type bubble magnetic-domain element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1762080A JPS56114190A (en) 1980-02-15 1980-02-15 Current access type bubble magnetic-domain element

Publications (2)

Publication Number Publication Date
JPS56114190A JPS56114190A (en) 1981-09-08
JPS6252394B2 true JPS6252394B2 (en) 1987-11-05

Family

ID=11948909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1762080A Granted JPS56114190A (en) 1980-02-15 1980-02-15 Current access type bubble magnetic-domain element

Country Status (1)

Country Link
JP (1) JPS56114190A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693171A (en) * 1979-12-26 1981-07-28 Nec Corp Current access bubble magnetic domain element
JPS5693172A (en) * 1979-12-26 1981-07-28 Nec Corp Bubble magnetic domain element of current access type
JPS5694570A (en) * 1979-12-27 1981-07-31 Nec Corp Bubble magnetic domain element of current access type

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693171A (en) * 1979-12-26 1981-07-28 Nec Corp Current access bubble magnetic domain element
JPS5693172A (en) * 1979-12-26 1981-07-28 Nec Corp Bubble magnetic domain element of current access type
JPS5694570A (en) * 1979-12-27 1981-07-31 Nec Corp Bubble magnetic domain element of current access type

Also Published As

Publication number Publication date
JPS56114190A (en) 1981-09-08

Similar Documents

Publication Publication Date Title
US6430084B1 (en) Magnetic random access memory having digit lines and bit lines with a ferromagnetic cladding layer
JP5100935B2 (en) Optimal write conductor layout to improve MRAM performance
US6791857B2 (en) Method and article for concentrating fields at sense layers
Raffel et al. Magnetic film memory design
US3357004A (en) Mated thin film memory element
JPS6252394B2 (en)
JPS6226113B2 (en)
US4601013A (en) Magnetic bubble memory device
JPS6244355B2 (en)
US4387443A (en) Magnetic bubble device
JPS6243274B2 (en)
US4316263A (en) Transfer and replication arrangement for magnetic bubble memory devices
US3413485A (en) Regulable reactors and gate circuits using them
JPS58108086A (en) Magnetic bubble transfer circuit
US4507755A (en) Magnetic bubble memory device
JPS5939308Y2 (en) magnetic head
JPS6136316B2 (en)
JPS6050607A (en) Vertical magnetic recording and reproducing head
US4463447A (en) Magnetic bubble generator
JPS60140587A (en) Ion implanting type magnetic bubble element garnet film
JPS5826387A (en) Magnetic bubble transfer pattern
JPS58143485A (en) Magnetic bubble generator
JPS622363B2 (en)
JPS5990288A (en) Magnetic bubble transfer circuit
JPS5837893A (en) Constitution of minor loop of magnetic bubble device