JPS6252259B2 - - Google Patents

Info

Publication number
JPS6252259B2
JPS6252259B2 JP53156825A JP15682578A JPS6252259B2 JP S6252259 B2 JPS6252259 B2 JP S6252259B2 JP 53156825 A JP53156825 A JP 53156825A JP 15682578 A JP15682578 A JP 15682578A JP S6252259 B2 JPS6252259 B2 JP S6252259B2
Authority
JP
Japan
Prior art keywords
standard solution
measurement
calibration curve
concentration standard
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53156825A
Other languages
Japanese (ja)
Other versions
JPS5583846A (en
Inventor
Kosaku Tsuboshima
Noriaki Ono
Takashi Mizusaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP15682578A priority Critical patent/JPS5583846A/en
Publication of JPS5583846A publication Critical patent/JPS5583846A/en
Publication of JPS6252259B2 publication Critical patent/JPS6252259B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、イオン電極によるイオン活量測定方
法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for measuring ion activity using an ion electrode.

従来のイオン電極によるイオン活量測定方法
は、第1図に示した如く、イオン電極1及び参照
電極2を測定槽3内の検体4中に浸漬し、これら
電極1及び2に発生する電位を増幅器5で増幅し
た後その電位図示しない表示器によりイオン濃度
単位で表示するものであつて、その場合はネルン
ストの式 V=VO+Clog a を用いていた。但し、aはイオン濃度、Cは勾配
を表わす定数、VOは電極によつて定まる定数、
Vは測定電位である。
In the conventional method for measuring ion activity using ion electrodes, as shown in FIG. After being amplified by an amplifier 5, it is displayed in ion concentration units on a display (not shown), using the Nernst equation V=V O +Clog a. However, a is the ion concentration, C is a constant representing the gradient, V O is a constant determined by the electrode,
V is the measured potential.

そして、この方法によるイオン活量測定方法に
ついてより詳しく説明すれば、まず下記の如くイ
オン電極1の検量線を求める。即ち、検体4を測
定する前に、ピペツト6等で高濃度標準液(イオ
ン濃度の高い液)を測定槽3に注入して測定する
と、その測定電位は、 VH=VO+ClogH (1) となる。但し、VHは高濃度標準液の測定電位、
Hは所定の高濃度標準液のイオン濃度である。次
に高濃度標準液を廃棄し洗浄した後、低濃度標準
液(イオン濃度の低い液)をピペツト6等で測定
槽3に注入して測定すると、その測定電位は、 VL=VO+ClogL (2) となる。但し、VLは低濃度標準液の測定電位、
Lは所定の低濃度標準液のイオン濃度である。次
に図示しない演算回路により式(1)と(2)から定数V
Oを消去して勾配Cを求めると、 C=V−V/logH/L (3) となり、この匂配Cを図示しないメモリに記憶し
ておく。次に、低濃度標準液を廃棄し洗浄した
後、検体4をピペツト6等で測定槽3に注入して
測定すると、そのイオン濃度の測定電位は、 VX=VO+ClogX (4) と出力される。但し、VXは検体4の測定電位、
Xは検体4のイオン濃度である。次に式(2)と(4)か
ら定数VOを消去すると、 VX=ClogX−CogL+VL (5) となり、これが第2図にて実線で示した検量線と
なる。又、この式(5)をイオン濃度Xについて整理
すれば、 となり、この式(5′)にメモリに記憶されていた
勾配Cの値と測定電位VXの値を入れて演算し表
示すれば、検体4のイオン濃度Xの値を知ること
が出来る。
To explain in more detail how to measure ion activity using this method, first, a calibration curve of the ion electrode 1 is determined as follows. That is, if a high concentration standard solution (liquid with high ion concentration) is injected into the measurement tank 3 using a pipette 6 or the like before measuring the sample 4, the measured potential is V H =V O +ClogH (1) becomes. However, V H is the measured potential of the high concentration standard solution,
H is the ion concentration of the predetermined high concentration standard solution. Next, after discarding and washing the high-concentration standard solution, a low-concentration standard solution (a solution with low ion concentration) is injected into the measurement tank 3 using a pipette 6, etc., and measured. The measured potential is V L = V O + ClogL. (2) becomes. However, V L is the measured potential of the low concentration standard solution,
L is the ion concentration of the predetermined low concentration standard solution. Next, an arithmetic circuit (not shown) calculates the constant V from equations (1) and (2).
When O is deleted and the gradient C is obtained, C=V H -V L /logH/L (3), and this gradient C is stored in a memory (not shown). Next, after discarding and washing the low-concentration standard solution, the sample 4 is injected into the measurement tank 3 using a pipette 6, etc., and measured. The measurement potential of the ion concentration is output as V X =V O +ClogX (4) be done. However, V X is the measured potential of specimen 4,
X is the ion concentration of sample 4. Next, by eliminating the constant V O from equations (2) and (4), we obtain V X =ClogX-CogL+V L (5), which becomes the calibration curve shown by the solid line in FIG. Also, if we rearrange this equation (5) with respect to the ion concentration X, we get By inserting the value of the slope C stored in the memory and the value of the measured potential V X into equation (5'), calculating and displaying the result, the value of the ion concentration X of the specimen 4 can be determined.

上記測定方法は、高濃度標準液と低濃度標準液
とによつて決定された検量線を一回引くと、それ
以後は何も補正しない方法だが、外部条件(例え
ば温度)及び電極の変化等によりこの検量線を補
正してやる必要性が出てくる。その為、本来なら
一検体を測定する度に高濃度標準液と低濃度標準
液とによつて検量線を引き直せば良いのぞある
が、この方法は極めて煩しい為、通常は低濃度標
準液のみを使用して、一検体測定後に必ずこの低
濃度標準液により補正する方法がとられる。但
し、この場合、勾配Cは常に一定とみなして最初
の高濃度標準液と低濃度標準液とによつて決定さ
れた値即ち式(3)による値を用いる。又、装置内に
保持する低濃度標準液は、補正液と称し、最初の
低濃度標準液と較べてイオン濃度が全く同じであ
るのに外部条件の変化等により測定電位が変化す
るので該低濃度標準液と区別する。従つて、毎検
体測定後に補正液による補正を行うと、式(5)は VX=ClogX−ColgL+VC (6) となり、これが第2図にて点線で示した補正後の
検量線となる。但し、VCは補正液の測定電位で
ある。又、この式(6)をイオン濃度Xについて整理
すれば、 となり、この式(6′)に上記と同様に勾配Cの値
と測定電位VXの値を入れて演算し表示すれば、
検体4のイオン濃度Xの値を正しく知ることが出
来る。即ち、第2図に示した如く、外部条件変化
後に検体4の測定電位VXに対応するイオン濃度
を求めようとする場合、最初の検量線(実線)を
そのまま用いると誤つたイオン濃度XOが求めら
れてしまうのに対して、補正後の検量線(点線)
を用いれば正しいイオン濃度Xが求められるので
ある。
The above measurement method is a method in which a calibration curve determined by a high concentration standard solution and a low concentration standard solution is drawn once, and no correction is made after that. Therefore, it becomes necessary to correct this calibration curve. Therefore, it would normally be possible to redraw the calibration curve using high-concentration standard solutions and low-concentration standard solutions each time one sample is measured, but since this method is extremely troublesome, it is usually A method is used in which only the standard solution is used, and after each sample measurement, correction is made with this low concentration standard solution. However, in this case, the slope C is always assumed to be constant, and the value determined by the initial high concentration standard solution and low concentration standard solution, that is, the value according to equation (3) is used. In addition, the low concentration standard solution held in the device is called a correction solution, and even though the ion concentration is exactly the same compared to the initial low concentration standard solution, the measured potential changes due to changes in external conditions, etc. Distinguish from concentration standard solution. Therefore, if correction is performed using a correction solution after each sample measurement, equation (5) becomes V X =ClogX-ColgL+V C (6), which becomes the corrected calibration curve shown by the dotted line in FIG. However, V C is the measured potential of the correction liquid. Also, if we rearrange this equation (6) with respect to the ion concentration X, we get Then, if we insert the value of slope C and the value of measured potential V
The value of the ion concentration X of the sample 4 can be accurately known. That is, as shown in FIG. 2, when trying to find the ion concentration corresponding to the measured potential V X of the specimen 4 after a change in external conditions, if the initial calibration curve (solid line) is used as is, the ion concentration X O will be incorrect. is calculated, whereas the corrected calibration curve (dotted line)
By using , the correct ion concentration X can be found.

ところが、この補正液の注入をピペツトを用い
てやつていた場合は上記方法だけで正しいイオン
濃度が得られたが、毎検体測定後の補正液の注入
操作を自動化して能率をあげるためにローリング
ポンプ7等から成る装置を用いた場合、上記方法
だけでは正しいイオン濃度が得られなくなつてし
まつた。そして、その原因としては補正液の注入
方法とか注入タイミングの相違等の微妙なシーケ
ンスの違いが影響していることが考えられた。
However, if the correction solution was injected using a pipette, the correct ion concentration could be obtained using only the above method, but in order to automate the injection of the correction solution after each sample measurement and increase efficiency, rolling When a device consisting of the pump 7 and the like is used, it is no longer possible to obtain the correct ion concentration using only the above method. It was thought that the cause of this was due to subtle differences in the sequence, such as differences in the injection method and injection timing of the correction liquid.

本発明は、上記問題点に鑑み、勾配C決定時に
補正液の測定電位を加味することを上記方法に付
加することによつて、ローリングポンプ等から成
る装置を用いた場合でも正しいイオン濃度が得ら
れるようにしたイオン活量測定方法を提供せんと
するものであつて、その内容について第3図及び
第4図に基づき説明する。まず、最初に高濃度標
準液をピペツト6等で測定槽3に注入して測定電
位VHを得る。次に高濃度標準液を廃棄し洗浄し
た後、補正液をローリングポンプ7等により測定
槽3に注入して測定電位VCH(高濃度標準液測定
時とほとんど同時に測定したという意味でこの記
号とする。)を求める。次に補正液を廃棄し洗浄
した後、低濃度標準液をピペツト6等で測定槽3
に注入して測定電位VLを得る。次に低濃度標準
液を廃棄し洗浄した後、補正液をローリングポン
プ7等により測定槽3に注入して測定電位VCL
(本来VCL=VCHであるはずだが、注入タイミン
グ及び雰囲気の違い等により異つているものと考
える。)を求める。次に上記各電位VH,VCH,V
L,VCL及び各イオン濃度H,Lにより上記従来
方法と同様に演算回路を用いて勾配Cを求める
と、 C=(V−VCH)−(V−VCL)/logH
/L(7) となる。尚、この場合VCH=VCLならば、式(7)は
上記式(3)と全く同じになる。又、この勾配Cを有
する検量線は第3図にて一点鎖線で示した如くに
なる。即ち、この勾配Cの中には、高濃度標準液
及び低濃度標準液の各々に続いて測定される補正
液の測定電位VCH,VCLが加味されているので、
該勾配Cの値は実際の検体測定に近い状態の勾配
値となつている。次に外部条件の変化等を考慮し
て上記検量線を補正すると、それは第4図にて二
点鎖線で示した如くになり、この検量線によるイ
オン濃度Xは、 となる。但し、VCXはイオン濃度Xの検体測定に
つづいて測定した補正液の測定電位である。即
ち、従来方法の式(6′)によりイオン濃度Xを求
めたものが検量線グラフの一点でのみ補正するだ
けで勾配Cは一定であるとしていたのに対して、
この式(8)によりイオン濃度Xを求めたものは検量
線グラフの二点以上で補正することにより勾配C
の補正も行つているので、測定精度が良くなつて
いる。
In view of the above problems, the present invention adds to the above method the measurement potential of the correction liquid when determining the gradient C, thereby making it possible to obtain correct ion concentration even when using a device such as a rolling pump. The purpose of this invention is to provide a method for measuring ion activity, the contents of which will be explained based on FIGS. 3 and 4. First, a high concentration standard solution is injected into the measurement tank 3 using a pipette 6 or the like to obtain a measurement potential V H . Next, after discarding and washing the high-concentration standard solution, a correction solution is injected into the measurement tank 3 using the rolling pump 7, etc., and the measured potential V CH (this symbol means that the measurement was made almost at the same time as when measuring the high-concentration standard solution). ). Next, after discarding and washing the correction solution, pipette the low concentration standard solution into the measuring tank 3.
to obtain the measured potential V L . Next, after discarding and washing the low-concentration standard solution, a correction solution is injected into the measurement tank 3 using a rolling pump 7, etc., and the measurement potential V CL is
(Originally, V CL = V CH should be true, but it is assumed that the difference is due to differences in injection timing, atmosphere, etc.). Next, each of the above potentials V H , V CH , V
L , V CL and each ion concentration H, L, when calculating the slope C using an arithmetic circuit in the same way as in the conventional method described above, C = (V H - V CH ) - (V L - V CL )/log H.
/L(7). In this case, if V CH =V CL , equation (7) becomes exactly the same as equation (3) above. Further, the calibration curve having this slope C is as shown by the dashed line in FIG. That is, since the gradient C takes into account the measured potentials V CH and V CL of the correction solution measured subsequent to the high concentration standard solution and the low concentration standard solution,
The value of the gradient C is a gradient value close to the actual sample measurement. Next, when the above calibration curve is corrected in consideration of changes in external conditions, etc., it becomes as shown by the two-dot chain line in Fig. 4, and the ion concentration X according to this calibration curve is becomes. However, V CX is the measured potential of the correction solution measured following the measurement of the ion concentration X in the sample. That is, in contrast to the conventional method in which the ion concentration
The ion concentration
The measurement accuracy has also been improved.

次に本測定方法における検体測定手順について
説明すれば、まず上記方法にて検量線の設定を行
つておく。そして、検体測定を行う場合検体4を
ピペツト6等で測定槽3内に注入して測定電位V
Xを得る。次に検体4を廃棄し洗浄した後、補正
液をローリングポンプ7等により測定槽3に注入
して測定電位VCXを得る。次に、測定電位VX
CXの値を式(8)の演算回路に入力演算し、検体4
のイオン濃度Xの値を求める。最後にこの値を図
示しない表示器により表示する。
Next, the sample measurement procedure in this measurement method will be explained. First, a calibration curve is set using the above method. When performing sample measurement, the sample 4 is injected into the measurement tank 3 using a pipette 6, etc., and the measurement potential V
Get X. Next, after discarding and washing the specimen 4, a correction liquid is injected into the measurement tank 3 using a rolling pump 7 or the like to obtain a measurement potential V CX . Next, the measured potential V x ,
The value of V CX is input to the calculation circuit of formula (8) and calculated.
Find the value of the ion concentration X. Finally, this value is displayed on a display (not shown).

以上のように、本発明によるイオン活量測定方
法によれば、毎検体測定時の補正液の注入にロー
リングポンプを用いたとしても、検量線の勾配値
を実際の検体測定に近い状態の勾配値に補正し、
而も検体測定時にイオン濃度算出式にも補正を与
えているので、イオン濃度を極めて精度良く求め
ることが出来る。
As described above, according to the ion activity measurement method of the present invention, even if a rolling pump is used to inject the correction solution during each sample measurement, the slope value of the calibration curve can be adjusted to a slope close to that of the actual sample measurement. correct to the value,
Moreover, since the ion concentration calculation formula is also corrected when measuring the sample, the ion concentration can be determined with extremely high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はイオン電極によるイオン活量測定装置
の要部を示す概略図、第2図は従来方法における
検量線の補正を示す図、第3図は本発明によるイ
オン活量測定方法における検量線の設定を示す
図、第4図は本発明方法における検量線の補正を
示す図である。 1……イオン電極、2……参照電極、3……測
定槽、4……検体、5……増幅器、6……ピペツ
ト、7……ローリングポンプ。
Figure 1 is a schematic diagram showing the main parts of an ion activity measuring device using an ion electrode, Figure 2 is a diagram showing calibration curve correction in the conventional method, and Figure 3 is a calibration curve in the ion activity measuring method according to the present invention. FIG. 4 is a diagram showing the calibration curve correction in the method of the present invention. 1... Ion electrode, 2... Reference electrode, 3... Measurement tank, 4... Sample, 5... Amplifier, 6... Pipette, 7... Rolling pump.

Claims (1)

【特許請求の範囲】[Claims] 1 高濃度標準液と低濃度標準液により検量線を
設定すると共に、毎検体測定時に該低濃度標準液
と同一の補正液により前記検量線を補正するよう
にしたイオン電極によるイオン活量測定方法にお
いて、前記検量線設定時にピペツト等により測定
槽に注入した高濃度標準液及び低濃度標準液の各
測定電位から、夫々の該電位測定後にローリング
ポンプ等により測定槽に注入した前記補正液の各
測定電位を夫々差し引くことにより、前記検量線
の勾配値を実際の検体測定に近い状態の勾配値に
補正するようにしたことを特徴とするイオン活量
測定方法。
1. A method for measuring ion activity using an ion electrode, in which a calibration curve is set using a high-concentration standard solution and a low-concentration standard solution, and the calibration curve is corrected using the same correction solution as the low-concentration standard solution during each sample measurement. , from each measurement potential of the high-concentration standard solution and low-concentration standard solution injected into the measurement tank with a pipette or the like when setting the calibration curve, each of the correction solutions injected into the measurement tank with a rolling pump or the like after measuring the respective potentials. A method for measuring ion activity, characterized in that the slope value of the calibration curve is corrected to a slope value close to the actual sample measurement by subtracting the measured potentials.
JP15682578A 1978-12-21 1978-12-21 Ion activity measuring method dependent upon ion electrode Granted JPS5583846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15682578A JPS5583846A (en) 1978-12-21 1978-12-21 Ion activity measuring method dependent upon ion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15682578A JPS5583846A (en) 1978-12-21 1978-12-21 Ion activity measuring method dependent upon ion electrode

Publications (2)

Publication Number Publication Date
JPS5583846A JPS5583846A (en) 1980-06-24
JPS6252259B2 true JPS6252259B2 (en) 1987-11-04

Family

ID=15636163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15682578A Granted JPS5583846A (en) 1978-12-21 1978-12-21 Ion activity measuring method dependent upon ion electrode

Country Status (1)

Country Link
JP (1) JPS5583846A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4228909A (en) * 1979-06-21 1980-10-21 The Continental Group, Inc. Squeeze-off closure with tamper indicating band

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444593A (en) * 1977-09-14 1979-04-09 Hitachi Ltd Ion concentration analytical apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444593A (en) * 1977-09-14 1979-04-09 Hitachi Ltd Ion concentration analytical apparatus

Also Published As

Publication number Publication date
JPS5583846A (en) 1980-06-24

Similar Documents

Publication Publication Date Title
US4218746A (en) Method and apparatus for calibrating ion concentration measurement
Bacarella et al. The potentiometric measurement of acid dissociation constants and pH in the system methanol-water. pKa values for carboxylic acids and anilinium ions
CN1151375C (en) Method and apparatus for determination of substance coexisting with another substance
US4641249A (en) Method and device for compensating temperature-dependent characteristic changes in ion-sensitive FET transducer
JPH0684949B2 (en) How to measure ion concentration
KR101194271B1 (en) Method for measuring target component in erythrocyte-containing specimen and measurement device used therein
US4321113A (en) Electronic calibration of electrochemical sensors
JPS6252259B2 (en)
Barnard et al. An investigation into the determination of stability constants of metal complexes by convolution—deconvolution cyclic voltammetry
JP2869610B2 (en) Calibration method of electrolyte analyzer
Busch et al. Microprocessor-controlled differential titrator
US8965724B2 (en) Measuring device
JP3096823B2 (en) Solution concentration measurement method
EP0371490B1 (en) Measuring apparatus of two components using enzyme electrodes and the measuring method thereof
SU140261A1 (en) Method for determining composition of concentrated nitric acid-nitrooleum
JPH0464426B2 (en)
JPH0115818B2 (en)
JPH07167818A (en) Ion concentration measuring apparatus
JPH05322843A (en) Electrolyte analyzer using ion electrode
KR910006276B1 (en) Circuit for measuring ion condensation using transistor
JPH0616027B2 (en) Cal-Fisher-Method for detecting electrode potential in moisture meter
JPH0682115B2 (en) Ion monitor
JP2523608B2 (en) Phase difference detection method in AC applied polarization reaction
JPH08304324A (en) Method for correcting base concentration of sample water
JPH07113779A (en) Analyzer