JPH07113779A - Analyzer - Google Patents

Analyzer

Info

Publication number
JPH07113779A
JPH07113779A JP26136493A JP26136493A JPH07113779A JP H07113779 A JPH07113779 A JP H07113779A JP 26136493 A JP26136493 A JP 26136493A JP 26136493 A JP26136493 A JP 26136493A JP H07113779 A JPH07113779 A JP H07113779A
Authority
JP
Japan
Prior art keywords
concentration
standard solution
sample
measurement
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26136493A
Other languages
Japanese (ja)
Other versions
JP3311113B2 (en
Inventor
Naoya Imai
直也 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP26136493A priority Critical patent/JP3311113B2/en
Publication of JPH07113779A publication Critical patent/JPH07113779A/en
Application granted granted Critical
Publication of JP3311113B2 publication Critical patent/JP3311113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To provide an analyzer by which high concentration electrolyte and low concentration electrolyte can be analyzed at random with high accuracy. CONSTITUTION:In an analyzer 1 having an electric potential measuring part 3 to measure plural specimens and a data processing part 4 to process data of measurement results of this electric potential measuring part 3, the data processing part 4 finds a correction factor according to measurement results of second high concentration standard liquid BH and second low concentration standard liquid BL, and measurement results of measurement specimens are corrected by using this correction factor and the measurement results of the specimens.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、血清や尿等の
電解質の濃度を連続して分析する分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analyzer for continuously analyzing the concentration of electrolytes such as serum and urine.

【0002】[0002]

【従来の技術】従来、血清・尿等の混在電解質の濃度の
分析は目的毎にバッチ方式で行われている。そして、尿
検体の測定の後に血清検体の測定を行う際には、キャリ
−オ−バ−の影響を防ぐために、ダミ−分析を行った
り、洗浄工程を間に入れたりして残留検体を除去するこ
とが行われている。
2. Description of the Related Art Conventionally, the concentration of mixed electrolytes such as serum and urine has been analyzed by a batch system for each purpose. Then, when measuring the serum sample after the measurement of the urine sample, in order to prevent the effect of carryover, a dummy analysis is performed or a washing step is inserted to remove the residual sample. Is being done.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来の分析
方法には、以下の各項のような不具合があった。 (1) 希釈管のキャリ−オ−バ−が悪影響を及ぼすため、
血清・尿検体をランダムに測定することができない。 (2) 尿検体測定直後の血清検体の測定の際には、検体の
濃度差が非常に大きいので、希釈管内壁に付着する尿残
液の影響を受けてキャリ−オ−バ−が大となる。そし
て、ダミ−分析を行ったり、余分に洗浄工程を追加する
必要があるので、処理速度の向上が難しい。 (3) キャリ−オ−バ−の影響を防ぐために希釈ポットや
攪拌棒の洗浄を行う場合もあるが、この場合には、洗浄
液や洗浄液を供給するための機器を用意する必要がある
ので、分析装置の構成が複雑になる。また、洗浄時間が
費やされるので、処理速度の向上が難しい。 本発明の目的とするところは、高濃度の電解質と低濃度
の電解質とをランダムに且つ高精度に分析できる分析装
置を提供することにある。
By the way, the conventional analysis method has the following problems. (1) Since the carry over of the dilution tube has an adverse effect,
Unable to randomly measure serum / urine samples. (2) When measuring a serum sample immediately after the measurement of a urine sample, the concentration difference of the sample is very large, and the carry-over is large due to the influence of the residual urine solution adhering to the inner wall of the dilution tube. Become. Further, since it is necessary to perform a dummy analysis and to add an additional washing step, it is difficult to improve the processing speed. (3) In order to prevent the influence of carry over, the diluting pot and the stirring rod may be washed, but in this case, it is necessary to prepare the washing liquid and the equipment for supplying the washing liquid. The configuration of the analyzer becomes complicated. Further, since the cleaning time is spent, it is difficult to improve the processing speed. An object of the present invention is to provide an analyzer capable of randomly and highly accurately analyzing a high-concentration electrolyte and a low-concentration electrolyte.

【0004】[0004]

【課題を解決するための手段および作用】上記目的を達
成するために本発明は、複数の検体を測定する測定部
と、この測定部の測定結果をデ−タ処理するデ−タ処理
部とを備えた分析装置において、デ−タ処理部が、高濃
度標準液と低濃度標準液との測定結果に基づいて補正係
数を求め、この補正係数と前検体の測定結果とを利用し
て測定検体の測定結果を補正することにある。こうする
ことによって本発明は、高濃度の電解質と低濃度の電解
質とをランダムに且つ高精度に分析できるようにしたこ
とにある。
In order to achieve the above object, the present invention comprises a measuring section for measuring a plurality of specimens, and a data processing section for processing the measurement results of the measuring section. In the analyzer provided with, the data processing unit obtains a correction coefficient based on the measurement results of the high-concentration standard solution and the low-concentration standard solution, and measures using the correction coefficient and the measurement result of the previous sample. It is to correct the measurement result of the sample. By doing so, the present invention is to enable high-concentration electrolyte and low-concentration electrolyte to be analyzed randomly and with high accuracy.

【0005】[0005]

【実施例】以下、本発明の一実施例を図1及び図2に基
づいて説明する。図1は本発明の一実施例を示すもの
で、図中の符号1は分析装置である。この分析装置1
は、希釈管2、測定部としての電位測定部3、及び、デ
−タ処理部4を備えている。希釈管2の周囲にはサンプ
ルプロ−ブ5、内部標準液吐出ノズル6、希釈液吐出ノ
ズル7、及び、攪拌棒8が配設されており、これらは内
部標準液吐出機構9、希釈液吐出機構10、及び、サン
プル吸引吐出・機構11に接続されている。各機構9〜
11にはシリンジが用いられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows an embodiment of the present invention, and reference numeral 1 in the drawing is an analyzer. This analyzer 1
Is provided with a diluting tube 2, a potential measuring section 3 as a measuring section, and a data processing section 4. A sample probe 5, an internal standard solution discharge nozzle 6, a diluent discharge nozzle 7, and a stirring rod 8 are arranged around the dilution pipe 2, and these are provided as an internal standard solution discharge mechanism 9 and a diluent discharge. It is connected to the mechanism 10 and the sample suction / discharge / mechanism 11. Each mechanism 9-
A syringe is used for 11.

【0006】サンプルプロ−ブ5はプロ−ブ移動機構1
2に取付けられており、希釈管2、スタンダ−ドテ−ブ
ル13、及び、サンプル容器14の上部へ自在に変位す
る。さらに、サンプルプロ−ブ5はプロ−ブ移動機構1
2により昇降させられる。
The sample probe 5 is a probe moving mechanism 1
It is attached to the upper part of the dilution tube 2, the standard table 13 and the sample container 14 and is freely displaced. Further, the sample probe 5 is a probe moving mechanism 1
It is raised and lowered by 2.

【0007】スタンダ−ドテ−ブル13には、第1高濃
度標準液AH 、第1低濃度標準液AL 、第2高濃度標準
液BH 、及び、第2低濃度標準液BL を収容した複数の
容器が保持されている。各標準液の濃度は既知である。
The standard table 13 contains a first high-concentration standard solution A H , a first low-concentration standard solution A L , a second high-concentration standard solution B H , and a second low-concentration standard solution B L. A plurality of accommodated containers are held. The concentration of each standard solution is known.

【0008】ここで、サンプルプロ−ブ5は標準液が収
容された各容器の上部で停止できる。そして、サンプル
プロ−ブ5を各容器の上部へ移動させる手段として、一
般的な種々の機構を採用できる。
Here, the sample probe 5 can be stopped at the upper part of each container containing the standard solution. Various general mechanisms can be adopted as means for moving the sample probe 5 to the upper part of each container.

【0009】電位測定部3は希釈管2と廃液容器15と
の間に配管接続されている。さらに、希釈管2に収容さ
れた検液(電解質)16が、ペリスタポンプ17の動作
に伴って希釈管2から廃液容器15へ移動し、電位測定
部3を通過する。電位測定部3には参照液18も導入さ
れる。
The potential measuring unit 3 is connected between the dilution pipe 2 and the waste liquid container 15 by piping. Further, the test liquid (electrolyte) 16 contained in the dilution pipe 2 moves from the dilution pipe 2 to the waste liquid container 15 with the operation of the peristaltic pump 17, and passes through the potential measuring unit 3. The reference liquid 18 is also introduced into the potential measuring unit 3.

【0010】電位測定部3はイオン選択電極を利用した
もので、検液16のNa、K、Clについて電位を測定
し、測定結果をデ−タ処理部4へ出力する。デ−タ処理
部4は、電位測定部3の測定結果を記憶する機能、複数
の測定結果の平均値を算出する機能、電位−濃度の検量
線を求める機能、ランダム測定のための補正係数を算出
する機能、算出された補正係数を記憶する機能、及び、
補正係数を用いて補正濃度を算出する機能等を有してい
る。
The potential measuring unit 3 uses an ion selective electrode and measures the potentials of Na, K and Cl of the test solution 16 and outputs the measurement results to the data processing unit 4. The data processing unit 4 has a function of storing the measurement result of the potential measuring unit 3, a function of calculating an average value of a plurality of measurement results, a function of obtaining a potential-concentration calibration curve, and a correction coefficient for random measurement. A function of calculating, a function of storing the calculated correction coefficient, and
It has a function of calculating the correction density using the correction coefficient.

【0011】つぎに、上述の分析装置1の作用を説明す
る。分析装置1においては、サンプル(検体)21、2
2の分析に先立って、検量線の作成及び補正係数の算出
が行われる。本実施例で用いられる第1高濃度標準液A
H 、第1低濃度標準液AL の濃度は血清範囲レベル程度
(高濃度 Na:160 K:6.0 Cl:120 、低濃度 N
a:120 K:3.0 Cl:80)で良い。また、第2高濃度
標準液BH 、第2低濃度標準液BL については、キャリ
−オ−バ−の影響を明確にするために、濃度差が大きい
方がよい(例えば、高濃度 Na:300 K:100 Cl:
400 、低濃度 Na:160 K:6.0 Cl:120 )。
Next, the operation of the above-described analyzer 1 will be described. In the analyzer 1, the samples (specimen) 21, 2
Prior to the analysis of 2, the calibration curve is created and the correction coefficient is calculated. First high-concentration standard solution A used in this example
H, the concentration of the first low-concentration standard solution A L about serum coverage level (high concentration Na: 160 K: 6.0 Cl: 120, low-concentration N
a: 120 K: 3.0 Cl: 80) is sufficient. Further, regarding the second high-concentration standard solution B H and the second low-concentration standard solution B L , in order to clarify the effect of the carrier over, it is preferable that the difference in concentration is large (for example, high concentration Na : 300 K: 100 Cl:
400, low concentration Na: 160 K: 6.0 Cl: 120).

【0012】検量線の作成のために、先ずサンプルプロ
−ブ5が第1高濃度標準液AH を吸引し、希釈管2へ移
動して、第1高濃度標準液AH を希釈管2へ吐出する。
この際、希釈液19も希釈管2へ所定量吐出される。攪
拌棒8が回転駆動され、希釈管2の中の検液16が十分
に攪拌される。この後、ペリスタポンプ17の動作に伴
って検液16が電位測定部3に流れ、検液16の電位測
定が行われる。
In order to prepare the calibration curve, first, the sample probe 5 sucks the first high-concentration standard solution A H and moves it to the diluting tube 2, and the first high-concentration standard solution A H is diluted with the diluting tube 2. To discharge.
At this time, the diluting liquid 19 is also discharged to the diluting pipe 2 by a predetermined amount. The stirring rod 8 is rotationally driven, and the test liquid 16 in the dilution tube 2 is sufficiently stirred. After that, the test solution 16 flows to the potential measuring unit 3 in accordance with the operation of the peristaltic pump 17, and the potential of the test solution 16 is measured.

【0013】つぎに、内部標準液吐出ノズル6が内部標
準液20を希釈管2に既知量吐出し、攪拌棒8によって
内部標準液20が十分攪拌され、内部標準液20の電位
測定が行われる。そして、第1高濃度標準液AH と内部
標準液20との電位差が求められる。
Next, the internal standard solution discharge nozzle 6 discharges the internal standard solution 20 into the dilution pipe 2 in a known amount, the internal standard solution 20 is sufficiently stirred by the stirring rod 8, and the potential of the internal standard solution 20 is measured. . Then, the potential difference between the first high-concentration standard solution A H and the internal standard solution 20 is obtained.

【0014】上述の動作は計4回繰返される。さらに、
4つの電位差の平均値が計算される。この後、サンプル
プロ−ブ5が第1低濃度標準液AL を吸引し、第1低濃
度標準液AL が希釈液19とともに希釈管2へ吐出され
る。さらに、第1高濃度標準液AH の場合と同様に、第
1低濃度標準液AL を含む検液の電位測定、及び、内部
標準液20の電位測定が行われる。そして、この動作が
4回繰返され、4つの電位差の平均値が計算される。
The above operation is repeated four times in total. further,
The average value of the four potential differences is calculated. Thereafter, sample pro - Bed 5 sucks the first low-concentration standard solution A L, the first low-concentration standard solution A L is discharged along with diluent 19 into the dilution tube 2. Further, similarly to the case of the first high-concentration standard solution A H , the potential measurement of the test solution containing the first low-concentration standard solution A L and the potential measurement of the internal standard solution 20 are performed. Then, this operation is repeated four times, and the average value of the four potential differences is calculated.

【0015】そして、異なった2種の標準液AH 、AL
の電位差の平均値から、電位差−濃度の検量線が求めら
れる。つぎに、補正係数の算出のために、サンプルプロ
−ブ5が第2高濃度標準液BH を吸引し、希釈管2に第
2高濃度標準液BH を希釈液19とともに吐出する。攪
拌の後、第2高濃度標準液BH を含む検液16が電位測
定される。さらに、第2低濃度標準液BL がサンプルプ
ロ−ブ5に吸引され、攪拌棒8が回転駆動され、希釈管
2の中の検液16が十分に攪拌される。この後、ペリス
タポンプ17の動作に伴って検液16が電位測定部3に
流れ、検液16の電位測定が行われる。
Then, two different standard solutions A H and A L
From the average value of the potential difference, the calibration curve of potential difference-concentration can be obtained. Next, for the calculation of the correction coefficient, the sample pro - Bed 5 sucks the second high concentration standard solution B H, discharges the second high concentration standard solution B H with diluent fluid 19 into the dilution tube 2. After stirring, the potential of the test solution 16 containing the second high-concentration standard solution B H is measured. Further, the second low-concentration standard solution BL is sucked into the sample probe 5, the stirring rod 8 is rotationally driven, and the test solution 16 in the dilution tube 2 is sufficiently stirred. After that, the test solution 16 flows to the potential measuring unit 3 in accordance with the operation of the peristaltic pump 17, and the potential of the test solution 16 is measured.

【0016】第2高濃度標準液BH 、及び、第2高濃度
標準液BL の電位測定は、以下の表1に示すように3回
ずつ交互に繰返され、合計12回行われる。そして、両
標準液BH 、BL の電位測定結果は、後述するように補
正係数を求めるために利用される。
The measurement of the potentials of the second high-concentration standard solution B H and the second high-concentration standard solution B L is alternately repeated three times as shown in Table 1 below, for a total of 12 times. Then, the potential measurement results of both standard solutions B H and B L are used to obtain a correction coefficient as described later.

【0017】[0017]

【表1】 表1の測定結果を基にして、補正係数が以下の (1)式に
よって導かれる。
[Table 1] Based on the measurement results in Table 1, the correction coefficient is derived by the following equation (1).

【0018】[0018]

【数1】 [Equation 1]

【0019】(1)式の各変数には表1のデ−タが代入さ
れる。つまり、第2高濃度標準液BH として、表1の
S.NO.1〜3、7〜9の計6検体の平均値が利用されて
いる。また、第2低濃度標準液BL 濃度として、 S.NO.
5、6、11、12の4検体の平均値が利用されてい
る。さらに、第2高濃度標準液BH 測定直後の第2低濃
度標準液BL 濃度として、 S.NO.4、10の平均値が利
用されている。
The data in Table 1 is substituted for each variable in the equation (1). That is, as the second high-concentration standard solution B H ,
The average value of a total of 6 samples of S.NO.1 to 3 and 7 to 9 is used. Further, as the second low concentration standard solution B L concentration, S.NO.
The average value of 4 samples of 5, 6, 11, and 12 is used. Further, as the second low-concentration standard solution B L concentration immediately after the measurement of the second high-concentration standard solution B H , the average value of S.NO.

【0020】例えば、Kに関して実際に出力された以下
の数値を(1) 式の各変数に代入して具体的な補正係数を
計算してみる。 第2高濃度標準液BH :96.8mmol/l 第2高濃度標準液BH 測定直後の第2低濃度標準液B
H :6.16mmol/l 第2低濃度標準液BL :5.96mmol/l
For example, the following numerical values actually output for K are substituted into the variables of the equation (1) to calculate a specific correction coefficient. Second high-concentration standard solution B H : 96.8 mmol / l Second high-concentration standard solution B H Second low-concentration standard solution B immediately after measurement
H : 6.16 mmol / l Second low-concentration standard solution BL : 5.96 mmol / l

【0021】[0021]

【数2】 [Equation 2]

【0022】つぎに、この補正係数を利用して、以下の
(2)式から補正濃度を算出する。 補正濃度=測定濃度−(前検体測定濃度−測定濃度)×補正係数 =測定濃度−(前検体測定濃度−測定濃度)×0.22 …(2) この (2)式を利用して実際のサンプル21、22につい
てKの測定濃度を求めた場合の一例を表2に示す。
Next, using this correction coefficient,
The corrected density is calculated from the equation (2). Corrected concentration = measured concentration− (previous sample measured concentration−measured concentration) × correction coefficient = measured concentration− (previous sample measured concentration−measured concentration) × 0.22 (2) The actual sample 21 using this equation (2) Table 2 shows an example of the case where the measured concentration of K was obtained for Nos.

【0023】[0023]

【表2】 [Table 2]

【0024】表2において、S.NO1〜5、11〜15、21〜
25、31〜34は同一サンプルを表している。表2から分か
るように、高濃度サンプル測定直後の低濃度サンプル
(例えば、S.NO.6,16,26)の[前検体測定濃度−測定濃
度]の値は、キャリ−オ−バ−影響を受けての高値を示
す。しかし、補正を行うことにより、誤差分がキャンセ
ルされ、他の低濃度サンプルの測定濃度と同程度の値が
得られる。
In Table 2, S.NO 1-5, 11-15, 21-
25 and 31 to 34 represent the same sample. As can be seen from Table 2, the value of [pre-analyte measured concentration-measured concentration] of the low-concentration sample (for example, S.NO.6, 16, 26) immediately after the measurement of the high-concentration sample is the carry-over effect. Indicates a high price after receiving. However, by performing the correction, the error is cancelled, and a value similar to the measured concentrations of other low-concentration samples can be obtained.

【0025】他の低濃度サンプルの測定濃度について同
じ補正を行っても、測定濃度と補正濃度はほとんど変わ
らない。つまり、高濃度サンプル測定直後の低濃度サン
プルについてのみ大きな数値の変化が表れるが、他の低
濃度サンプルには補正の影響は表れない。
Even if the same correction is performed on the measured concentrations of other low-concentration samples, the measured concentrations and the corrected concentrations hardly change. That is, a large change in the numerical value appears only for the low-concentration sample immediately after the measurement of the high-concentration sample, but the correction effect does not appear for the other low-concentration samples.

【0026】そして、これらのことから、補正を行うこ
とにより、サンプル21、22の濃度差の影響を受ける
ことなく高精度の分析デ−タが得られる。前述の (1)式
及び (2)式はデ−タ処理部4に予め記憶されている。そ
して、第2高濃度標準液BH 、及び、第2低濃度標準液
L の電位測定結果から補正係数が求められ、この補正
係数がデ−タ処理部4に記憶される。この後、実際のサ
ンプルの電位測定が行われ、先に得られた補正係数を利
用して補正濃度が求められる。
From these facts, by carrying out the correction, highly accurate analysis data can be obtained without being affected by the difference in concentration between the samples 21 and 22. The above equations (1) and (2) are stored in the data processing unit 4 in advance. Then, a correction coefficient is obtained from the potential measurement results of the second high-concentration standard solution B H and the second low-concentration standard solution B L , and this correction coefficient is stored in the data processing unit 4. After that, the potential of the actual sample is measured, and the correction density obtained using the correction coefficient obtained previously is obtained.

【0027】上述のような分析装置1においては、高濃
度標準液BH と低濃度標準液BL とを用いて補正係数が
求められ、この補正係数を利用してサンプルの補正濃度
が求められる。そして、キャリ−オ−バ−の割合を予め
考慮して、濃度の分析結果が得られる。したがって、尿
検体のような高濃度サンプルと血清検体のような低濃度
サンプルとを、キャリ−オ−バ−の悪影響を受けること
なく、ランダムに濃度分析することが可能になる。
In the analyzer 1 as described above, the correction coefficient is obtained using the high concentration standard solution B H and the low concentration standard solution B L, and the correction concentration of the sample is obtained using this correction coefficient. . Then, the concentration analysis result is obtained in consideration of the carrier-over ratio in advance. Therefore, a high-concentration sample such as a urine sample and a low-concentration sample such as a serum sample can be randomly analyzed for concentration without being adversely affected by the carry-over.

【0028】さらに、ダミ−分析を行ったり、希釈管2
や攪拌棒8のための洗浄工程を追加したりすることな
く、高濃度サンプルと低濃度サンプル21、22とを連
続して分析できる。このため、分析時間を短縮すること
が可能になる。また、ダミ−分析や洗浄のため機器を備
える必要がないので、分析装置1の構成が簡略化され
る。
Further, a dummy analysis is performed and the dilution tube 2 is used.
The high-concentration sample and the low-concentration samples 21 and 22 can be continuously analyzed without adding a washing process for the stirring rod 8. Therefore, the analysis time can be shortened. Further, since it is not necessary to provide any equipment for the dummy analysis and the cleaning, the structure of the analyzer 1 is simplified.

【0029】また、標準液BH 、BL の分析を繰返すこ
とによって補正係数が求められるので、分析装置1の作
業のシ−ケンスに大きな変更を施す必要もない。なお、
本発明は、要旨を逸脱しない範囲で種々に変更すること
が可能である。
Further, since the correction coefficient is obtained by repeating the analysis of the standard solutions B H and B L , it is not necessary to make a great change in the operation sequence of the analyzer 1. In addition,
The present invention can be variously modified without departing from the scope of the invention.

【0030】例えば、第2高濃度標準液BH 及び第2低
濃度標準液BL を尿用の校正液としても使用しても。ま
た、第1と第2の高濃度標準液AH 、BH を兼用した
り、第1と第2の低濃度標準液AL 、BL を兼用したり
してもよい。さらに、分析装置1の各機器の構成は、本
実施例に限定されるものではなく、必要に応じて適宜追
加・削除が可能である。
For example, the second high-concentration standard solution B H and the second low-concentration standard solution B L may also be used as a urine calibration solution. Further, the first and second high-concentration standard solutions A H and B H may be used together, or the first and second low-concentration standard solutions A L and BL may be used together. Furthermore, the configuration of each device of the analyzer 1 is not limited to the present embodiment, and addition / deletion can be appropriately performed as necessary.

【0031】[0031]

【発明の効果】以上説明したように本発明は、複数の検
体を測定する測定部と、この測定部の測定結果をデ−タ
処理するデ−タ処理部とを備えた分析装置において、デ
−タ処理部が、高濃度標準液と低濃度標準液との測定結
果に基づいて補正係数を求め、この補正係数と前検体の
測定結果とを利用して測定検体の測定結果を補正するも
のである。したがって本発明は、高濃度の電解質と低濃
度の電解質とをランダムに且つ高精度に分析できるとい
う効果がある。
Industrial Applicability As described above, the present invention provides an analyzer which comprises a measuring section for measuring a plurality of specimens and a data processing section for processing the measurement results of the measuring section. -The processing unit obtains a correction coefficient based on the measurement results of the high-concentration standard solution and the low-concentration standard solution, and corrects the measurement result of the measurement sample using this correction coefficient and the measurement result of the previous sample. Is. Therefore, the present invention has an effect that a high-concentration electrolyte and a low-concentration electrolyte can be analyzed randomly and with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の分析装置の構成図。FIG. 1 is a configuration diagram of an analyzer according to an embodiment of the present invention.

【図2】本発明の一実施例の分析装置によって実行され
る分析方法を示す工程図。
FIG. 2 is a process diagram showing an analysis method executed by an analysis apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…分析装置、2…希釈管、3…電位測定部、4…デ−
タ処理部、5…サンプルプロ−ブ、6…内部標準液吐出
ノズル、7…希釈液吐出ノズル、8…攪拌棒、13…ス
タンダ−ドテ−ブル、21、22…サンプル(検体)、
H …第1高濃度標準液、AL …第1低濃度標準液、B
H …第2高濃度標準液(標準液)、BL …第1低濃度標
準液(標準液)。
DESCRIPTION OF SYMBOLS 1 ... Analytical apparatus, 2 ... Diluting tube, 3 ... Potential measuring unit, 4 ...
Processing unit, 5 ... sample probe, 6 ... internal standard solution discharge nozzle, 7 ... dilution solution discharge nozzle, 8 ... stirring rod, 13 ... standard table, 21, 22 ... sample (specimen),
A H ... 1st high concentration standard solution, A L ... 1st low concentration standard solution, B
H ... 2nd high concentration standard solution (standard solution), BL ... 1st low concentration standard solution (standard solution).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の検体を測定する測定部と、この測
定部の測定結果をデ−タ処理するデ−タ処理部とを備え
た分析装置において、上記デ−タ処理部が、高濃度標準
液と低濃度標準液との測定結果に基づいて補正係数を求
め、この補正係数と前検体の測定結果とを利用して測定
検体の測定結果を補正することを特徴とする分析装置。
1. An analyzer comprising a measuring section for measuring a plurality of specimens and a data processing section for processing the measurement results of the measuring section, wherein the data processing section has a high concentration. An analysis device, wherein a correction coefficient is obtained based on the measurement results of a standard solution and a low-concentration standard solution, and the measurement result of the measurement sample is corrected using this correction coefficient and the measurement result of the previous sample.
【請求項2】 測定結果の補正が以下の補正式、 補正濃度=測定濃度−(前検体測定濃度−測定濃度)×
補正係数 を利用して行われることを特徴とする前記請求項1記載
の分析装置。
2. The correction of the measurement result is performed by the following correction formula: correction concentration = measurement concentration− (previous sample measurement concentration−measurement concentration) ×
The analysis apparatus according to claim 1, wherein the analysis is performed using a correction coefficient.
JP26136493A 1993-10-19 1993-10-19 Analysis equipment Expired - Fee Related JP3311113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26136493A JP3311113B2 (en) 1993-10-19 1993-10-19 Analysis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26136493A JP3311113B2 (en) 1993-10-19 1993-10-19 Analysis equipment

Publications (2)

Publication Number Publication Date
JPH07113779A true JPH07113779A (en) 1995-05-02
JP3311113B2 JP3311113B2 (en) 2002-08-05

Family

ID=17360820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26136493A Expired - Fee Related JP3311113B2 (en) 1993-10-19 1993-10-19 Analysis equipment

Country Status (1)

Country Link
JP (1) JP3311113B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274048A (en) * 1996-04-04 1997-10-21 Tosoh Corp Pretreatment apparatus
US7358016B2 (en) 2002-07-23 2008-04-15 Osaka Gas Co., Ltd. Electrophotographic photoreceptor and electrophoto-graphic apparatus equipped with the same
JP2010133742A (en) * 2008-12-02 2010-06-17 A & T Corp Electrolyte analysis method and electrolyte analyzer
CN106940333A (en) * 2017-04-17 2017-07-11 山西医科大学 The outer Electrophysiology research perfusion system of isolated cells

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274048A (en) * 1996-04-04 1997-10-21 Tosoh Corp Pretreatment apparatus
US7358016B2 (en) 2002-07-23 2008-04-15 Osaka Gas Co., Ltd. Electrophotographic photoreceptor and electrophoto-graphic apparatus equipped with the same
JP2010133742A (en) * 2008-12-02 2010-06-17 A & T Corp Electrolyte analysis method and electrolyte analyzer
CN106940333A (en) * 2017-04-17 2017-07-11 山西医科大学 The outer Electrophysiology research perfusion system of isolated cells

Also Published As

Publication number Publication date
JP3311113B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
CN1486423A (en) Quantitative analyzing method and quantitative analyzer using sensor
EP2511699A1 (en) Electrolyte analysis apparatus
EP0220350A1 (en) Ion concentration analysis
CN110869769B (en) Test suite, test method and dispensing device
CN110108836A (en) The measuring method and its application of chlorine ion concentration in nuclear power plant's liquid waste treatment system
CN105785061B (en) The bearing calibration of sample-adding amount and system
EP0417968B1 (en) Method and apparatus for electrochemical analysis and an aqueous solution for use therein
JP3311113B2 (en) Analysis equipment
US7144488B2 (en) Electrode, electrochemical cell, and method for analysis of electroplating baths
JP2002196005A (en) Automatic chemical analyzer having recalculating function
JP2000321281A (en) Automatic analyzer
JP2020128906A (en) Analysis method, method for creating analytical curve, and automatic analyzer
JP2016170075A (en) Automatic analyzer and method for automatic analysis
JP3194601B2 (en) Automatic analysis method and automatic analyzer
JPS5840698B2 (en) Ion concentration analysis method
CN113933452B (en) Method for titrating sample solutions
JPH0763673A (en) Quantitative calculation device
JPH03140844A (en) Multi-item analysis of minute sample
JPH07333189A (en) Error factor detecting method of automatic analyzer
JPH0438467A (en) Inspection data processing apparatus
JP3076384B2 (en) Ion concentration analyzer
CN116930527A (en) Sample analyzer and control method thereof
JPS6228658A (en) Method and instrument for analyzing electrolyte
JPS63732B2 (en)
JPH04315035A (en) Analysis method of high-frequency inductive coupling plasma emission

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees