JPS6252170A - Method of burning mullite sintered body - Google Patents

Method of burning mullite sintered body

Info

Publication number
JPS6252170A
JPS6252170A JP60189553A JP18955385A JPS6252170A JP S6252170 A JPS6252170 A JP S6252170A JP 60189553 A JP60189553 A JP 60189553A JP 18955385 A JP18955385 A JP 18955385A JP S6252170 A JPS6252170 A JP S6252170A
Authority
JP
Japan
Prior art keywords
mullite
plywood
firing
powder
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60189553A
Other languages
Japanese (ja)
Inventor
昌作 石原
毅 藤田
喬 黒木
尭三 戸田
尚哉 諌田
伸康 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60189553A priority Critical patent/JPS6252170A/en
Publication of JPS6252170A publication Critical patent/JPS6252170A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ムライト焼結体の焼成方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for firing a mullite sintered body.

〔発明の背景〕[Background of the invention]

近年、小型化が可能である、信頼性が高いという点から
セラミック配線基板が、電子計算機。
In recent years, ceramic wiring boards have become popular in electronic computers due to their ability to be miniaturized and highly reliable.

通信機器、家電品等に、ICチップや小型電子部品の搭
載用の基板として用いられている。ムライトを主成分と
するムライトセラばツク配線基板もその1例であり、製
造方法は一般的なアルミナ系のセラミック配線基板の製
造方法と同様で以下のような工程によって作製される。
It is used as a substrate for mounting IC chips and small electronic components in communication equipment, home appliances, etc. A mullite ceramic wiring board whose main component is mullite is one example, and the manufacturing method is similar to that of a general alumina ceramic wiring board, and is manufactured by the following steps.

すなわち、原料粉末を有機樹脂で結合したセラミック生
シート(グリーンシート)を作製した後、このグリーン
シートに穴加工および導体ペーストを用いて配線パター
ンを形成し、印刷多層、積層により多層配線とした後、
焼成することによって作製される。
That is, after producing a raw ceramic sheet (green sheet) in which raw material powder is bonded with an organic resin, a wiring pattern is formed on this green sheet by drilling holes and using conductive paste, and multilayer wiring is created by printing multilayers and laminating. ,
It is made by firing.

しかしながら、次のような理由によって高寸法精度のム
ライト配線基板を作製することは困離である。それは、
生ムライト基板を合板の上に置いて行なう焼成工程にあ
る。焼成は、生ムライト基板を合板の上に置いて行ない
2合板としては焼成時の温度や雰囲気に耐える材料のア
ルミナ系やムライト系のセラミック、またモリブデンや
タングステン等が用いられる。ムライト基板をこれらの
材質でできた台板上に置いて焼成するとムライト基板が
合板に貼りつく現象が起こる。このように貼りついた場
合、基板に亀裂が入ったり剥せなくなったり%また剥れ
たとしても基板の一部が欠落したり、ムライト基板に合
板の一部が異物として付着する。なお、基板が欠けたり
基板に異物が付着しないまでもムライト基板の焼成後の
寸法精度が著しく悪くなる。
However, it is difficult to produce a mullite wiring board with high dimensional accuracy for the following reasons. it is,
The firing process involves placing a raw mullite substrate on top of plywood. Firing is carried out by placing a raw mullite substrate on a plywood board, and the plywood is made of alumina-based or mullite-based ceramics that can withstand the temperature and atmosphere during firing, or molybdenum, tungsten, or the like. When a mullite substrate is placed on a base plate made of these materials and fired, a phenomenon occurs in which the mullite substrate sticks to the plywood. If it sticks in this way, the board may crack or become impossible to peel off, or even if it does come off, part of the board may be missing, or a part of the plywood may adhere to the mullite board as a foreign object. Incidentally, even if the substrate is not chipped or foreign matter is not attached to the substrate, the dimensional accuracy of the mullite substrate after firing is significantly deteriorated.

そこで、このようなムライト基板と合板の付着を避ける
事を目的として、合板にアルミナやムライトの球状粒子
(直径10〜100μm)を敷粉として応げ、この敷粉
の上にムライト基板を置いて焼成する方法が一般にとら
れる。この方法によって、ムライト基板と合板との付着
は無くなるが、新だにムライト基板と敷粉との付着が生
じる。付着した敷粉は外的な力を加えることによって取
り除かれるが、完全に取り除くことは困難であるととも
に、基板の一部が敷粉を取り除く際に欠落する。
Therefore, in order to avoid such adhesion between the mullite substrate and plywood, spherical particles (10 to 100 μm in diameter) of alumina or mullite are applied to the plywood as a bedding powder, and the mullite substrate is placed on top of this bedding powder. A method of firing is generally used. This method eliminates adhesion between the mullite substrate and the plywood, but new adhesion between the mullite substrate and the bedding powder occurs. The adhered bedding powder can be removed by applying external force, but it is difficult to remove it completely, and part of the substrate may be missing when the bedding powder is removed.

以上述べたように、従来の焼成方法では、欠落等の欠陥
が無い高い寸法精度のムライト基板を得ることはできな
い。
As described above, with the conventional firing method, it is not possible to obtain a mullite substrate with high dimensional accuracy that is free from defects such as chipping.

〔発明の目的〕 本発明の目的は、上述した従来技術の欠点を無くし、欠
陥のない高い寸法精度のムライト配線基板を提供するこ
とにある。
[Object of the Invention] An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a mullite wiring board with no defects and high dimensional accuracy.

〔発明の概要〕[Summary of the invention]

以下に本発明の概要について述べる。それはムライト配
線基板と付着しない合板を用いて焼成することにある。
An outline of the present invention will be described below. The key is to use plywood, which does not stick to the mullite wiring board, and fire it.

ムライト配線基板の材料はムライト組成の粉末、焼結助
剤、配線用の金・属粉末であり、これらのうち付着の原
因となるものは、焼結助剤とムライト組成粉末の反応に
よって形成されるガラス成分である。このガラス成分と
種々の高温耐熱材料との付着の程度を検討した結果、ジ
ルコニア(Zr02)系の材料が最も良好であった。な
お、付着の程度はムライト配線基板を乗せる合板表面の
面粗度とも関係があり、表面粗さとしては、10〜60
0μmの範囲のものが適切である。10μm以下である
と、軽度に付着する事が発生し、まだ500μm以上で
あると基板に小ざな凹凸が生じたり焼成収縮時に微小な
引っかきキズがつく。
The materials for mullite wiring boards are mullite composition powder, sintering aid, and metal/metallic powder for wiring. Among these, those that cause adhesion are formed by the reaction between the sintering aid and mullite composition powder. It is a glass component. As a result of examining the degree of adhesion between this glass component and various high-temperature heat-resistant materials, it was found that zirconia (Zr02)-based materials were the best. The degree of adhesion is also related to the surface roughness of the plywood surface on which the mullite wiring board is placed, and the surface roughness is 10 to 60.
A range of 0 μm is suitable. If it is less than 10 μm, slight adhesion will occur, and if it is still more than 500 μm, small irregularities will occur on the substrate or minute scratches will occur during firing shrinkage.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について説明する。 An embodiment of the present invention will be described below.

実施例1 始めに被焼成物である生ムライト配線基板の製造方法、
すなわちグリーンシートの作Mおよびこのグリーンシー
トへの配線パターン印刷について述べる。
Example 1 First, a method for manufacturing a raw mullite wiring board as an object to be fired,
That is, the production of a green sheet and the printing of wiring patterns on this green sheet will be described.

セラミック粉末としては、ムライト粉末を生成トシ全体
ノ組成としテAe2os 56wt% 、  SAO−
z43wt % 、 My01wt%の粒子径5μ+n
以下の粉末100部、結合剤としてブチラール樹脂6部
、樹脂用可塑剤2.5部、溶剤としてトリクロルエチ。
As the ceramic powder, mullite powder was used, and the total composition was Ae2os 56wt%, SAO-
Particle size of z43wt%, My01wt% 5μ+n
100 parts of the following powder, 6 parts of butyral resin as a binder, 2.5 parts of a plasticizer for resin, and trichlorethyl as a solvent.

レン、パークロルエチレン、アルコール類を5部部を加
え合わせ、アルミナ裏の内張り、およびアルミナ製ボー
ルを用いたボールミルにて24時間連続して湿式混合を
行う。続いてシリコン系の消泡剤をo、i部添加した後
式らに1時間混合を行い、スラリー状の混合物を作る。
Add 5 parts of ethylene, perchlorethylene, and alcohol, and perform wet mixing continuously for 24 hours in a ball mill using an alumina lining and alumina balls. Subsequently, o and i parts of a silicone-based antifoaming agent were added, and the mixture was mixed for 1 hour to form a slurry-like mixture.

続いてボールミルからスラリー状の混合物を取り出し減
圧下で攪拌しなからスラ“り一部の空気を脱泡する。こ
のようにして作った均質なスラリーの粘度を調整し5千
〜1万センチボイズとしドクタープレイド型キ・ヤステ
ィング装置を用いてキャリアフィルム上に塗布して乾燥
させ、厚さ0.3−のグリーンシートを作製した。
Next, the slurry-like mixture is taken out from the ball mill and stirred under reduced pressure to remove some air from the slurry.The viscosity of the homogeneous slurry thus made is adjusted to 5,000 to 10,000 centimeters. The mixture was coated onto a carrier film using a Dr. Plaid type casting device and dried to produce a 0.3-thick green sheet.

次に、配線パターンを形成するだめの導体タングステン
ペーストの作製方法について述べる。
Next, a method for producing a conductive tungsten paste for forming a wiring pattern will be described.

タングステン粉末としては、0.5μm粉末と3.αμ
m粉末を3ニアの重量比で混合した粉末80部、バイン
ダートシてエチルセルロースを39.ジエチレングリコ
−ルミ1フ部加え合わせ、らいかい機を用いて6時間混
練し、続いて3本ロールにてギャップ30μmで30分
間混線後ブチカルピトールを加えて粘度を調整し印刷用
ペーストする。
As tungsten powder, 0.5 μm powder and 3. αμ
39 parts of ethyl cellulose was added to the binder with 80 parts of a powder prepared by mixing M powder at a weight ratio of 3. Add 1 part of diethylene glycol to the mixture, knead for 6 hours using a milling machine, then mix with three rolls for 30 minutes with a gap of 30 μm, add butycarpitol to adjust the viscosity, and prepare a paste for printing.

上記の方法にて作製したグリーンシートおよび印刷ペー
ストを用いて生ムライト配線基板を作製する方法を以下
に述べる。
A method for producing a raw mullite wiring board using the green sheet and printing paste produced by the above method will be described below.

上記で作製した0、3ml厚のグリーンシートを150
−角に切断し、必要に応じて直径0.131の貫通孔を
NG制御の打抜き金型で行う。続いて前記印刷ペースト
を用い、スクリーン印刷の手法にて、前記グリーンシー
トの貫通孔部および表面に配線パターンを形成する。パ
ターンは最上部がLSIチップ搭載用のパターン、内部
は電源用および配線、下部が入出力ビン立て用のパッド
パターンとした。次に、配線パターンを形成したグリー
ンシートを20枚重ね一体化した。一体化は温度120
 ’0、圧カフ0にν侃で行った。一体化後5周囲の不
要部分を切断し、外形が1ons角の生ムライト配線基
板とする。
The 0.3ml thick green sheet prepared above was
- Cut into corners, and if necessary, make a through hole with a diameter of 0.131 using a punching die with NG control. Subsequently, using the printing paste, a wiring pattern is formed in the through-holes and on the surface of the green sheet by a screen printing method. The top part of the pattern was a pattern for mounting an LSI chip, the inside was a pad pattern for power supply and wiring, and the bottom part was a pad pattern for an input/output bin stand. Next, 20 green sheets with wiring patterns formed thereon were stacked and integrated. Temperature 120 for integration
'0, the pressure cuff was set to 0. After integration, unnecessary parts around 5 are cut to produce a raw mullite wiring board with an outer diameter of 1 ounce square.

次なる工程は焼成工程である。始めに従来法統いて本発
明による焼成方法について述べる。
The next step is the firing step. First, the firing method according to the present invention will be described in conjunction with the conventional method.

従来の焼成法は以下の通りである。上記で作製した10
0W角の生ムライト配線基板を、平均粒径50μmの球
状アルミナ粒子を敷いたアルミナ製の合板に乗せて、昇
温速度毎時200 ’O1窒素、水素、水蒸気の混合ガ
ス雰囲気にて、最高温度1650’Oで焼成を行った。
The conventional firing method is as follows. 10 produced above
A 0W square raw mullite wiring board was placed on an alumina plywood board covered with spherical alumina particles with an average particle size of 50 μm, and the temperature was raised to a maximum temperature of 1650 at a heating rate of 200'O1 per hour in a mixed gas atmosphere of nitrogen, hydrogen, and water vapor. Firing was performed at 'O.

なお電気炉はモリブデン製発熱体の箱型タイプのものを
使用した。
The electric furnace used was a box-type electric furnace with a molybdenum heating element.

続いて、本発明による焼成方法について述べる。合板と
しては、8モル係のイツトリアを添加した安定化ジルコ
ニアを材質とするものを使用した。すなわち上記台板に
前記生ムライト配線基板を乗せて従来法と同様の条件で
焼成した。
Next, the firing method according to the present invention will be described. The plywood used was made of stabilized zirconia to which 8 mol of ittria was added. That is, the raw mullite wiring board was placed on the base plate and fired under the same conditions as in the conventional method.

このようにして従来法で焼成したムライト配線基板と本
発明の方法で焼成したムライト配線基板について、基板
の焼成後の寸法精度、欠落および付着物、凹凸等のキズ
について検査した6なお、従来法によるムライト配線基
板では敷粉が付着するので電動ブラシを用いて敷粉を取
り除き、電動ブラシでも取り除けない敷粉は異物とした
。寸法精度の測定は座標測定機で、欠落付着物、凹凸等
のキズの検査は顕微鏡で1倍率は50倍で行った。寸法
精度、欠陥検査の結果を以下に示す。
In this way, the mullite wiring boards fired by the conventional method and the mullite wiring boards fired by the method of the present invention were inspected for dimensional accuracy, chipping, deposits, unevenness, and other flaws after the board was fired6. In the mullite wiring board according to the company, the bedding powder adheres, so an electric brush was used to remove the bedding powder, and the bedding powder that could not be removed with the electric brush was treated as foreign matter. Dimensional accuracy was measured using a coordinate measuring machine, and inspection for defects such as missing deposits and unevenness was performed using a microscope at a magnification of 50x. The results of dimensional accuracy and defect inspection are shown below.

なお、本実施例で用いた8モル係イットリアを添加した
安定化したジルコニアの合板の表面粗さは60μmであ
る。台板の表面粗さは、寸i去精度、欠陥数と密接な関
係があり、表面粗きが10〜600μmの範囲で前述と
同様の結果が得られた。表面粗さが10μm以下である
と、若干の付着現果がみられることがあり、また表面粗
さが300βmより太きいと焼成収縮による引っかきキ
ズが発生したり基板に凹凸が生じるとともに寸法精度が
悪くなる。
Note that the surface roughness of the stabilized zirconia plywood to which 8 mol of yttria was added used in this example was 60 μm. The surface roughness of the base plate has a close relationship with the dimensioning accuracy and the number of defects, and results similar to those described above were obtained when the surface roughness was in the range of 10 to 600 μm. If the surface roughness is less than 10μm, some adhesion may be observed, and if the surface roughness is thicker than 300βm, scratches may occur due to firing shrinkage, unevenness may occur on the substrate, and dimensional accuracy may deteriorate. Deteriorate.

実施例2 本実施例ではジルコニアで被覆した合板を用いた場合に
ついて述べる。
Example 2 In this example, a case will be described in which plywood coated with zirconia is used.

合板には、アルミナ85重置部、シリカ15重量%の板
の表面を6モル係のイツトリアを添加したジルコニアで
被覆したものを用いた。
The plywood used was a board containing 85% alumina and 15% by weight of silica, the surface of which was coated with zirconia containing 6 mol of itria.

実施例1と同様の条件にてムライト基板を焼成し従来法
の場合と比較したところ下記の結果が得られた。
A mullite substrate was fired under the same conditions as in Example 1, and compared with the conventional method, the following results were obtained.

なお本実施例では表面粗さが30μmの合板を用いて焼
成を行ったが、前述と同じ理由によって表面粗さは10
〜300μmが適切である。また本実施例では、6モル
係のイツトリアを添加したジルコニアで被覆した合板を
用いた例について述べたが、イツトリアの添加量は被覆
すべき合板の材質の熱膨張係数と合わせるために調節さ
れる。すなわち、イツトリアの添加量を減らすと熱膨張
係数は小さくなるが、4モル多以下にすると焼成時の昇
降温により合板の表面【被覆したジルコニア層に微小な
りランクが入り、異物となったり基板にキズが発生した
りするので好ましくない。
In this example, plywood with a surface roughness of 30 μm was used for firing, but for the same reason as mentioned above, the surface roughness was 10 μm.
~300 μm is suitable. Furthermore, in this example, an example was described in which plywood was coated with zirconia containing 6 mol of ittria, but the amount of ittria added was adjusted to match the coefficient of thermal expansion of the material of the plywood to be coated. . In other words, if the amount of ittria added is reduced, the coefficient of thermal expansion becomes smaller, but if the amount is less than 4 moles, the rise and fall of temperature during firing will cause small particles to form on the surface of the plywood. This is not desirable as it may cause scratches.

なお1本実施例では被覆層の厚さが50μmの合板を用
いたが、被覆層が100μmのものを用いても同様の結
果が得られた。すなわち、被覆層の厚さは5台板が完全
に被覆されていれば特に重要ではない。
In this example, plywood with a coating layer of 50 μm thick was used, but similar results were obtained using a plywood with a coating layer of 100 μm. That is, the thickness of the coating layer is not particularly important as long as the five base plates are completely covered.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によればムライト配線基板の
焼成工程において、ジルコニア系材料の合板を使用する
だけで、欠陥が無くまた寸法精度が高いムライト配線基
板を得ることができる。
As described above, according to the present invention, a mullite wiring board with no defects and high dimensional accuracy can be obtained by simply using plywood made of zirconia material in the firing process of the mullite wiring board.

Claims (1)

【特許請求の範囲】[Claims] 1、ムライトを主成分とするセラミック焼結体を作製す
る焼成工程において、被焼成物をジルコニアおよび安定
化ジルコニアから成る板またはこれらで被覆した耐熱性
板上で焼成することを特徴とするムライト焼結体の焼成
方法。
1. Mullite sintering, which is characterized in that, in the firing process for producing a ceramic sintered body mainly composed of mullite, the object to be fired is fired on a plate made of zirconia and stabilized zirconia, or a heat-resistant plate coated with these. Method of firing the solid body.
JP60189553A 1985-08-30 1985-08-30 Method of burning mullite sintered body Pending JPS6252170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60189553A JPS6252170A (en) 1985-08-30 1985-08-30 Method of burning mullite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60189553A JPS6252170A (en) 1985-08-30 1985-08-30 Method of burning mullite sintered body

Publications (1)

Publication Number Publication Date
JPS6252170A true JPS6252170A (en) 1987-03-06

Family

ID=16243250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60189553A Pending JPS6252170A (en) 1985-08-30 1985-08-30 Method of burning mullite sintered body

Country Status (1)

Country Link
JP (1) JPS6252170A (en)

Similar Documents

Publication Publication Date Title
US5387474A (en) Green ceramic composite and method for making such composite
EP0064872A2 (en) Ceramic wiring boards
CN109053196B (en) Sintering method of large-size high-temperature co-fired ceramic
EP0196670B1 (en) Ceramic substrates for microelectronic circuits and process for producing same
JPH0748190A (en) Aluminum nitride sintered ceramic and production thereof
KR940010095B1 (en) Method of reducing shrinkage during firing of green ceramic bodies
JP3089973B2 (en) Method for sintering glass ceramic laminate
JPS6252170A (en) Method of burning mullite sintered body
JP2006044980A (en) Aluminum nitride sintered compact
JPH0613755A (en) Ceramic multilayer wiring board and manufacture thereof
JPH0881267A (en) Aluminum nitride sintered compact, its production, aluminum nitride circuit board and its production
JPS6049149B2 (en) Manufacturing method of white alumina/ceramic for electronic parts
CN114804841B (en) Alumina green ceramic chip for particulate matter sensor and preparation method thereof
JP2001072473A (en) Production of ceramic substrate
JP2007186382A (en) Aluminum nitride sintered compact
JPS6385056A (en) Manufacture of aluminum nitride base substrate
JPS63265858A (en) Low-temperature sintered ceramics composition for multi-layered substrate
JPS62209895A (en) Insulating paste for ceramic multilayer interconnection board
JPH0350149A (en) Production of ceramic green sheet
JPS63109050A (en) Ceramic substrate
CN117727491A (en) Electronic paste for co-firing silicon nitride and preparation method thereof
JPH0624850A (en) Insulating board for circuit and production thereof
JPH01155686A (en) Multilayer substrate of aluminum nitride and manufacture thereof
JP2004253431A (en) Method of manufacturing multilayer ceramic substrate
JPH03268390A (en) Manufacture of aluminum nitride via board