JPS6251935A - Artificial illumination for growing plant - Google Patents

Artificial illumination for growing plant

Info

Publication number
JPS6251935A
JPS6251935A JP19167885A JP19167885A JPS6251935A JP S6251935 A JPS6251935 A JP S6251935A JP 19167885 A JP19167885 A JP 19167885A JP 19167885 A JP19167885 A JP 19167885A JP S6251935 A JPS6251935 A JP S6251935A
Authority
JP
Japan
Prior art keywords
spectral energy
lamp
sodium
vegetables
lighting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19167885A
Other languages
Japanese (ja)
Other versions
JPH032488B2 (en
Inventor
晴夫 古久保
芦田 義孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP19167885A priority Critical patent/JPS6251935A/en
Publication of JPS6251935A publication Critical patent/JPS6251935A/en
Publication of JPH032488B2 publication Critical patent/JPH032488B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高圧ナトリウムラップを人工光源として用いた
植物育成用人工照明方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an artificial lighting method for growing plants using high-pressure sodium wrap as an artificial light source.

従来の伎術 最近、主にレタス、サラダ菜の野菜類の生産を目的とし
た植物工場が徐々に実現してきている。
Traditional Art Recently, plant factories for the production of vegetables, mainly lettuce and salad greens, are gradually being realized.

この植物(野菜)は一般に650 nm付近の光に光合
成の最大感度を有しており、また300〜495 nm
の光に主に葉の着色、形状等の形態形成に感度を右して
いる。そこで人工光源として650 nm付近の分光エ
ネルギー吊が多い、通常660ワッ1−の高圧ナトリウ
ムラップが光合成用に、300〜495 nmに分光エ
ネルギー吊が多い、通常250ワツトの水銀灯、メタル
ハライドランプあるいは蛍光灯が形態形成用に用いられ
ている。これらの1!17ri灯は植物の成長に対し最
適な分光エネルギー分布となるにうに、各々ランプ負荷
、照明器具の配置を決定し、設置される。一般的には、
ランプの種類、大ぎさに応じた別個の照明器具を用い、
植物に対してほぼ均一な照i頁分布となるように混光照
明されている。
This plant (vegetable) generally has maximum photosynthetic sensitivity to light around 650 nm, and 300 to 495 nm.
The sensitivity to light mainly affects morphogenesis such as leaf coloration and shape. Therefore, as an artificial light source, a high-pressure sodium wrap of 660 watts, which has a high spectral energy concentration around 650 nm, is used for photosynthesis, and a mercury lamp, a metal halide lamp, or a fluorescent lamp, which has a high spectral energy concentration of 300 to 495 nm, and which is usually 250 watts, is used for photosynthesis. is used for morphogenesis. These 1!17 ri lamps are installed by determining the lamp load and arrangement of lighting equipment to achieve the optimum spectral energy distribution for plant growth. In general,
Using separate lighting equipment depending on the type and size of the lamp,
Mixed light illumination is applied to the plants so that the illumination distribution is almost uniform.

発明が解決しようとする問題点 従来から行なわれている混光照明による植1勿育成用人
工照明方法は、別個の放電灯、照明器具および安定器を
用いているため、ランプの種類に応じて光束維持率、寿
命中の分光エネルギー分布の変化および寿命時間等に差
があり、常に照度j3よび分光エルギー分布を均一に保
つことは困冗であり、植物の個体間の成長法1gおよび
色、形状にバラツキを生じ、品質を管理する上で問題で
あった。
Problems to be Solved by the Invention Conventional artificial illumination methods for growing plants using mixed light lighting use separate discharge lamps, lighting equipment, and ballasts, and therefore, depending on the type of lamp, There are differences in luminous flux maintenance rate, changes in spectral energy distribution during life, life time, etc., and it is difficult to always maintain uniform illuminance j3 and spectral energy distribution. This caused variations in shape, which was a problem in quality control.

問題点を解決するための手段 本発明は、1つの放電灯で光合成と形態形成の両方の分
光エネルギーを植物の成長に適した分イ1で放出させる
もので、300〜720 nmの波長間の分光エネルギ
ーの総和に対し、300〜495 nmの波長間の分光
エルネギ−出の比を6.0%以上、20%以下とした高
圧ナトリウムラップを人工光源として使用した植物育成
用人工照明方法を提供するものである。
Means for Solving the Problems The present invention uses a single discharge lamp to emit spectral energy for both photosynthesis and morphogenesis in a ratio suitable for plant growth, and is capable of emitting spectral energy for both photosynthesis and morphogenesis in a ratio suitable for plant growth. Provided is an artificial lighting method for growing plants using high-pressure sodium wrap as an artificial light source in which the ratio of spectral energy output between wavelengths of 300 to 495 nm is 6.0% or more and 20% or less with respect to the total spectral energy. It is something to do.

作  用 従来の異種放電灯を用いて混光照明する方法と比べ、本
発明による方法では1!!類の放電灯で照明するため、
分光エネルギー分布を寿命を通じてほぼ均一にすること
が可能となり、植物の個体間のバラツキが非常に少なく
なる。また放電灯、照明器具および安定器等の設置数を
約半分にすることができ、設備費および維持管理費が大
幅に軽減される池、1つの放電灯に光合成と形態形成の
機能を持たせることにより、効率よくエネルギーを放出
させることができ、省電力化が図れる。
Function Compared to the conventional method of mixed light illumination using different types of discharge lamps, the method according to the present invention is 1! ! For lighting with similar discharge lamps,
It becomes possible to make the spectral energy distribution almost uniform throughout the lifespan, and the variation among individual plants is greatly reduced. In addition, the number of installed discharge lamps, lighting equipment, ballasts, etc. can be halved, and equipment costs and maintenance costs can be significantly reduced. A single discharge lamp can have the functions of photosynthesis and morphogenesis. By doing so, energy can be efficiently released and power consumption can be reduced.

実施例 以下、本発明の詳細を図示の実施例を参照して説明する
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be explained below with reference to illustrated embodiments.

第1図は360ワツトの高圧ナトリウムラップの発光管
の縦断面図である。発光管1は内径3mm、長さ115
mmの透光性アルミナからなる外囲器2と、その両端に
は?[i3.3’を溶接により取付けたニオブからなる
電気導入体4.4′がガラスソルダーの封着体5.5′
により気密に封着された形状となっている。発光管1内
にはナトリウム、水銀および始動用希ガスが封入(図示
せず)されている。
FIG. 1 is a longitudinal cross-sectional view of a 360 watt high pressure sodium wrapped arc tube. Arc tube 1 has an inner diameter of 3 mm and a length of 115 mm.
Envelope 2 made of translucent alumina of mm, and ?mm at both ends? [I3.3' was attached by welding, and the electricity introduction body 4.4' made of niobium was attached to the glass solder sealed body 5.5'.
The shape is airtightly sealed. The arc tube 1 is filled with sodium, mercury, and a starting rare gas (not shown).

第2図はランプ点灯回路の概略構成図である。FIG. 2 is a schematic diagram of the lamp lighting circuit.

発光管1をガラス外球6内にマウントした高圧ナトリウ
ムラップ7は一般的に安定器8を介して200vの商用
電源9が印加され点灯される。
The high-pressure sodium wrap 7 in which the arc tube 1 is mounted inside the glass outer bulb 6 is generally turned on by applying a commercial power source 9 of 200V via a ballast 8.

道路あるいは工場等の一般照明用として使用される高圧
ナトリウムラップの発光管は、人間の比視感度に対し最
高効率を有するように設計されている。発光管内に封入
されているナトリウムは比視感度のピーク付近に発光を
有し、また水銀はそのナトリウムの発光を効果的に引き
出す役目を成している。水銀自身は比視感度の低い短波
長域に放射し、ランプ効率を低下さVるため、極力水銀
の発光を生じないように設計されている。しかしながら
、植物育成用光源は一般照明用と異なり短波長域の放射
エネルギーをも必要とする。そこで封入物の全量が蒸発
するようにした不飽和蒸気1形高圧ナトリウムラップを
用い、発光管内に封入するナトリウムおよび水銀の量、
つまり蒸気圧を変え、その分光エネルギー分布と野菜の
成長の関係を調べた。その結果を下表および第3図に示
づ。
High-pressure sodium-wrapped arc tubes used for general lighting such as roads or factories are designed to have the highest efficiency relative to human specific luminous efficiency. The sodium sealed in the arc tube emits light near the peak of relative luminous efficiency, and mercury plays the role of effectively drawing out the light emission from the sodium. Since mercury itself emits light in a short wavelength range with low relative luminous efficiency, reducing lamp efficiency, the lamp is designed to prevent mercury from emitting light as much as possible. However, unlike general lighting, light sources for growing plants also require radiant energy in a short wavelength range. Therefore, we used an unsaturated vapor type 1 high-pressure sodium wrap that allowed the entire amount of the contents to evaporate, and the amount of sodium and mercury to be sealed in the arc tube.
In other words, we varied the vapor pressure and investigated the relationship between its spectral energy distribution and vegetable growth. The results are shown in the table below and Figure 3.

本結果は野菜としてサラダ菜を用いたときのものである
This result was obtained when salad greens were used as the vegetable.

[以下余白] 表から、高圧ナトリウ11ランプのみで照明した場合、
最高ランプ光束を有し、一般照明用とじて用いられてい
る試験NO,3と比べ、試験No、1゜2のようにより
ナトリウム吊が多く、蒸気圧が高い時には、050 n
m付近の光合成エネルギーが増加し、植物の小用は増加
するものの、含水率が高く、かつ葉が黄緑色でやわらか
すぎ、商品価値が乏しい。逆に試験N0.4から12ま
でのナトリウム吊を減らし、水銀蒸気圧を高めていくと
、野菜の1は徐々に少なくなっていくものの、葉の緑色
が濃くなり、含水率が小さく締まった野菜となる。この
効果はナトリウム封入品が0.035mgより少なくな
ると顕著に現われてくる。この時の300〜720nm
の波長間の分光エネルY−の総和に対する300〜49
5 nm(7)短波長域の分光エネルギーの比は6.0
%以上となる。野菜の種類にもよるが本試験では、最適
条件どしては試験No、8の分光エネルギー比8%程度
にしたちのが一番野菜の出来が優れている。しかし、試
験No、12のように分光エネルギー比が20%になる
と野菜の重量の低下が大きくなると共に堅く、かつ小さ
くなってくるため、分光エネルギー比が20%を越える
と商品とはなりに(い。
[Left below] From the table, when illuminated with only high-pressure Natrium 11 lamps,
Compared to Test No. 3, which has the highest lamp luminous flux and is used for general lighting, when test No. 1゜2 has more sodium content and high vapor pressure, 050 n
Although the photosynthetic energy around m increases and the number of plants used increases, the water content is high and the leaves are yellow-green and too soft, so they have little commercial value. Conversely, if you reduce the sodium content and increase the mercury vapor pressure from test No. 0.4 to No. 12, the amount of 1 in the vegetables gradually decreases, but the leaves become darker green and the moisture content of the vegetables becomes smaller and firmer. becomes. This effect becomes noticeable when the amount of sodium encapsulated product is less than 0.035 mg. 300-720nm at this time
300 to 49 for the sum of spectral energies Y- between wavelengths of
The ratio of spectral energy in the short wavelength region of 5 nm (7) is 6.0
% or more. Although it depends on the type of vegetables, in this test, the optimum conditions for the vegetables were to set the spectral energy ratio of test No. 8 to about 8%, which produced the best vegetables. However, as in Test No. 12, when the spectral energy ratio reaches 20%, the weight of the vegetables decreases greatly, and they become hard and small. stomach.

また仮に照度を上げ成長速度を速めるか、あるいは栽培
日数を伸ばしてら電力費がかさむのみで、品質は良くな
い。よって、300〜720 nmの波長間の分光エネ
ルギーの総和に対する300〜4050mの波長間の分
光エネルP−ffiの比は0.0%以上、20%以下に
づる必要がある。
Also, if you increase the illuminance to speed up the growth rate or extend the number of cultivation days, you will only increase the electricity costs and the quality will not be good. Therefore, the ratio of the spectral energy P-ffi between wavelengths of 300 to 4050 m to the sum of spectral energy between wavelengths of 300 to 720 nm needs to be 0.0% or more and 20% or less.

第3図は従来ランプと同一の試験No、3と本発明にか
かる試験No、8の分光エネルギー分子fiを表わす。
FIG. 3 shows the spectral energy molecules fi of Test No. 3, which is the same as the conventional lamp, and Test No. 8, according to the present invention.

この図から試験N098は光合成にがかる650 nm
付近の分光エネルギーが試験No、3と比べて比較的低
下が大きいが、これにもかかわらず野菜の用量に差が少
ないのは短波長の分光エネルギーの増加により野菜の成
長が促進されるためであると考えられる。この他、野菜
としてはレタス類についても試験を行なったが、同様の
結果であった。
From this figure, test N098 has a wavelength of 650 nm, which is necessary for photosynthesis.
Although the nearby spectral energy decreased relatively significantly compared to Tests No. 3 and 3, the reason there was little difference in the amount of vegetables in spite of this is because the growth of vegetables was promoted by the increase in the spectral energy of short wavelengths. It is believed that there is. In addition, lettuce vegetables were also tested, and similar results were obtained.

なお、上記実施例では植物育成用光源として単に発光管
内のナトリウムに他する水銀の封入比率を高めた高圧ナ
トリウムラップについて説明したが、水銀の他にインジ
ウム等の短波長域の発光金属を封入した高圧ナトリウム
ラップも可能である。
In addition, in the above example, a high-pressure sodium wrap was simply used as a light source for growing plants, in which a high ratio of mercury is enclosed in addition to sodium in the arc tube. High pressure sodium wraps are also possible.

発明の効果 以上詳述したように本発明方法は、高圧すトリウムラン
プの発光管内に封入するナトリウムに対づる水銀の封入
比率を高め、短波長域の分光エネルギーを増加させると
いう簡単な方法によって、従来のような別途に形態形成
用光源は全く必要とじず、設備費、電力費および維持管
理費の大幅な削減が図れる他、植物の品質の安定化が図
れる等のすぐれた効果を有するものである。
Effects of the Invention As detailed above, the method of the present invention is a simple method of increasing the ratio of mercury to sodium sealed in the arc tube of a high-pressure thorium lamp and increasing the spectral energy in the short wavelength range. There is no need for a separate light source for morphogenesis as in the past, and it has excellent effects such as significantly reducing equipment costs, electricity costs, and maintenance costs, as well as stabilizing the quality of plants. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に用いる高圧すl〜リウムランブの
発光管の断面図、第2図は本発明方法に用いるランプ点
灯回路図、第3図は本発明方法による分光エネルギー分
布例を従来方法によ菖ものと比較して示した特性図であ
る。 1・・・発光管、7・・・高圧ナトリウム封入品オ 1
 図 発光g    透光・注了ル汀外面番、電宸萼久体 q、満m俺源
Fig. 1 is a cross-sectional view of an arc tube of a high-pressure lithium lamp used in the method of the present invention, Fig. 2 is a lamp lighting circuit diagram used in the method of the present invention, and Fig. 3 shows an example of spectral energy distribution according to the method of the present invention using a conventional method. It is a characteristic diagram shown in comparison with a Japanese irises. 1... Arc tube, 7... High pressure sodium filled product 1
Diagram luminescence g Translucent / Notes on the outer surface of the screen, Electrical shield q, Mitsuru m ore source

Claims (1)

【特許請求の範囲】[Claims] 300〜720nmの波長間の分光エネルギーの総和に
対し、300〜495nmの波長間の分光エネルギー量
の比を6.0%以上、20%以下とした高圧ナトリウム
ラップを人工光源として使用することを特徴とする植物
育成用人工照明方法。
A high-pressure sodium wrap with a ratio of spectral energy between wavelengths of 300 to 495 nm of 6.0% or more and 20% or less to the total spectral energy between wavelengths of 300 to 720 nm is used as an artificial light source. An artificial lighting method for growing plants.
JP19167885A 1985-08-29 1985-08-29 Artificial illumination for growing plant Granted JPS6251935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19167885A JPS6251935A (en) 1985-08-29 1985-08-29 Artificial illumination for growing plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19167885A JPS6251935A (en) 1985-08-29 1985-08-29 Artificial illumination for growing plant

Publications (2)

Publication Number Publication Date
JPS6251935A true JPS6251935A (en) 1987-03-06
JPH032488B2 JPH032488B2 (en) 1991-01-16

Family

ID=16278635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19167885A Granted JPS6251935A (en) 1985-08-29 1985-08-29 Artificial illumination for growing plant

Country Status (1)

Country Link
JP (1) JPS6251935A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269093A (en) * 1990-11-30 1993-12-14 Matsushita Electric Industrial Co., Ltd. Method and apparatus for controlling plant growth with artificial light
US5600204A (en) * 1988-09-12 1997-02-04 U.S. Philips Corporation High-pressure sodium discharge lamp

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945581A (en) * 1972-08-04 1974-05-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945581A (en) * 1972-08-04 1974-05-01

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600204A (en) * 1988-09-12 1997-02-04 U.S. Philips Corporation High-pressure sodium discharge lamp
US5269093A (en) * 1990-11-30 1993-12-14 Matsushita Electric Industrial Co., Ltd. Method and apparatus for controlling plant growth with artificial light

Also Published As

Publication number Publication date
JPH032488B2 (en) 1991-01-16

Similar Documents

Publication Publication Date Title
ES458101A1 (en) Halogen-metal vapor discharge lamp
US4754194A (en) Flourescent light bulb
JPS6251935A (en) Artificial illumination for growing plant
US4825127A (en) Metal halide discharge lamp for plant growing
US3821576A (en) High pressure mercury titanium iodine discharge lamp with phosphor coating
JPS6481159A (en) Fluorescent lamp for display
JPS6329931B2 (en)
RU2006977C1 (en) Gaseous-discharge lamp of high pressure for stimulation of growth of vegetables
JP2545910B2 (en) Electric discharge lamp for growing plants
JPS6251933A (en) Artificial illumination for growing plant
JPS6251932A (en) Artificial illumination for growing plant
JPH10136785A (en) Artificial lighting method for raising plant
US2139732A (en) Illumination
SU834801A1 (en) High-pressure gas-discharge lamp for irradiating plants
JPS6112334B2 (en)
JPS63218145A (en) High pressure sodium lamp
JPH06276860A (en) High-luminance discharge lamp for plant growth
SU1136232A1 (en) Metal halogen lamp for illuminating plants
JPS5814524Y2 (en) kouatsu sodium lamp
Saito et al. Mercury-free HPS lamp with high CRI operated on inductive ballast and its one application for plant growth
RU2055415C1 (en) Metal-halogen lamp
MacLennan et al. Sulfur lighting for plants in controlled environments
JPS5931551A (en) Low pressure mercury vapor discharge lamp
JPH01137556A (en) Metal vapor discharge lamp
JPH06168700A (en) Metal halide lamp

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term