JPH032488B2 - - Google Patents

Info

Publication number
JPH032488B2
JPH032488B2 JP60191678A JP19167885A JPH032488B2 JP H032488 B2 JPH032488 B2 JP H032488B2 JP 60191678 A JP60191678 A JP 60191678A JP 19167885 A JP19167885 A JP 19167885A JP H032488 B2 JPH032488 B2 JP H032488B2
Authority
JP
Japan
Prior art keywords
spectral energy
lamp
sodium
mercury
arc tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60191678A
Other languages
Japanese (ja)
Other versions
JPS6251935A (en
Inventor
Haruo Furukubo
Yoshitaka Ashida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP19167885A priority Critical patent/JPS6251935A/en
Publication of JPS6251935A publication Critical patent/JPS6251935A/en
Publication of JPH032488B2 publication Critical patent/JPH032488B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は高圧ナトリウムランプを人工光源とし
て用いた植物育成用人工照明方法に関するもので
ある。 従来の技術 最近、主にレタス、サラダ菜の野菜類の生産を
目的とした植物工場が徐々に実現してきている。
この植物(野菜)は一般に650nm付近の光に光
合成の最大感度を有しており、また300〜495nm
の光に主に葉の着色、形状等の形態形成に感度を
有している。そこで人工光源として650nm付近
の分光エネルギー量が多い、通常660ワツトの高
圧ナトリウムランプが光合成用に、300〜495nm
に分光エネルギー量が多い、通常250ワツトの水
銀灯、メタルハライドランプあるいは蛍光灯が形
態形成用に用いられている。これらの放電灯は植
物の成長に対し最適な分光エネルギー分布となる
ように、各々ランプ負荷、照明器具の配置を決定
し、設置される。一般的には、ランプの種類、大
きさに応じた別個の照明器具を用い、植物に対し
てほぼ均一な照度分布となるように混光照明され
ている。 発明が解決しようとする問題点 従来から行なわれている混光照明による植物育
成用人工照明方法は、別個の放電灯、照明器具お
よび安定器を用いているため、ランプの種類に応
じて光束維持率、寿命中の分光エネルギー分布の
変化および寿命時間等に差があり、常に照度およ
び分光エネルギー分布を均一に保つことは困難で
あり、植物の個体間の成長速度および色、形状に
バラツキを生じ、品質を管理する上で問題であつ
た。 問題点を解決するための手段 本発明は、1つの放電灯で光合成と形態形成の
両方の分光エネルギーを植物の成長に適した分布
で放出させるもので、300〜720nmの波長間の分
光エネルギーの総和に対し、発光管内にナトリウ
ムおよび水銀またはインジウム等の金属を封入
し、300〜720nmの波長間の分光エネルギーの総
和に対し、300〜495nmの波長間の分光エネルギ
ー量の比を6.0%以上、12%以下とした高圧ナト
リウムランプのみを人工光源として使用した植物
育成用人工照明方法を提供するものである。 作 用 従来の異種放電灯を用いて混光照明する方法と
比べ、本発明による方法では1種類の放電灯で照
明するため、分光エネルギー分布を寿命を通じて
ほぼ均一にすることが可能となり、植物の個体間
のバラツキが非常に少なくなる。また放電灯、照
明器具および安定器等の設置数を約半分にするこ
とができ、設備費および維持管理費が大幅に軽減
される他、1つの放電灯に光合成と形態形成の機
能を持たせることにより、効率よくエネルギーを
放出させることができ、省電力化が図れる。 実施例 以下、本発明の詳細を図示の実施例を参照して
説明する。 第1図は360ワツトの高圧ナトリウムランプの
発光管の縦断面図である。発光管1は内径8mm、
長さ115mmの透光性アルミナからなる外囲器2と、
その両端には電極3,3′溶接により取付けたニ
オブからなる電気導入体4,4′がガラスソルダ
ーの封着体5,5′により気密に封着された形状
となつている。発光管1内にはナトリウム、水銀
および始動用希ガスが封入(図示せず)されてい
る。 第2図はランプ点灯回路の概略構成図である。
発光管1をガラス外球6内にマウントした高圧ナ
トリウムランプ7は一般的に安定器8を介して
200Vの商用電源9が印加され点灯される。 道路あるいは工場等の一般照明用として使用さ
れる高圧ナトリウムランプの発光管は、人間の比
視感度に対し最高効率を有するように設計されて
いる。発光管内に封入されているナトリウムは比
視感度のピーク付近に発光を有し、また水銀はそ
のナトリウムの発光を効果的に引き出す役目を成
している。水銀自身は比視感度の低い短波長域に
放射し、ランプ効率を低下させるため、極力水銀
の発光を生じないように設計されている。しかし
ながら、植物育成用光源は一般照明用と異なり短
波長域の放射エネルギーをも必要とする。そこで
封入物の全量が蒸発するようにした不飽和蒸気圧
形高圧ナトリウムランプを用い、発光管内に封入
するナトリウムおよび水銀の量、つまり蒸気圧を
変え、その分光エネルギー分布と野菜の成長の関
係を調べた。その結果を下表および第3図に示
す。本結果は対照面積(植物栽培面積)当たりの
ランプ電力消費量を一定とした場合の試験結果の
一例で、野菜としてサラダ菜を用いたときのもの
である。
INDUSTRIAL APPLICATION FIELD The present invention relates to an artificial lighting method for growing plants using a high-pressure sodium lamp as an artificial light source. BACKGROUND OF THE INVENTION Recently, plant factories aimed at producing vegetables, mainly lettuce and salad greens, have gradually been realized.
This plant (vegetable) generally has maximum photosynthetic sensitivity to light around 650 nm, and 300 to 495 nm.
It is sensitive to light mainly in morphological formation such as leaf coloration and shape. Therefore, as an artificial light source, a high-pressure sodium lamp of 660 watts, which has a large amount of spectral energy in the vicinity of 650 nm, is used for photosynthesis at a wavelength of 300 to 495 nm.
Mercury lamps, metal halide lamps, or fluorescent lamps with a high spectral energy content, usually 250 watts, are used for morphogenesis. These discharge lamps are installed by determining the lamp load and arrangement of lighting equipment so that the spectral energy distribution is optimal for plant growth. Generally, separate lighting equipment is used depending on the type and size of the lamp, and mixed lighting is applied to plants so that the illuminance distribution is almost uniform. Problems to be Solved by the Invention Conventional artificial lighting methods for growing plants using mixed light lighting use separate discharge lamps, lighting equipment, and ballasts, so the luminous flux cannot be maintained depending on the type of lamp. It is difficult to maintain uniform illuminance and spectral energy distribution at all times due to differences in rate, changes in spectral energy distribution during the lifespan, lifespan time, etc., and this results in variations in growth rate, color, and shape among individual plants. , which was a problem in controlling quality. Means for Solving the Problems The present invention uses one discharge lamp to emit spectral energy for both photosynthesis and morphogenesis in a distribution suitable for plant growth. The ratio of the amount of spectral energy between wavelengths of 300 to 495 nm to the total amount of spectral energy between wavelengths of 300 to 720 nm is 6.0% or more by sealing metals such as sodium and mercury or indium in the arc tube. The present invention provides an artificial lighting method for growing plants using only a high-pressure sodium lamp with a concentration of 12% or less as an artificial light source. Effect Compared to the conventional method of mixed lighting using different types of discharge lamps, the method of the present invention uses one type of discharge lamp for illumination, making it possible to make the spectral energy distribution almost uniform throughout the plant's lifespan. Variations between individuals are greatly reduced. In addition, the number of discharge lamps, lighting equipment, ballasts, etc. installed can be halved, significantly reducing equipment costs and maintenance costs, and a single discharge lamp can have the functions of photosynthesis and morphogenesis. By doing so, energy can be efficiently released and power consumption can be reduced. Embodiments The present invention will now be described in detail with reference to illustrated embodiments. FIG. 1 is a longitudinal sectional view of the arc tube of a 360 watt high pressure sodium lamp. Arc tube 1 has an inner diameter of 8 mm,
An envelope 2 made of translucent alumina and having a length of 115 mm;
At both ends thereof, electrodes 3, 3' are attached by welding, and electricity introduction bodies 4, 4' made of niobium are hermetically sealed with glass solder sealing bodies 5, 5'. The arc tube 1 is filled with sodium, mercury, and a starting rare gas (not shown). FIG. 2 is a schematic diagram of the lamp lighting circuit.
A high-pressure sodium lamp 7 with an arc tube 1 mounted inside a glass outer bulb 6 is generally operated via a ballast 8.
A commercial power source 9 of 200V is applied and the light is turned on. The arc tubes of high-pressure sodium lamps used for general illumination of roads, factories, etc. are designed to have the highest efficiency relative to human specific luminous efficiency. The sodium sealed in the arc tube emits light near the peak of relative luminous efficiency, and mercury plays the role of effectively drawing out the light emission from the sodium. Mercury itself emits light in a short wavelength range with low relative luminous efficiency, reducing lamp efficiency, so the lamp is designed to prevent mercury from emitting light as much as possible. However, unlike general lighting, light sources for growing plants also require radiant energy in a short wavelength range. Therefore, we used an unsaturated vapor pressure type high-pressure sodium lamp that evaporates the entire amount of the enclosed material, and changed the amount of sodium and mercury enclosed in the arc tube, that is, the vapor pressure, and investigated the relationship between the spectral energy distribution and vegetable growth. Examined. The results are shown in the table below and FIG. This result is an example of a test result when the lamp power consumption per control area (plant cultivation area) is constant, and is obtained when salad greens are used as the vegetable.

【表】【table】

【表】 ※ ○印:秀 △印:良 ×印:不良
表から、高圧ナトリウムランプのみで照明した
場合、最高ランプ光束を有し、一般照明用として
用いられている試験No.3と比べ、試験No.1、2の
ようによりナトリウム量が多く、蒸気圧が高い時
には、650nm付近の光合成エネルギーが増加し、
植物の重量は増加するものの、含水率が高く、か
つ葉が黄緑色でやわらかすぎ、商品価値が乏し
い。逆に試験No.4から12までのナトリウム量を減
らし、水銀蒸気圧を高めていくと、野菜の重量は
徐々に少なくなつていくものの、葉の緑色が濃く
なり、含水率が小さく締まつた野菜となる。この
効果はナトリウム封入量が0.035mgより少なくな
ると顕著に現われてくる。この時の300〜720nm
の波長間の分光エネルギーの総和に対する300〜
495nmの短波長域の分光エネルギーの比は6.0%
以上となる。野菜の種類にもよるが本試験では、
最適条件としては試験No.8の分光エネルギー比8
%程度にしたものが一番野菜の出来が優れてい
る。しかし、試験No.11のように分光エネルギー比
が14.7%になると野菜の重量が試験No.3と比べて
10%低下し経済性を損なうと共に、堅くかつ形状
が小さく縮まつてくるため、商品とはならない。
そこで試験No.3と比べ野菜の重量の低下率を10%
以内、かつ品質を維持するためには分光エネルギ
ーの比は12%以下となる。また対照面積(植物栽
培面積)当たりのランプ電力消費量を増減させ植
物の成長を調べたが相対的な比較は表の結果とほ
ぼ同様の傾向であり、仮に分光エネルギー比が12
%を越えた場合等において例えばランプ消費電力
量を増し成長速度を早めるか、あるいは栽培日数
を伸ばしても電力費がかさむのみで、品質は良く
ない。よつて、300〜720nmの波長間の分光エネ
ルギーの総和に対する300〜495nmの波長間の分
光エネルギー量の比は6.0%以上、12%以下にす
る必要がある。 第3図は従来ランプと同一の試験No.3と本発明
にかかる試験No.8の分光エネルギー分布を表わ
す。この図から試験No.8は光合成にかかる650n
m付近の分光エネルギーが試験No.3と比べて比較
的低下が大きいが、これにもかかわらず野菜の重
量に差が少ないのは短波長の分光エネルギーの増
加により野菜の成長が促進されるためであると考
えられる。この他、野菜としてはレタス類につい
ても試験を行なつたが、同様の結果であつた。な
お、上記実施例では植物育成用光源として単に発
光管内のナトリウムに他する水銀の封入比率を高
めた高圧ナトリウムランプについて説明したが、
水銀の他にインジウム等の短波長域の発光金属を
封入した高圧ナトリウムランプも可能である。 発明の効果 以上詳述したように本発明方法は、高圧ナトリ
ウムランプの発光管内に封入するナトリウムに対
する水銀の封入比率を高め、短波長域の分光エネ
ルギーを増加させるという簡単な方法によつて、
従来のような別途に形態形成用光源は全く必要と
せず、設備費、電力比および維持管理費の大幅な
削減が図れる他、植物の品質の安定化が図れる等
のすぐれた効果を有するものである。
[Table] * ○ mark: Excellent △ mark: Good When the amount of sodium is higher and the vapor pressure is higher, as in Test Nos. 1 and 2, the photosynthetic energy around 650 nm increases,
Although the weight of the plant increases, the moisture content is high, and the leaves are yellow-green and too soft, so they have little commercial value. Conversely, when the amount of sodium was reduced and the mercury vapor pressure was increased in Test Nos. 4 to 12, the weight of the vegetables gradually decreased, but the green color of the leaves became darker and the moisture content became smaller. Becomes a vegetable. This effect becomes noticeable when the amount of sodium encapsulated is less than 0.035 mg. 300-720nm at this time
300 to the sum of spectral energy between wavelengths of
The ratio of spectral energy in the short wavelength region of 495nm is 6.0%
That's all. Although it depends on the type of vegetables, in this test,
The optimum condition is the spectral energy ratio of 8 in Test No. 8.
Vegetables produce the best results when the amount is reduced to around 10%. However, when the spectral energy ratio is 14.7% as in Test No. 11, the weight of vegetables is lower than in Test No. 3.
This decreases by 10%, impairing economic efficiency, and it becomes hard and shrinks in size, making it unsuitable for commercial use.
Therefore, compared to test No. 3, the weight reduction rate of vegetables was reduced by 10%.
In order to maintain quality and within this range, the spectral energy ratio should be 12% or less. We also investigated plant growth by increasing or decreasing the lamp power consumption per control area (plant cultivation area), but the relative comparison showed almost the same tendency as the results in the table.
%, for example, increasing the power consumption of the lamp to accelerate the growth rate or extending the number of cultivation days will only increase the power cost and will not improve the quality. Therefore, the ratio of the amount of spectral energy between wavelengths of 300 to 495 nm to the total amount of spectral energy between wavelengths of 300 to 720 nm needs to be 6.0% or more and 12% or less. FIG. 3 shows the spectral energy distributions of Test No. 3, which is the same as the conventional lamp, and Test No. 8, which is the same as the conventional lamp. From this figure, test No. 8 takes 650n for photosynthesis.
The spectral energy around m has a relatively large drop compared to Test No. 3, but despite this, there is little difference in the weight of the vegetables because the growth of vegetables is promoted by the increase in the spectral energy of short wavelengths. It is thought that. In addition, lettuce vegetables were also tested, and similar results were obtained. In addition, in the above example, a high-pressure sodium lamp was simply described as a light source for growing plants, in which the ratio of mercury in addition to sodium in the arc tube was increased.
In addition to mercury, a high-pressure sodium lamp filled with a light-emitting metal in a short wavelength range such as indium is also possible. Effects of the Invention As detailed above, the method of the present invention increases the ratio of mercury to sodium sealed in the arc tube of a high-pressure sodium lamp, and increases the spectral energy in the short wavelength range.
There is no need for a separate light source for morphogenesis as in the past, and it has excellent effects such as significantly reducing equipment costs, electric power ratios, and maintenance costs, as well as stabilizing the quality of plants. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に用いる高圧ナトリウムラ
ンプの発光管の断面図、第2図は本発明方法に用
いるランプ点灯回路図、第3図は本発明方法によ
る分光エネルギー分布例を従来方法によるものと
比較して示した特性図である。 1……発光管、7……高圧ナトリウムランプ。
Figure 1 is a cross-sectional view of the arc tube of the high-pressure sodium lamp used in the method of the present invention, Figure 2 is a lamp lighting circuit diagram used in the method of the present invention, and Figure 3 is an example of spectral energy distribution according to the method of the present invention compared to the conventional method. It is a characteristic diagram shown in comparison with. 1... Arc tube, 7... High pressure sodium lamp.

Claims (1)

【特許請求の範囲】[Claims] 1 発光管内にナトリウムおよび水銀またはイン
ジウム等の金属を封入し、300〜700nmの波長間
の分光エネルギーの総和に対し、300〜495nmの
波長間の分光エネルギー量の比を6.0%以上、12
%以下とした高圧ナトリウムランプのみを人工光
源として使用することを特徴とする植物育成用人
工照明方法。
1 Enclose metals such as sodium and mercury or indium in the arc tube, and set the ratio of the amount of spectral energy between wavelengths of 300 to 495 nm to 6.0% or more with respect to the total amount of spectral energy between wavelengths of 300 to 700 nm.
% or less high-pressure sodium lamp as an artificial light source.
JP19167885A 1985-08-29 1985-08-29 Artificial illumination for growing plant Granted JPS6251935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19167885A JPS6251935A (en) 1985-08-29 1985-08-29 Artificial illumination for growing plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19167885A JPS6251935A (en) 1985-08-29 1985-08-29 Artificial illumination for growing plant

Publications (2)

Publication Number Publication Date
JPS6251935A JPS6251935A (en) 1987-03-06
JPH032488B2 true JPH032488B2 (en) 1991-01-16

Family

ID=16278635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19167885A Granted JPS6251935A (en) 1985-08-29 1985-08-29 Artificial illumination for growing plant

Country Status (1)

Country Link
JP (1) JPS6251935A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8802228A (en) * 1988-09-12 1990-04-02 Philips Nv HIGH PRESSURE SODIUM DISCHARGE LAMP.
US5269093A (en) * 1990-11-30 1993-12-14 Matsushita Electric Industrial Co., Ltd. Method and apparatus for controlling plant growth with artificial light

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945581A (en) * 1972-08-04 1974-05-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945581A (en) * 1972-08-04 1974-05-01

Also Published As

Publication number Publication date
JPS6251935A (en) 1987-03-06

Similar Documents

Publication Publication Date Title
Tazawa Effects of various radiant sources on plant growth (Part 1)
JP2007188799A (en) Lighting system
RU2480859C2 (en) Luminescent lamp with low power consumption
US4754194A (en) Flourescent light bulb
JPH032488B2 (en)
JPH02109249A (en) High voltage sodium discharge lamp
JPH0349530B2 (en)
CN208354045U (en) Gardening light compensating apparatus and system
CN114758946A (en) Xenon lamp with UVB ultraviolet ray
US6538372B2 (en) Fluorescent agro lamp with reduced mercury
JPS6481159A (en) Fluorescent lamp for display
JPH10136785A (en) Artificial lighting method for raising plant
JPS6251932A (en) Artificial illumination for growing plant
JP2545910B2 (en) Electric discharge lamp for growing plants
RU2006977C1 (en) Gaseous-discharge lamp of high pressure for stimulation of growth of vegetables
CN214198416U (en) High-voltage sodium lamp street lamp device
Saito et al. Mercury-free HPS lamp with high CRI operated on inductive ballast and its one application for plant growth
RU2027251C1 (en) Metal halogen lamp for photoculture
SU1136232A1 (en) Metal halogen lamp for illuminating plants
SU834801A1 (en) High-pressure gas-discharge lamp for irradiating plants
JPS6251933A (en) Artificial illumination for growing plant
RU2046448C1 (en) Metal-and-halogen lamp for photosynthesis of plants
JPH06276860A (en) High-luminance discharge lamp for plant growth
MacLennan et al. Sulfur lighting for plants in controlled environments
RU1774393C (en) Metal-halide lamp for irradiation of plants

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term