JPS6251916B2 - - Google Patents

Info

Publication number
JPS6251916B2
JPS6251916B2 JP56198472A JP19847281A JPS6251916B2 JP S6251916 B2 JPS6251916 B2 JP S6251916B2 JP 56198472 A JP56198472 A JP 56198472A JP 19847281 A JP19847281 A JP 19847281A JP S6251916 B2 JPS6251916 B2 JP S6251916B2
Authority
JP
Japan
Prior art keywords
metal
ceramic
joint
electroforming
insert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56198472A
Other languages
Japanese (ja)
Other versions
JPS58104073A (en
Inventor
Yasuhiro Fukaya
Shozo Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19847281A priority Critical patent/JPS58104073A/en
Publication of JPS58104073A publication Critical patent/JPS58104073A/en
Publication of JPS6251916B2 publication Critical patent/JPS6251916B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は、セラミツクと金属とを、セラミツク
の割れ等の不都合が生じることなく、強固に結合
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for firmly bonding ceramic and metal without causing problems such as cracking of the ceramic.

セラミツクの金属への結合は、航空宇宙機器、
原動機部品、電気制御機器、化学機器等の一部に
おいて、耐摩耗、耐食、断熱、絶縁、その他の目
的で行われている。
Ceramic to metal bonding is used in aerospace equipment,
It is used in some motor parts, electrical control equipment, chemical equipment, etc. for wear resistance, corrosion resistance, heat insulation, insulation, and other purposes.

その方法は、溶射、ろう付、鋳ぐるみ等による
が、これらの方法で得られる継手部の性能は、当
該機器の性能を一応保証するものの、稼動条件が
酷しくなつた際には、現状の技術では十分な継手
強度特性を確保できず、セラミツクと金属の接合
体の使用範囲を極めて狭い範囲に限つている。
Methods for this include thermal spraying, brazing, and casting, but although the performance of the joints obtained by these methods temporarily guarantees the performance of the equipment in question, when the operating conditions become severe, the current performance may deteriorate. With this technology, it is not possible to ensure sufficient joint strength characteristics, and the range of use of ceramic-metal joints is limited to an extremely narrow range.

すなわち、溶射法ではセラミツクと金属は冶金
反応よりも機械的接着が接合の主体をなすため、
過酷な使用条件となつた際は、これに耐え得る継
手強度を得るには不十分である。
In other words, in thermal spraying, the bond between ceramic and metal is mainly based on mechanical adhesion rather than metallurgical reaction.
It is insufficient to obtain joint strength that can withstand severe usage conditions.

また、ろう付法では適正ろう材の選定が十分確
立されておらず、上記と同様に過酷な使用条件に
耐え得る継手を得ることは困難である。
Furthermore, in the brazing method, the selection of an appropriate brazing material has not been sufficiently established, and it is difficult to obtain a joint that can withstand the same harsh conditions of use as described above.

更に、鋳ぐるみ法は、金属を溶融し、これをセ
ラミツクの結合面に流し込んで結合をはかるもの
であるが、セラミツクと金属間には大きな温度差
が生じ、セラミツクの靭性が極めて低いことか
ら、セラミツクに割れが発生し、優れた継手を確
保することは非常に難しい。
Furthermore, the casting method involves melting metal and pouring it onto the bonding surface of the ceramic to form a bond, but there is a large temperature difference between the ceramic and the metal, and the toughness of the ceramic is extremely low. Ceramic cracks occur and it is very difficult to ensure a good joint.

本発明者等は、以上の欠点がなく、広範囲で使
用できるセラミツクと金属の接合体を得ることを
目的として研究を重ねた結果、該目的は電鋳又は
無電解メツキにより、あるいはこれと溶接を併用
することにより解決できるとの知見を得て本発明
に到達したものである。
The inventors of the present invention have conducted repeated research with the aim of obtaining a ceramic-metal joint that does not have the above drawbacks and can be used over a wide range of areas. The present invention was developed based on the knowledge that the problem could be solved by using the problem in combination.

すなわち本発明は、 (1) セラミツクと金属とを結合するに際して、セ
ラミツクは、その側面に切り込みを設け、かつ
金属との接触面においてその断面積を金属より
小さくし、これを金属に載置し、セラミツクと
金属との接触面の金属露出面に電鋳又は無電解
メツキを行うことを特徴とするセラミツクと金
属との結合方法。
That is, the present invention provides the following features: (1) When joining a ceramic and a metal, the ceramic is provided with a notch on its side surface and has a cross-sectional area smaller than that of the metal at the contact surface with the metal, and is placed on the metal. A method for bonding ceramic and metal, characterized in that electroforming or electroless plating is performed on the exposed metal surface of the contact surface between ceramic and metal.

(2) セラミツクと金属とを結合するに際して、セ
ラミツクは、その側面に切り込みを設け、かつ
金属との接触面においてその断面積を金属より
小さくし、これを金属と接触する面にセラミツ
ク及び金属の両者に親和性に富むインサート金
属を介して金属上に載置し、セラミツクと金属
との接触面の金属露出面に電鋳又は無電解メツ
キを行つた後、インサート金属の溶融点又はイ
ンサート金属と前記金属との共晶点以上の温度
に加熱することを特徴とするセラミツクと金属
の結合方法。
(2) When bonding ceramic and metal, the ceramic has a notch on its side, and the cross-sectional area of the surface in contact with the metal is smaller than that of the metal, and this The insert metal is placed on the metal via an insert metal that has a high affinity for both, and after electroforming or electroless plating is performed on the exposed metal surface of the contact surface between the ceramic and the metal, the melting point of the insert metal or the insert metal A method for bonding ceramic and metal, the method comprising heating to a temperature equal to or higher than the eutectic point with the metal.

に関するものである。It is related to.

以下、添付図面に沿つて本発明方法を詳細に説
明する。
Hereinafter, the method of the present invention will be explained in detail with reference to the accompanying drawings.

第1〜5図は、本発明方法の一実施態様例の手
順と、得られた製品を示す図である。
1 to 5 are diagrams showing the procedure of an embodiment of the method of the present invention and the obtained product.

第1図に示すように、セラミツク1は、その側
面に、金属2との接合面に対し原則として平行方
向に切り込み部1′,1′を設け、金属2は、セラ
ミツク1との接合面においてセラミツク1より大
きい断面積を持たせるようにする。セラミツク1
と金属2の周辺には、図示するように電鋳防止の
ためのマスキング6を施す。
As shown in FIG. 1, the ceramic 1 is provided with notches 1', 1' on its side surface in principle in a direction parallel to the joint surface with the metal 2; It should have a larger cross-sectional area than Ceramic 1. Ceramic 1
As shown in the figure, masking 6 is applied around the metal 2 to prevent electroforming.

次いで、第2図に示すように、金属2と電鋳用
の電極7を電源9を介して接続し、電鋳用の浴液
8中に浸漬する。なお、11は浴槽を示す。
Next, as shown in FIG. 2, the metal 2 and the electrode 7 for electroforming are connected via a power source 9, and the metal 2 is immersed in a bath liquid 8 for electroforming. Note that 11 indicates a bathtub.

この状態で電鋳を行うと、第3図に示すよう
に、セラミツク1と金属2の接触面の金属露出面
3に電鋳金属10が施される。
When electroforming is performed in this state, the electroformed metal 10 is applied to the exposed metal surface 3 of the contact surface between the ceramic 1 and the metal 2, as shown in FIG.

この結果、第4図のような結合部が得られる。
すなわち、電鋳金属10はセラミツク1の切込み
部1′,1′内および該切込み部1′,1′が存在す
る2辺又は4辺(4周)を覆うことになる。第5
図は最終製品の形状を示す図であり、セラミツク
1と金属2とはセラミツク1の凹部での機械的噛
合せにより結合し、電鋳金属は図示するように金
属2と冶金的接合により一体化している。
As a result, a joint as shown in FIG. 4 is obtained.
That is, the electroformed metal 10 covers the inside of the notches 1', 1' of the ceramic 1 and the two sides or four sides (four circumferences) where the notches 1', 1' exist. Fifth
The figure shows the shape of the final product. Ceramic 1 and metal 2 are joined by mechanical engagement in the recesses of ceramic 1, and the electroformed metal is integrated with metal 2 by metallurgical bonding as shown in the figure. ing.

なお、本発明方法において、上記の電鋳は無電
解メツキに代替することができる。
In addition, in the method of the present invention, the above electroforming can be replaced with electroless plating.

更に、本発明方法においては、セラミツク1と
してAl2O3、SiC、SiO2等が、金属2として炭素
鋼、合金鋼、ステンレス鋼、Al、Al合金、Ni、
Ni合金、Cu、脱酸銅、Cu合金等が、電鋳又は無
電解メツキ金属10としてNi、Cu、Cr等がそれ
ぞれ使用できる。
Further, in the method of the present invention, the ceramic 1 may be Al 2 O 3 , SiC, SiO 2 or the like, and the metal 2 may be carbon steel, alloy steel, stainless steel, Al, Al alloy, Ni,
Ni alloy, Cu, deoxidized copper, Cu alloy, etc. can be used as the electroformed or electroless plated metal 10, and Ni, Cu, Cr, etc. can be used, respectively.

また、本発明方法において、継手性能をより一
層向上させる時は、電鋳又は無電解メツキ施工前
に第1図に示すように、セラミツク1と金属2の
接触面(すなわち電鋳又は無電解メツキされない
部分)4に、セラミツク1と金属2の接合を促進
するインサート金属5を挿入し、上記と同様にし
て電鋳又は無電解メツキを行つた後、継手部を溶
接させる、すなわちインサート金属5の溶融点も
しくはインサート金属5と金属2の共晶点以上の
温度に加熱し、これを溶融させ、良好な接合部を
得る方法をとることができる。
In addition, in the method of the present invention, when the joint performance is to be further improved, as shown in FIG. The insert metal 5 that promotes the bonding of the ceramic 1 and the metal 2 is inserted into the part 4 that is not bonded, and after electroforming or electroless plating is performed in the same manner as above, the joint is welded, that is, the insert metal 5 is It is possible to obtain a good joint by heating to a temperature higher than the melting point or the eutectic point of the insert metal 5 and the metal 2 to melt the metal.

その際、インサート金属5は、セラミツク1や
金属2との冶金的親和性(すなわち金属間化合物
特性や濡れ性等)により、次のような組合せで使
用される。
In this case, the insert metal 5 is used in the following combinations depending on its metallurgical affinity (ie, intermetallic compound characteristics, wettability, etc.) with the ceramic 1 and the metal 2.

(1) 金属2が炭素鋼、合金鋼、ステンレス鋼の場
合: Ni−15%Cr−3.5%B、Ni−10%P、Ag−30
%Cu−2.5%Zn、Cu−5%P、Ti−50%Cu、
Pb−50%Sn (2) 金属2がAl、Al合金の場合: Al−10%Si−1.5%Mg、Al−30%Cu、Cu、
Pb−50%Sn、Zn−4%Al−4%Cu (3) 金属2がNi、Ni合金の場合: Ni−15%Cr−3.5%B、Ni−10%P、Ag−30
%Cu−2.5%Zn、Cu−5%P、Ti−50%Cu、
Pb−50%Sn (4) 金属2が、Cu、Cu合金の場合: Cu−50%P、Ag−30%Cu−2.5%Zn、Ti−
50%Cu、Pb−50%Sn、Al−10%Si−1.5%
Mg、Al−30%Cu、Al 以上の本発明方法における作用、効果をまとめ
ると次の通りとなる。
(1) When metal 2 is carbon steel, alloy steel, stainless steel: Ni-15%Cr-3.5%B, Ni-10%P, Ag-30
%Cu-2.5%Zn, Cu-5%P, Ti-50%Cu,
Pb-50%Sn (2) When metal 2 is Al or Al alloy: Al-10%Si-1.5%Mg, Al-30%Cu, Cu,
Pb-50%Sn, Zn-4%Al-4%Cu (3) When metal 2 is Ni, Ni alloy: Ni-15%Cr-3.5%B, Ni-10%P, Ag-30
%Cu-2.5%Zn, Cu-5%P, Ti-50%Cu,
Pb-50%Sn (4) When metal 2 is Cu, Cu alloy: Cu-50%P, Ag-30%Cu-2.5%Zn, Ti-
50%Cu, Pb-50%Sn, Al-10%Si-1.5%
Mg, Al-30%Cu, Al The functions and effects of the above method of the present invention are summarized as follows.

(1) セラミツクに切り込み部を設けているため、
その部分にも電鋳又は無電解メツキ金属が充満
され、セラミツクと金属の継手は優れた引張強
度特性を保有することができる。
(1) Since there are notches in the ceramic,
That part is also filled with electroformed or electroless plated metal, allowing the ceramic-to-metal joint to possess excellent tensile strength properties.

すなわち、切り込み部の断面積および容積に
相当する電鋳又は無電解メツキ金属そのものの
強度を継手部に付与することができるのであ
る。
That is, the strength of the electroformed or electroless plated metal itself, which corresponds to the cross-sectional area and volume of the cut portion, can be imparted to the joint portion.

また、切り込み部の形状寸法を変化させるこ
と、および電鋳又は無電解メツキ面積を増減さ
せることにより、引張のみならず剪断を含めた
任意の強度特性を得ることができる。
Further, by changing the shape and dimensions of the notch and increasing or decreasing the electroformed or electroless plating area, arbitrary strength characteristics including not only tensile strength but also shear strength can be obtained.

これは、従来の溶射法、ろう付法に比べ、高
強度で、かつ自由度のある継手強度特性を確保
できることを意味するものである。
This means that higher strength and more flexible joint strength characteristics can be ensured compared to conventional thermal spraying and brazing methods.

(2) 電鋳は数十度以下の低温で行われるため、セ
ラミツクの損傷は全くない。
(2) Since electroforming is performed at a low temperature of several tens of degrees or less, there is no damage to the ceramic.

これは、従来の溶融金属をセラミツクとの結
合部に注湯充満して結合する鋳ぐるみ法では、
しばしばセラミツクと金属の急激な温度差に起
因してセラミツクに割れを発生しているのに対
し、極めて優れた方法であることを意味するも
のである。
This is because the conventional casting method, in which molten metal is poured into the bonding area with ceramic,
This means that this is an extremely superior method, as cracks often occur in ceramics due to the sudden temperature difference between the ceramic and the metal.

(3) セラミツクと金属間にインサート金属を挿入
し、電鋳又は無電解メツキ施工後に、当該部を
溶接、すなわち加熱し、これを溶融させて、セ
ラミツクと金属を強固に接合する方法を採用す
れば、継手強度のなお一層の上昇および一体化
構造による熱伝導性の上昇等の効果が更に付加
される。
(3) A method should be adopted in which an insert metal is inserted between the ceramic and the metal, and after electroforming or electroless plating is performed, the relevant part is welded, that is, heated and melted to firmly join the ceramic and the metal. For example, effects such as further increase in joint strength and increase in thermal conductivity due to the integrated structure are added.

以下、本発明方法の実施例を挙げる。 Examples of the method of the present invention are given below.

実施例 1 第6図Aに示す形状寸法の炭素鋼SS41とAl2O3
との結合を電鋳金属としてNiを用いて行い、第
6図Bの継手を得た。
Example 1 Carbon steel SS41 and Al 2 O 3 with the shape and dimensions shown in Figure 6A
The joint shown in FIG. 6B was obtained by using Ni as the electroformed metal.

Al2O3の損傷は全くなく、Al2O3の二辺が電鋳
Niで覆われた良好な継手を得ることができた。
There is no damage to Al 2 O 3 , and both sides of Al 2 O 3 are electroformed.
We were able to obtain a good joint covered with Ni.

また、上記形状寸法のAl2O3とSS41の間にイン
サート金属としてNi−15%Cr−3.5%B(シー
ト、厚さ1mm)を挿入しておき、Niによる電鋳
施工後、1100℃で5分間加熱したところ、上記よ
り強固に密着、接合した継手を得ることができ
た。
In addition, Ni-15% Cr-3.5% B (sheet, thickness 1 mm) was inserted as an insert metal between Al 2 O 3 and SS41 with the above shape and dimensions, and after electroforming with Ni, it was heated at 1100℃. When heated for 5 minutes, it was possible to obtain a joint that was more firmly adhered and joined than above.

実施例 2 第7図Aに示す形状寸法のAl(A10809)と
Al2O3との結合を電鋳金属としてCuを用いて行
い、第7図Bの継手を得た。
Example 2 Al (A10809) with the shape and dimensions shown in Figure 7A
Coupling with Al 2 O 3 was performed using Cu as the electroformed metal to obtain the joint shown in FIG. 7B.

Al2O3の損傷は全くなく、Al2O3の四周が電鋳
Cuで覆われた良好な継手を得ることができた。
There is no damage to Al 2 O 3 , and all four circumferences of Al 2 O 3 are electroformed.
We were able to obtain a good joint covered with Cu.

また、上記形状寸法のAl2O3とAlとの間にイン
サート金属としてCu(箔、厚さ50μ)を挿入し
ておき、Cuによる電鋳施工後、590℃で5分間加
熱したところ、上記より強固に密着、接合した継
手を得ることができた。
In addition, Cu (foil, thickness 50μ) was inserted as an insert metal between Al 2 O 3 and Al having the above dimensions, and after electroforming with Cu, heating at 590°C for 5 minutes resulted in the above. We were able to obtain a joint that was more firmly adhered and joined.

実施例 3 第8図Aに示す形状寸法のNi合金(モネル)
とAl2O3との結合を電鋳金属としてNiを用いて行
い、第8図Bの継手を得た。
Example 3 Ni alloy (monel) with the shape and dimensions shown in Figure 8A
and Al 2 O 3 were bonded using Ni as the electroformed metal to obtain the joint shown in FIG. 8B.

Al2O3の損傷は全くなく、Al2O3の内部の切込
み全体が電鋳Niで充填された良好な継手を得る
ことができた。
It was possible to obtain a good joint in which there was no damage to Al 2 O 3 and the entire notch inside the Al 2 O 3 was filled with electroformed Ni.

また上記形状寸法のAl2O3とモネルの間にイン
サート金属としてNi−10%Pのメツキ層(厚さ
10μ)を設けておき、Niによる電鋳施工後、950
℃で10分間加熱したところ、上記より強固に密
着、接合した継手を得ることができた。
In addition, a Ni - 10%P plating layer (thickness
10μ), and after electroforming with Ni, 950
When heated at ℃ for 10 minutes, it was possible to obtain a joint that adhered and bonded more strongly than above.

実施例 4 第9図Aに示す形状寸法の脱酸鋼とAl2O3との
結合を電鋳金属としてCuを用いて行い、第9図
Bの継手を得た。
Example 4 Deoxidized steel having the shape and dimensions shown in FIG. 9A was bonded to Al 2 O 3 using Cu as the electroformed metal to obtain the joint shown in FIG. 9B.

Al2O3の損傷は全くなく、Al2O3の四辺が電鋳
Cuと覆われた良好な継手を得ることができた。
There is no damage to Al 2 O 3 , and the four sides of Al 2 O 3 are electroformed.
A good joint covered with Cu could be obtained.

また上記形状寸法の脱酸鋼とAl2O3との間にイ
ンサート金属としてCu−8%P粉末を散布(散
布高さ1mm)し、Cuによる電鋳施工後、800℃で
5分間加熱したところ、上記より強固に接着、接
合した継手を得ることができた。
In addition, Cu-8%P powder was sprinkled as an insert metal between the deoxidized steel and Al 2 O 3 having the above shape and dimensions (spray height 1 mm), and after electroforming with Cu, it was heated at 800℃ for 5 minutes. However, we were able to obtain a joint that was more strongly bonded and bonded than the above.

実施例 5 実施例1と同じ形状寸法で実施例1の炭素鋼の
代りに21/2Cr−1/2MO鋼を、Al2O3の代りにSiCを それぞれ用い、インサート金属としてNi−10%
Pを21/2Cr−1/2Mo鋼に10μの厚さでメツキして
お き、Niによる電鋳施工後、950℃で10分間加熱し
たところ、21/4Cr−1/2Mo鋼とSiCとが強固に密 着、接合した良好な継手を得ることができた。
Example 5 Same shape and dimensions as Example 1, 21/2Cr-1/2MO steel was used instead of the carbon steel of Example 1, SiC was used instead of Al 2 O 3 , and Ni-10% was used as the insert metal.
P was plated on 21/2Cr-1/2Mo steel to a thickness of 10μ, and after electroforming with Ni, it was heated at 950℃ for 10 minutes, and the 21/4Cr-1/2Mo steel and SiC were strong. We were able to obtain a good joint that adhered and joined.

実施例 6 実施例1と同じ形状寸法で実施例1の炭素鋼の
代りにステンレス鋼(SUS316L)を、Al2O3の代
りにSiO2をそれぞれ用い、インサート金属とし
てAg−30%Cu−2.5%Zn(箔、厚さ500μ)を挿
入しておき、Cuによる電鋳施工後、850℃で10分
間加熱したところ、ステンレス鋼とSiO2とが強
固に密着、接合した良好な継手を得ることができ
た。
Example 6 Same shape and dimensions as Example 1, stainless steel (SUS316L) was used instead of the carbon steel of Example 1, SiO 2 was used instead of Al 2 O 3 , and Ag-30% Cu-2.5 was used as the insert metal. %Zn (foil, thickness 500μ) was inserted, and after electroforming with Cu, it was heated at 850℃ for 10 minutes to obtain a good joint in which the stainless steel and SiO 2 were firmly adhered and bonded. was completed.

実施例 7 実施例1と同じ形状寸法で実施例1の炭素鋼の
代りにステンレス鋼(SUS304L)を、Al2O3の代
りにSiCをそれぞれ用い、インサート金属として
Pb−50%Sn(箔、厚さ500μ)を挿入しておき、
Niによる電鋳施工後、220℃で15分間加熱したと
ころ、ステンレス鋼とSiCとが強固に密着、接合
した良好な継手を得ることができた。
Example 7 Same shape and dimensions as Example 1, stainless steel (SUS304L) was used instead of the carbon steel of Example 1, and SiC was used instead of Al 2 O 3 as the insert metal.
Insert Pb-50%Sn (foil, thickness 500μ),
After electroforming with Ni and heating at 220°C for 15 minutes, we were able to obtain a good joint in which the stainless steel and SiC were firmly bonded and bonded.

実施例 8 実施例1と同じ形状寸法で実施例1の炭素鋼の
代りにステンレス鋼(SUS410L)を用い、ステ
ンレス鋼とAl2O3との間のインサート金属として
Cu−5%の粉末を散布高さ1mmで散布してお
き、Cuによる電鋳施工後、900℃で2分間加熱し
たところ、ステンレス鋼とAl2O3とが強固に密
着、接合した良好な継手を得ることができた。
Example 8 Same shape and dimensions as Example 1, stainless steel (SUS410L) was used instead of carbon steel in Example 1, and as an insert metal between stainless steel and Al 2 O 3 .
Cu-5% powder was sprinkled at a scattering height of 1 mm, and after electroforming with Cu, it was heated at 900℃ for 2 minutes, resulting in a good bond with strong adhesion and bonding between the stainless steel and Al 2 O 3 . I was able to get the fitting.

実施例 9 実施例2と同じ形状寸法で実施例2のAl2O3
代りにSiCを用い、Al(1070)とSiCとの結合を
次の要領で行つた。
Example 9 The shape and dimensions were the same as in Example 2, SiC was used instead of Al 2 O 3 in Example 2, and Al (1070) and SiC were bonded in the following manner.

Al(1070)とSiCとの間にインサート金属とし
てAl−10%Si−1.5%Mg(板、厚さ1mm)を挿入
しておき、Cuによる電鋳施工後、600℃で10分間
加熱した。
Al-10%Si-1.5%Mg (plate, thickness 1 mm) was inserted as an insert metal between Al (1070) and SiC, and after electroforming with Cu, it was heated at 600°C for 10 minutes.

この結果AlとSiCとが強固に密着、接合した良
好な継手を得ることができた。
As a result, it was possible to obtain a good joint in which Al and SiC were tightly bonded and bonded.

実施例 10 実施例2と同じ形状寸法で実施例2のAl2O3
代りにSiO2を用い、Al(1070)とSiO2との結合
を次の要領で行つた。
Example 10 The shape and dimensions were the same as in Example 2, SiO 2 was used instead of Al 2 O 3 in Example 2, and Al (1070) and SiO 2 were bonded in the following manner.

Al(1070)とSiO2との間にインサート金属と
してPb−50%Sn(箔、厚さ500μ)を挿入してお
き、Crによる電鋳施工後、220℃で15分間加熱し
た。
Pb-50% Sn (foil, thickness 500μ) was inserted between Al (1070) and SiO 2 as an insert metal, and after electroforming with Cr, it was heated at 220°C for 15 minutes.

この結果、AlとSiO2とが強固に密着、接合し
た良好な継手を得ることができた。
As a result, it was possible to obtain a good joint in which Al and SiO 2 were tightly bonded and bonded.

実施例 11 実施例3と同じ形状寸法で実施例3のモネルの
代りにNiを、Al2O3の代りにSiCをそれぞれ用
い、インサート金属としてNi−15%Cr−3.5%B
(シート、厚さ1mm)を挿入しておき、Niによる
電鋳施工後、1100℃で10分間加熱したところ、
NiとSiCとが強固に密着、接合した良好な継手を
得ることができた。
Example 11 Same shape and dimensions as Example 3, using Ni instead of Monel and SiC instead of Al 2 O 3 in Example 3, and Ni-15% Cr-3.5% B as the insert metal.
(Sheet, thickness 1mm) was inserted, electroformed with Ni, and heated at 1100℃ for 10 minutes.
We were able to obtain a good joint in which Ni and SiC were tightly bonded and bonded.

実施例 12 実施例4と同じ形状寸法で実施例4の脱酸銅の
代りに銅合金(ABP1)を用い、該銅合金とSiC
との結合を次の要領で行つた。
Example 12 Same shape and dimensions as Example 4, using copper alloy (ABP1) instead of deoxidized copper in Example 4, and combining the copper alloy with SiC.
The connection was made in the following manner.

銅合金とAl2O3との間にインサート金属として
Ag−30%Cu−2.5%Zn(箔、厚さ500μ)を挿入
しておき、Cuによる電鋳施工後、800℃で5分間
加熱した。
As insert metal between copper alloy and Al2O3
Ag-30% Cu-2.5% Zn (foil, thickness 500μ) was inserted, and after electroforming with Cu, it was heated at 800°C for 5 minutes.

この結果、銅合金とAl2O3とが強固に密着、接
合した良好な継手を得ることができた。
As a result, it was possible to obtain a good joint in which the copper alloy and Al 2 O 3 were tightly bonded and bonded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜5図は本発明方法の一実施態様例の手順
と得られた製品を示す図、第6〜9図は本発明の
実施例で調製した継手を示す図である。
1 to 5 are diagrams showing the procedure of an embodiment of the method of the present invention and the obtained product, and FIGS. 6 to 9 are diagrams showing joints prepared in an example of the present invention.

Claims (1)

【特許請求の範囲】 1 セラミツクと金属とを結合するに際して、セ
ラミツクは、その側面に切り込みを設け、かつ金
属との接触面においてその断面積を金属より小さ
くし、これを金属に載置し、セラミツクと金属と
の接触面の金属露出面に電鋳又は無電解メツキを
行うことを特徴とするセラミツクと金属の結合方
法。 2 セラミツクと金属とを結合するに際して、セ
ラミツクは、その側面に切り込みを設け、かつ金
属との接触面においてその断面積を金属より小さ
くし、これを金属と接触する面にセラミツク及び
金属の両者に親和性に富むインサート金属を介し
て金属上に載置し、セラミツクと金属との接触面
の金属露出面に電鋳又は無電解メツキを行つた
後、インサート金属の溶融点又はインサート金属
と前記金属との共晶点以上の温度に加熱すること
を特徴とするセラミツクと金属の結合方法。
[Claims] 1. When bonding ceramic and metal, the ceramic is provided with a notch on its side surface and has a cross-sectional area smaller than that of the metal at the contact surface with the metal, and is placed on the metal, A method for bonding ceramic and metal, characterized by performing electroforming or electroless plating on the exposed metal surface of the contact surface between ceramic and metal. 2. When bonding ceramic and metal, the ceramic has a notch on its side, and the cross-sectional area of the surface in contact with the metal is made smaller than that of the metal, and this is cut in both the ceramic and the metal on the surface in contact with the metal. It is placed on the metal via an insert metal with high affinity, and after electroforming or electroless plating is performed on the exposed metal surface of the contact surface between the ceramic and the metal, the melting point of the insert metal or the relationship between the insert metal and the metal is A method for bonding ceramic and metal, characterized by heating to a temperature above the eutectic point of the metal.
JP19847281A 1981-12-11 1981-12-11 Method of bonding ceramic and metal Granted JPS58104073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19847281A JPS58104073A (en) 1981-12-11 1981-12-11 Method of bonding ceramic and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19847281A JPS58104073A (en) 1981-12-11 1981-12-11 Method of bonding ceramic and metal

Publications (2)

Publication Number Publication Date
JPS58104073A JPS58104073A (en) 1983-06-21
JPS6251916B2 true JPS6251916B2 (en) 1987-11-02

Family

ID=16391669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19847281A Granted JPS58104073A (en) 1981-12-11 1981-12-11 Method of bonding ceramic and metal

Country Status (1)

Country Link
JP (1) JPS58104073A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027662A (en) * 1983-07-21 1985-02-12 三井造船株式会社 Method of bonding porous members

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543809A (en) * 1977-06-10 1979-01-12 Kyoto Ceramic Ceramiccmetal complex body and production thereof
JPS544909A (en) * 1977-06-13 1979-01-16 Kyoto Ceramic Ceramiccmetal complex body and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543809A (en) * 1977-06-10 1979-01-12 Kyoto Ceramic Ceramiccmetal complex body and production thereof
JPS544909A (en) * 1977-06-13 1979-01-16 Kyoto Ceramic Ceramiccmetal complex body and production thereof

Also Published As

Publication number Publication date
JPS58104073A (en) 1983-06-21

Similar Documents

Publication Publication Date Title
US4725509A (en) Titanium-copper-nickel braze filler metal and method of brazing
JPH0217509B2 (en)
JP5138879B2 (en) Material composite
MXPA02008153A (en) Method for making a joint between copper and stainless steel.
JP2003524143A (en) Cooling element and method for manufacturing cooling element
JPS6251916B2 (en)
EA004488B1 (en) Method for manufacturing an electrode and an electrode
JPH02175674A (en) Joined body of ceramics and metallic body and method for joining thereof
JP2004066324A (en) Brazing method between aluminum-based metal and different metal
JPH0565272B2 (en)
JPH029779A (en) Production of ceramic-metal composite body
JPS62222060A (en) Target for sputtering
JPH0672779A (en) Method for joining carbon member
JPH055789B2 (en)
JPS6177676A (en) Silicon nitride bonded body and bonding method
JPS5815311B2 (en) Aluminum-based metal/dissimilar metal composite material and its manufacturing method
JP2008254010A (en) Brazing method
JPS6026633A (en) Insert alloy for joining
JPH0469226B2 (en)
JPH085725B2 (en) Method for joining metal member and ceramic member
JPH0426567A (en) Method for joining carbon sliding plate to aluminum-based material
JPS5964159A (en) Joining method of al or al alloy sintered member
JPH0761879A (en) Method for bonding metal member to ceramic member
JPS6077181A (en) Ceramic-metal bonded body
JPH01179769A (en) Method for bonding ceramic material and metallic material