JPS6251882B2 - - Google Patents

Info

Publication number
JPS6251882B2
JPS6251882B2 JP8140082A JP8140082A JPS6251882B2 JP S6251882 B2 JPS6251882 B2 JP S6251882B2 JP 8140082 A JP8140082 A JP 8140082A JP 8140082 A JP8140082 A JP 8140082A JP S6251882 B2 JPS6251882 B2 JP S6251882B2
Authority
JP
Japan
Prior art keywords
sodium carbonate
concentration
hydrogen peroxide
added
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8140082A
Other languages
Japanese (ja)
Other versions
JPS58199704A (en
Inventor
Yoshiro Ito
Masahiro Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Peroxide Co Ltd
Original Assignee
Nippon Peroxide Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Peroxide Co Ltd filed Critical Nippon Peroxide Co Ltd
Priority to JP8140082A priority Critical patent/JPS58199704A/en
Publication of JPS58199704A publication Critical patent/JPS58199704A/en
Publication of JPS6251882B2 publication Critical patent/JPS6251882B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Detergent Compositions (AREA)

Description

【発明の詳細な説明】 本発明は中空粒状で且つ安定化された炭酸ナト
リウム過酸化水素付加物(2Na2CO3・3H2O2以下
PCと略称する。)の製造法に関するものである。
[Detailed description of the invention] The present invention provides a hollow granular and stabilized sodium carbonate hydrogen peroxide adduct (2Na 2 CO 3 3H 2 O 2 or less).
It is abbreviated as PC. ).

PCは主として家底用あるいは業務用の酸素系
漂白剤として、単独あるいは洗剤に配合されて一
般的に使用されている。
PC is commonly used as an oxygen-based bleaching agent for home and commercial use, either alone or in combination with detergents.

PCの製造法に関して種々の報告があるが、PC
の製品として求められる性質は、まず安定性、流
動性に関して考えると、緻密な大きな粒子が良好
であるが、それでは水溶性が悪く、又、カサ比重
が高いのでカサ比重の軽い洗剤に配合した場合、
分離してしまう等の問題が起る。一方、カサ比重
の軽い粒子を作ると、表面積が大きくなり安定性
が悪くなり、又、粒子の強度が下るので輸送中に
こわれ、微粉化しカサ比重が重くなつてしまう等
の欠点が表れて来る。これらの性質を一応満足さ
せるには、粒子が中空で且つ殻が緻密であること
が望ましい。本発明はそのような中空PCを安価
に製造する方法を提供することである。
There are various reports regarding PC manufacturing methods, but
Regarding the properties required for a product, first of all, considering stability and fluidity, dense and large particles are good, but they have poor water solubility and have a high bulk specific gravity, so when blended into a detergent with a light bulk specific gravity. ,
Problems such as separation may occur. On the other hand, if particles with a light bulk specific gravity are made, the surface area will increase, resulting in poor stability.Also, the strength of the particles will decrease, causing them to break during transportation, resulting in pulverization, resulting in a heavy bulk specific gravity, and other drawbacks. . In order to satisfy these properties, it is desirable that the particles be hollow and have dense shells. The present invention provides a method for manufacturing such a hollow PC at low cost.

即ち、本発明は炭酸ナトリウム、過酸化水素お
よび塩化ナトリウムを含有する溶液に粒状炭酸ナ
トリウム、過酸化水素を連続的或は断続的に添加
し、温度10〜40℃で反応させて中空粒状なPCを
製造するに際し、 母液組成は、塩化ナトリウム濃度に関し80〜
290g/、炭酸ナトリウム濃度に関し20〜120
g/、過酸化水素濃度に関し6〜50g/、
ヘキサメタリン酸塩濃度に関し0.01〜2.0g/
以下であり、かつ炭酸ナトリウムに対する過
酸化水素モル比が1.8以下であるように維持
し、 添加する粒状炭酸ナトリウムの平均粒子径は
50〜1000μであり、 ヘキサメタリン酸塩を、添加する粒状炭酸ナ
トリウムに対し、重量比で0.05/100〜1.0/
100の割合で添加し、 ケイ酸化合物およびマグネシウム化合物を安
定剤として、添加する粒状炭酸ナトリウムに対
し、重量比でそれぞれSiO2として0.05/100〜
1.0/100およびMgとして0〜0.2/100の割合
で添加する 生成炭酸ナトリウム過酸化水素付加物が安定な
中空粒状であることを特徴とするPCの製造法に
関する。
That is, the present invention involves continuously or intermittently adding granular sodium carbonate and hydrogen peroxide to a solution containing sodium carbonate, hydrogen peroxide, and sodium chloride, and reacting at a temperature of 10 to 40°C to form hollow granular PC. When manufacturing, the mother liquor composition should be between 80 and 80% in terms of sodium chloride concentration.
290g/, sodium carbonate concentration 20-120
g/, 6 to 50 g/ for hydrogen peroxide concentration,
Regarding hexametaphosphate concentration 0.01-2.0g/
and the molar ratio of hydrogen peroxide to sodium carbonate is 1.8 or less, and the average particle diameter of the granular sodium carbonate to be added is
50 to 1000 μ, and the weight ratio of hexametaphosphate to the added granular sodium carbonate is 0.05/100 to 1.0/
Added at a ratio of 100 to 100, and using silicic acid compounds and magnesium compounds as stabilizers, the weight ratio of SiO 2 to the added granular sodium carbonate is 0.05/100 ~
The present invention relates to a method for producing PC, characterized in that the produced sodium carbonate hydrogen peroxide adduct is added in a ratio of 1.0/100 and 0 to 0.2/100 as Mg, and is characterized in that it is in the form of stable hollow particles.

中空なPC生成の機構は、H2O2を含む溶液中に
粒状Na2CO3を添加した場合、Na2CO3が溶け、沖
合に拡散して行く際にH2O8と反応し、Na2CO3
子表面に空隙のあるPCの薄層がまず形成され、
その空隙を通して内部からNa2CO3の溶出が起
り、外部からのH2O2との反応によつてPC層は
徐々に厚みを増し、その結果、中空粒状なPCが
生成されるのであるが、ここにはNa2CO3の濃度
(添加粒状Na2CO3の溶解速度、拡散速度も関係す
る)、H2O2の濃度、反応温度、ヘキサメタリン酸
塩(以下H・M・Pと略称する。)の濃度、添加
粒状Na2CO3の粒度等の間に絶妙なバランスが必
要である。これらの要因はNa2CO3表面に形成さ
れるPC層の厚さ、空隙の程度を左右し、内部の
Na2CO3の溶解速度を著しく変化させることにな
り、反応初期に緻密な層が形成されれば、内部に
覆われたNa2CO3の溶出は完全に停止してしま
う。例えばNa2CO3とH2O2との濃度のバランスが
H2O2方向にずれ、H2O2が過乗に存在する系で
は、このような現象が起こり反応禁止状態にな
る。又、本発明に於いて、H.M.Pの添加は特に重
要で、これはPC層の結晶を緻密にする効果があ
ると共に、Na2CO3の拡散速度、H2O2の内部への
侵入速度をコントロールしPC殻の生成を容易に
し、且つ生成する条件の範囲を広くすることが出
来、又、生成する殻も強度があり、表面も滑らか
で製品粒子の流動性を良くし、又、輸速中に破壊
されることも無くするという多くの重要な効果が
あるが、H.M.Pを多量に添加した場合には、PC
層の緻密性が著しく増すため内部からのNa2CO3
の溶出が阻害されてしまうことがある。又、
Na2CO3とH2O2の濃度バランスがNa2CO3濃度が
高くなる方向に偏つた場合、例えば、反応温度の
上昇はNa2CO3の溶解度を増し、又、原料Na2CO3
の小さな粒子は速やかに溶解するため反応系の
Na2CO3濃度を増す原因となり、逆に温度が低下
した場合には、Na2CO3粒子の溶解度及び溶解速
度が低下するため、原料粒子表面上のPC層形成
が容易となる反面、内部からのNa2CO3の溶出が
抑制されるため内部Na2CO3が完全に反応するこ
となく残存する原因となる。また、H.M.Pの濃度
が低い場合には細粒化してしまう。以上の意味あ
いから、反応温度は10〜40℃好ましくは20〜30℃
が選択され、H.M.Pの母液濃度としては0.01g/
1〜2g/の範囲で調整し、かつ添加するH.
M.Pは添加される粒状Na2CO3重量に対し、
0.05/100〜1/100の範囲で調整して添加され
る。H.M.Pとポリアクリル酸ナトリウムを併用す
ることも可能であり、本発明を有利に実施出来
る。
The mechanism of hollow PC formation is that when granular Na 2 CO 3 is added to a solution containing H 2 O 2 , the Na 2 CO 3 dissolves and reacts with H 2 O 8 as it diffuses offshore. A thin layer of PC with voids is first formed on the surface of the Na 2 CO 3 particles,
Na 2 CO 3 elutes from the inside through the voids, and the PC layer gradually thickens due to reaction with H 2 O 2 from the outside, resulting in hollow granular PC. , here the concentration of Na 2 CO 3 (dissolution rate and diffusion rate of added granular Na 2 CO 3 are also related), concentration of H 2 O 2 , reaction temperature, hexametaphosphate (hereinafter abbreviated as H・M・P). ) and the particle size of the added granular Na 2 CO 3 are required. These factors affect the thickness of the PC layer formed on the Na 2 CO 3 surface, the degree of voids, and the internal
This will significantly change the dissolution rate of Na 2 CO 3 , and if a dense layer is formed in the early stage of the reaction, the elution of Na 2 CO 3 covered inside will be completely stopped. For example, the concentration balance between Na 2 CO 3 and H 2 O 2 is
In a system in which H 2 O 2 is shifted in the direction of H 2 O 2 and H 2 O 2 exists in excess, such a phenomenon occurs and the reaction is inhibited. Furthermore, in the present invention, the addition of HMP is particularly important, as it has the effect of making the crystals of the PC layer denser, and also reduces the diffusion rate of Na 2 CO 3 and the rate of penetration of H 2 O 2 into the interior. It is possible to easily control the generation of PC shells and to widen the range of conditions for generation.Also, the shells produced are strong and have a smooth surface, which improves the fluidity of the product particles, and also increases the transport speed. It has many important effects, such as preventing PC from being destroyed, but when a large amount of HMP is added,
Since the density of the layer increases significantly, Na 2 CO 3 from inside
elution may be inhibited. or,
If the concentration balance between Na 2 CO 3 and H 2 O 2 is biased toward increasing the Na 2 CO 3 concentration, for example, increasing the reaction temperature will increase the solubility of Na 2 CO 3 and increase the
The small particles in the reaction system dissolve quickly and
This causes the Na 2 CO 3 concentration to increase, and conversely, when the temperature decreases, the solubility and dissolution rate of Na 2 CO 3 particles decrease, which facilitates the formation of a PC layer on the surface of the raw material particles, but on the other hand, the internal Since the elution of Na 2 CO 3 from the inside is suppressed, this causes internal Na 2 CO 3 to remain without being completely reacted. Furthermore, when the concentration of HMP is low, the particles become fine. In view of the above, the reaction temperature is 10 to 40℃, preferably 20 to 30℃.
was selected, and the HMP mother liquor concentration was 0.01g/
Adjust and add H. within the range of 1 to 2 g/.
MP is based on the weight of granular Na 2 CO 3 added.
It is added in an adjusted range of 0.05/100 to 1/100. It is also possible to use HMP and sodium polyacrylate in combination, and the present invention can be carried out advantageously.

維持すべき母液組成は、NaCl濃度に関し、80
〜290g/、Na2CO3濃度に関し20〜120g/
、H2O2濃度に関し6〜50g/、ヘキサメタ
リン酸塩濃度に関し0.01〜2.0g/であり、か
つNa2CO3に対するH2O2モル比は1.8以下に調整
する。
The mother liquor composition to be maintained is 80% with respect to NaCl concentration.
~290g/, 20~120g/ for Na 2 CO 3 concentration
, H 2 O 2 concentration is 6 to 50 g/, hexametaphosphate concentration is 0.01 to 2.0 g/, and the H 2 O 2 molar ratio to Na 2 CO 3 is adjusted to 1.8 or less.

中空粗大なPCを得るのに重要なことは、反応
に用いる原料Na2CO3の粒度である。中空PCの生
成機構からも分るように、Na2CO3粒子自身がPC
粒子形成の核となり、生成するPC粒子の大きさ
を決定する一つの大きな要因となるからである。
即ち、原料Na2CO3の平均粒子径は50〜1000μで
ある。
What is important in obtaining hollow coarse PC is the particle size of the raw material Na 2 CO 3 used in the reaction. As can be seen from the formation mechanism of hollow PC, Na 2 CO 3 particles themselves are PC.
This is because it becomes the core of particle formation and is one of the major factors that determines the size of the generated PC particles.
That is, the average particle diameter of the raw material Na 2 CO 3 is 50 to 1000 μ.

母液中に存在するPCのスラリー濃度は、それ
が高濃度化し過ぎるとスラリー粘性が大きくな
り、供給される粒状Na2CO3やH2O2の母液全体へ
の速やかな分散が困難となるため、スラリー液面
層等に原料が局在し、適当な母液組成域から逸脱
した局在系での反応が進行し、不完全な反応が粒
子や微細化が起こりやすくなり好ましくない。ス
ラリー濃度はPC350g/(スラリー)を上限と
して行われる。
If the slurry concentration of PC present in the mother liquor becomes too high, the slurry viscosity will increase, making it difficult to quickly disperse the supplied particulate Na 2 CO 3 and H 2 O 2 throughout the mother liquor. , the raw material is localized in the slurry liquid surface layer, etc., and the reaction proceeds in a localized system that deviates from the appropriate mother liquor composition range, which is undesirable because incomplete reaction tends to cause particles and refinement. The slurry concentration is set at an upper limit of PC350g/(slurry).

本発明に於て塩化ナトリウムは、塩析効果によ
りPCの収率向上の効果の他に、Na2CO3の溶解速
度やPC析出速度の調節に大きな効果がある。ま
た、PCは可燃物と接触したとき、ある条件下で
可燃物を燃焼させる危険性があるが、本願発明に
おいては塩化ナトリウムがPC結晶中に取り込ま
れ、PCの希釈剤として作用するため、その危険
性を防止する効果もある。
In the present invention, sodium chloride not only has the effect of improving the yield of PC due to its salting-out effect, but also has a great effect on adjusting the dissolution rate of Na 2 CO 3 and the precipitation rate of PC. In addition, when PC comes into contact with combustible materials, there is a risk of burning the combustible materials under certain conditions, but in the present invention, sodium chloride is incorporated into the PC crystals and acts as a diluent for the PC. It also has the effect of preventing danger.

本発明方法に於いて、PCの安定剤としてケイ
酸ナトリウム等のケイ酸化合物および硫酸マグネ
シウム等のマグネシウム化合物を添加して製造さ
れたPCは、その安定性が著しく向上する。ケイ
酸化合物およびマグネシウム化合物の添加量は、
それぞれの添加比率が添加されるNa2CO3重量に
対し、SiO2として、0.05/100〜1.0/100、Mgと
して0.2/100以下であり、又、ケイ酸化合物、
Mg化合物にEDTA、リン酸塩等の公知の安定剤
を併用して使用することも可能である。
In the method of the present invention, the stability of PC produced by adding a silicate compound such as sodium silicate and a magnesium compound such as magnesium sulfate as a PC stabilizer is significantly improved. The amount of silicic acid compound and magnesium compound added is
The respective addition ratios are 0.05/100 to 1.0/100 as SiO 2 and 0.2/100 or less as Mg to the weight of Na 2 CO 3 added, and the silicate compound,
It is also possible to use the Mg compound in combination with a known stabilizer such as EDTA or phosphate.

本発明を実施すれば、水溶性、安定性および流
動性の改善された中空粒状なPCを有利に製造す
ることが可能であり、本発明は産業上、極めて有
利な製造法となる。
By carrying out the present invention, it is possible to advantageously produce hollow granular PC with improved water solubility, stability and fluidity, and the present invention is an extremely advantageous production method industrially.

以下に本発明を実施例で詳しく説明する。 The present invention will be explained in detail below using examples.

実施例 1 塩化ナトリウム濃度279g/、炭酸ナトリウ
ム濃度50g/、過酸化水素濃度6g/の組成
を有する母液10に撹拌を行いつつ、840μ以下
99.7%、300μ以下25.8%の粒度を持つ粒状炭酸
ナトリウムを2.00Kg/毎時、濃度750g/の過
酸化水素を1.32/毎時の速度で供給すると同時
に濃度0.1g/mlのヘキサメタリン酸ナトリウム
水溶液を68ml/毎時、濃度0.5g/mlの硫酸マグ
ネシウム水溶液18ml/毎時、濃度0.5g/mlの3
号ケイ酸ナトリウム60ml/毎時の速度で連続的に
添加し、反応中の液温を22℃に維持した。
Example 1 While stirring the mother liquor 10 having a composition of sodium chloride concentration 279 g/, sodium carbonate concentration 50 g/, and hydrogen peroxide concentration 6 g/, the concentration of 840μ or less
Granular sodium carbonate with a particle size of 99.7% and 25.8% below 300μ is supplied at a rate of 2.00Kg/hour, hydrogen peroxide at a concentration of 750g/hour is supplied at a rate of 1.32/hour, and at the same time a sodium hexametaphosphate aqueous solution with a concentration of 0.1g/ml is supplied at a rate of 68mL/hour. 18 ml of magnesium sulfate aqueous solution with a concentration of 0.5 g/ml per hour / 3 with a concentration of 0.5 g/ml per hour
No. sodium silicate was added continuously at a rate of 60 ml/hour, and the liquid temperature was maintained at 22°C during the reaction.

反応1時間後に粒状炭酸ナトリウム、過酸化水
素、ヘキサメタリン酸ナトリウム、硫酸マグネシ
ウム及び3号ケイ酸ナトリウムの供給を停止し、
10分間撹拌を行つた後、スラリーを抜出し、遠心
分離機で固液分離した。濾液は炭酸ナトリウムに
ついて44.2g/、過酸化水素について16.4g/
の濃度を有していた。生成したPC粒子を無作
為に10個抽出し、それら粒子を切断、2分割して
粒子内部を電子顕微鏡下に観察したところ、その
おおよそが中空状であることを確認した。なお、
得られたPCの有効酸素は14.0%、平均粒径は530
μ、カサ比重は0.51であり、また、NaClおよび
H.M.Pの含有量はそれぞれ3.7%および0.11%で
あつた。
After 1 hour of reaction, the supply of granular sodium carbonate, hydrogen peroxide, sodium hexametaphosphate, magnesium sulfate, and No. 3 sodium silicate was stopped,
After stirring for 10 minutes, the slurry was extracted and separated into solid and liquid using a centrifuge. The filtrate contains 44.2g/for sodium carbonate and 16.4g/for hydrogen peroxide.
It had a concentration of Ten PC particles were randomly extracted, cut into two, and the inside of the particles was observed under an electron microscope, and it was confirmed that the particles were mostly hollow. In addition,
The effective oxygen content of the obtained PC was 14.0%, and the average particle size was 530.
μ, bulk specific gravity is 0.51, and NaCl and
The content of HMP was 3.7% and 0.11%, respectively.

比較例 1 初母液組成を塩化ナトリウム濃度280g/、
炭酸ナトリウム濃度18g/、過酸化水素濃度6
g/とした以外は実施例1と同一条件下で反応
を行つた。反応終了後の母液は炭酸ナトリウム
21.3g/、過酸化水素46.1g/の濃度を有
し、得られた粒子は有効酸素9.2%、カサ比重の
0.97であり、粒子の内部には未反応の炭酸ナトリ
ウムがまわりを炭酸ナトリウム過酸化水素付加物
で覆われた形で存在していた。
Comparative example 1 The initial mother liquor composition was set to a sodium chloride concentration of 280 g/,
Sodium carbonate concentration 18g/, hydrogen peroxide concentration 6
The reaction was carried out under the same conditions as in Example 1, except that the amount was set to 1. After the reaction is complete, the mother liquor is sodium carbonate.
The obtained particles had a concentration of 21.3 g/, hydrogen peroxide 46.1 g/, and the resulting particles contained 9.2% effective oxygen and bulk specific gravity.
0.97, and unreacted sodium carbonate existed inside the particles surrounded by sodium carbonate-hydrogen peroxide adduct.

実施例 2 塩化ナトリウム濃度260g/、炭酸ナトリウ
ム濃度50g/、過酸化水素濃度6g/の組成
を有する初母液10を用い、基本的には実施例1
と同一供給速度で添加物を供給したが、炭酸ナト
リウムと過酸化水素については母液中の炭酸ナト
リウム濃度が40〜55g/、過酸化水素濃度が13
〜20g/を維持するように途中断続的に調節
し、さらに塩化ナトリウム濃度が260〜270g/
を保つように塩化ナトリウムを供給して連続的な
反応を行つた。反応中はスラリー濃度が250g/
となるようにスラリーを抜出し、遠心分離後の
濾液は反応容器内に循環させた。反応温度は23℃
とした。
Example 2 Using the initial mother liquor 10 having a composition of sodium chloride concentration of 260 g/, sodium carbonate concentration of 50 g/, and hydrogen peroxide concentration of 6 g/, basically Example 1 was used.
Additives were fed at the same feed rate as in the case of sodium carbonate and hydrogen peroxide.
The sodium chloride concentration was adjusted intermittently to maintain a concentration of ~20g/260~270g/.
Continuous reaction was carried out by supplying sodium chloride to maintain the temperature. During the reaction, the slurry concentration is 250g/
The slurry was extracted and the filtrate after centrifugation was circulated in the reaction vessel. Reaction temperature is 23℃
And so.

原料炭酸ナトリウムの粒度は840μ以下99.6
%、300μ以下34.3%のものを用いた。生成した
PC粒子を実施例1と同様にそれら粒子を切断、
2分割して粒子内部を電子顕微鏡下に観察したと
ころ、その多くが中空状の粒子であり、その有効
酸素は13.9〜14.2%、平均粒径は610μ、カサ比
重は0.58であり、また、NaClおよびH.M.Pの含有
量はそれぞれ4.2%および0.19%であつた。
The particle size of the raw material sodium carbonate is 840μ or less99.6
%, 34.3% of 300μ or less was used. generated
Cut the PC particles in the same manner as in Example 1,
When the inside of the particle was divided into two and observed under an electron microscope, it was found that most of the particles were hollow, with an effective oxygen content of 13.9 to 14.2%, an average particle size of 610μ, and a bulk specific gravity of 0.58. and HMP contents were 4.2% and 0.19%, respectively.

比較例 2 ヘキサメタリン酸ナトリウムを使用しなかつた
以外は、実施例2と同一条件で反応を開始した
が、開始3分後には微細な針状炭酸ナトリウム過
酸化水素付加物の結晶が析出してスラリーの粘性
が増加し、20分後には連続的に供給されている原
料炭酸ナトリウム粒子が反応スラリー液面化に分
散されることなく液面上で固化したため、それ以
後の反応続行は不可能であり、反応を中止した。
Comparative Example 2 The reaction was started under the same conditions as Example 2 except that sodium hexametaphosphate was not used, but 3 minutes after the start, fine acicular crystals of sodium carbonate hydrogen peroxide adduct precipitated and the slurry The viscosity of the reaction slurry increased, and after 20 minutes, the continuously supplied raw material sodium carbonate particles solidified on the surface of the reaction slurry without being dispersed, making it impossible to continue the reaction. , the reaction was stopped.

脱水乾燥後の付加物は有効酸素含有率12.5%で
あり、150μ以下の微結晶を67.4%含んだ一般的
利用に耐えないものであつた。
The adduct after dehydration and drying had an effective oxygen content of 12.5% and contained 67.4% of microcrystals of 150μ or less, making it unsuitable for general use.

比較例 3 NaClが共存せず、炭酸ナトリウム濃度110g/
(10wt%)、過酸化水素濃度44g/(4wt
%)からなる母液10に撹拌を行いつつ、実施例
2で用いたと同じ粒度の炭酸ナトリウムを2.0
Kg/毎時、濃度750g/の過酸化水素を1.32
Kg/毎時、濃度0.1g/mlのヘキサメタリン酸ナ
トリウム溶液を68ml/毎時、濃度0.5g/mlの硫
酸マグネシウム溶液を18ml/毎時、濃度0.5g/
mlの3号ケイ酸ナトリウムを60ml/毎時の速度で
連続的に添加し、反応温度22℃で1時間の反応を
行つた。反応後にろ過して得られた母液には過酸
化水素が87.2g/の高濃度での未反応のまま残
存してていた。これは炭酸ナトリウムと過酸化水
素との反応が円滑に進行せずに母液中の過酸化水
素が上昇したものと考えられる。なお、乾燥後の
付加物粒子は有効酸素含有率8.4%、カサ比重
1.02の非中空状粒子であつた。
Comparative example 3 NaCl does not coexist, sodium carbonate concentration 110g/
(10wt%), hydrogen peroxide concentration 44g/(4wt%)
While stirring, 2.0% sodium carbonate of the same particle size as used in Example 2 was added to the mother liquor consisting of 10%
Kg/hour, 1.32 hydrogen peroxide at a concentration of 750g/hour
Kg/hour, 68ml/hour of sodium hexametaphosphate solution with a concentration of 0.1g/ml, 18ml/hour of a magnesium sulfate solution with a concentration of 0.5g/ml, and a concentration of 0.5g/hour.
ml of No. 3 sodium silicate was continuously added at a rate of 60 ml/hour, and the reaction was carried out at a reaction temperature of 22° C. for 1 hour. After the reaction, the mother liquor obtained by filtration contained unreacted hydrogen peroxide at a high concentration of 87.2 g/mt. This is considered to be because the reaction between sodium carbonate and hydrogen peroxide did not proceed smoothly and the hydrogen peroxide in the mother liquor increased. The adduct particles after drying have an effective oxygen content of 8.4% and a bulk specific gravity.
It was a non-hollow particle with a diameter of 1.02.

Claims (1)

【特許請求の範囲】 1 炭酸ナトリウム、過酸化水素および塩化ナト
リウムを含有する溶液に粒状炭酸ナトリウム、過
酸化水素を連続的或は断続的に添加し、温度10〜
40℃で反応させて中空粒状な炭酸ナトリウム過酸
化水素付加物を製造するに際し、 母液組成は、塩化ナトリウム濃度に関し80〜
290g/、炭酸ナトリウム濃度に関し20〜120
g/、過酸化水素濃度に関し6〜50g/、
ヘキサメタリン酸塩濃度に関し0.01〜2.0g/
以下であり、かつ炭酸ナトリウムに対する過
酸化水素モル比が1.8以下であるように維持
し、 添加する粒状炭酸ナトリウムの平均粒子径は
50〜1000μであり、 ヘキサメタリン酸塩を、添加する粒状炭酸ナ
トリウムに対し、重量比で0.05/100〜1.0/
100の割合で添加し、 ケイ酸化合物およびマグネシウム化合物を安
定剤として、添加する粒状炭酸ナトリウムに対
し、重量比でそれぞれSiO2として0.05/100〜
1.0/100およびMgとして0〜0.2/100の割合
で添加する 生成炭酸ナトリウム過酸化水素付加物が安定な
中空粒状であることを特徴とする炭酸ナトリウム
過酸化水素付加物の製造法。
[Claims] 1. Particulate sodium carbonate and hydrogen peroxide are added continuously or intermittently to a solution containing sodium carbonate, hydrogen peroxide and sodium chloride, and the temperature is 10 to 10.
When reacting at 40°C to produce hollow granular sodium carbonate hydrogen peroxide adducts, the mother liquor composition has a sodium chloride concentration of 80 to 80°C.
290g/, sodium carbonate concentration 20-120
g/, 6 to 50 g/ for hydrogen peroxide concentration,
Regarding hexametaphosphate concentration 0.01-2.0g/
and the molar ratio of hydrogen peroxide to sodium carbonate is 1.8 or less, and the average particle diameter of the granular sodium carbonate to be added is
50 to 1000 μ, and the weight ratio of hexametaphosphate to the added granular sodium carbonate is 0.05/100 to 1.0/
Added at a ratio of 100 to 100, and using silicic acid compounds and magnesium compounds as stabilizers, the weight ratio of SiO 2 to the added granular sodium carbonate is 0.05/100 ~
1.0/100 and Mg added at a ratio of 0 to 0.2/100. A method for producing a sodium carbonate-hydrogen peroxide adduct, characterized in that the produced sodium carbonate-hydrogen peroxide adduct is in the form of stable hollow particles.
JP8140082A 1982-05-17 1982-05-17 Manufacture of adduct of sodium carbonate to hydrogen peroxide Granted JPS58199704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8140082A JPS58199704A (en) 1982-05-17 1982-05-17 Manufacture of adduct of sodium carbonate to hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8140082A JPS58199704A (en) 1982-05-17 1982-05-17 Manufacture of adduct of sodium carbonate to hydrogen peroxide

Publications (2)

Publication Number Publication Date
JPS58199704A JPS58199704A (en) 1983-11-21
JPS6251882B2 true JPS6251882B2 (en) 1987-11-02

Family

ID=13745258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8140082A Granted JPS58199704A (en) 1982-05-17 1982-05-17 Manufacture of adduct of sodium carbonate to hydrogen peroxide

Country Status (1)

Country Link
JP (1) JPS58199704A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965072A (en) * 1988-11-03 1990-10-23 Miles Inc. Granulating composition and method
US8741255B2 (en) 2007-07-27 2014-06-03 Exxonmobil Chemical Patents Inc. Oxidation process

Also Published As

Publication number Publication date
JPS58199704A (en) 1983-11-21

Similar Documents

Publication Publication Date Title
US4146571A (en) Preparation of sodium percarbonate
US5346680A (en) Sodium percarbonate stabilized by coating
US4117087A (en) Process for preparing stabilized sodium percarbonate
JP2001500097A (en) Method for producing percarbonate
JP2002525453A (en) Oxygen bleaching of pulp using flocculant bleach activators.
JPH08175809A (en) Preparation of peroxy acid salt particle
RU98119401A (en) CONTINUOUS METHOD FOR PRODUCING SODIUM PERCARBONATE, DEVICE FOR PRODUCING SODIUM PERCARBONATE, DRY SODIUM PERCARBONATE
US4328200A (en) Process for producing calcium hypochlorite
US6207177B1 (en) Monosodium cyanuric acid slurry
JPS6251882B2 (en)
EP0658150B1 (en) A process for preparing a crystalline, stable sodium percarbonate
WO2004002885A1 (en) A process for making sodium percarbonate
US6482385B2 (en) Sodium percarbonate and process for producing sodium percarbonate
JPS5833164B2 (en) Hollow granular percarbonate and its manufacturing method
US3801706A (en) Preparation of sodium percarbonate
JPH02170899A (en) Granular composition containing bleaching agent and optical brightener, and preparation of said composition
CA1213415A (en) Continuous process for producing granular calcium hypochlorite particles
US2429531A (en) Process for producing calcium hypochlorite
KR100321534B1 (en) Method for preparing abrasion resistant sodium percarbonate with fast dissolution rate and sodium percarbonate prepared therefrom
JPS6096511A (en) Production of stabilized granular sodium percarbonate
US3975500A (en) Process for producing high active oxygen, low bulk density sodium perborate
KR100541269B1 (en) Method of manufacturing percarbonate
CN115448257B (en) Potassium hydrogen peroxymonosulfate compound salt spherulites and preparation method thereof
IL28284A (en) Method for preparing bromites
US1900235A (en) Magnesium carbonate and manufacturing process thereof