JPS6251485B2 - - Google Patents

Info

Publication number
JPS6251485B2
JPS6251485B2 JP56038310A JP3831081A JPS6251485B2 JP S6251485 B2 JPS6251485 B2 JP S6251485B2 JP 56038310 A JP56038310 A JP 56038310A JP 3831081 A JP3831081 A JP 3831081A JP S6251485 B2 JPS6251485 B2 JP S6251485B2
Authority
JP
Japan
Prior art keywords
energized state
time
voltage
electromagnet device
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56038310A
Other languages
Japanese (ja)
Other versions
JPS57152108A (en
Inventor
Tomomi Arimoto
Masami Sakakibara
Shigeharu Ootsuka
Hiroyuki Okado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3831081A priority Critical patent/JPS57152108A/en
Publication of JPS57152108A publication Critical patent/JPS57152108A/en
Publication of JPS6251485B2 publication Critical patent/JPS6251485B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)

Description

【発明の詳細な説明】 本発明は、電磁石装置の制御装置に関し、特に
消費電力を低減しつつ唸り音を低減することがで
きる制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for an electromagnet device, and particularly to a control device that can reduce whirring noise while reducing power consumption.

一般に単相交流電磁石装置は直流電磁石装置に
比較して、小形、軽量で、動作速度が速いという
特長をもつているが、交番磁束による騒音または
唸り音を発生するという欠点を有している。その
ため、交流電磁石装置は第1図に示すように構成
されている。
In general, single-phase AC electromagnets have the advantage of being smaller, lighter, and faster in operation than DC electromagnets, but they have the disadvantage of generating noise or whirring noise due to alternating magnetic flux. Therefore, the AC electromagnet device is constructed as shown in FIG.

第1図は一般的な単相交流電磁石装置を示して
おり、左半分は正面図、右半分はその断面図とな
つている。図において、1は成層鉄心からなる固
定鉄心、2は該固定鉄心1の中央極3に巻回され
た励磁コイル、4は成層鉄心からなる可動鉄心、
および5,6固定鉄心1の磁極頭部分で、磁極頭
部分5にはくま取りコイル7が装着されている。
FIG. 1 shows a general single-phase AC electromagnet device, with the left half being a front view and the right half being a sectional view. In the figure, 1 is a fixed iron core made of a stratified iron core, 2 is an excitation coil wound around the center pole 3 of the fixed iron core 1, 4 is a movable iron core made of a stratified iron core,
At the magnetic pole head portion of the 5,6 fixed iron core 1, a shade removal coil 7 is attached to the magnetic pole head portion 5.

このような構成を有する単相交流電磁石装置
は、くま取りコイル7で囲まれた磁極頭5を通る
磁束φsと、くま取りコイル7で囲まれていない
磁極頭6を通る磁束φuとの間に位相差を生ぜし
めて、固定鉄心1が可動鉄心4を吸引する合成の
吸引力の最小値が常に可動鉄心4の外部反抗力よ
りも大なるようにして交番磁束に騒音を除去して
いる。
A single-phase AC electromagnet device having such a configuration has a magnetic flux φ s passing through the magnetic pole head 5 surrounded by the shaded coil 7 and a magnetic flux φ u passing through the magnetic pole head 6 not surrounded by the shaded coil 7. By creating a phase difference between the fixed core 1 and the movable core 4, the minimum value of the combined attraction force that attracts the movable core 4 is always greater than the external repulsive force of the movable core 4, thereby eliminating noise in the alternating magnetic flux. .

また唸り音については、吸引力は電源の2倍の
周波数の脈動成分を含んでいるため、この脈動分
の最大値と最小値の差が鉄心内で電磁吸引力によ
る圧縮応力の強弱を生じ、これが唸り音の発生と
なるが、一般的に強弱の程度の差をもつて発生し
ている。
Regarding the humming noise, since the attractive force includes a pulsating component with a frequency twice that of the power supply, the difference between the maximum and minimum values of this pulsating component causes the strength of the compressive stress due to the electromagnetic attractive force within the iron core. This generates a whining sound, which generally occurs with varying degrees of intensity.

次に、電子計算機によるシミユレーシヨン計算
結果を例にして説明する。
Next, the results of simulation calculations performed by an electronic computer will be explained as an example.

第2図は第1図に示すような一般の交流電磁石
装置の過度吸引及び定常吸着状態における特性の
シミユレーシヨンで、図中、W1は交流電源の電
圧波形、W2,W3は鉄心磁極頭を通る磁束波形、
W4は鉄心を通る合成の磁束波形、W5は励磁コイ
ルの電流波形、W6はくま取りコイルの電流波
形、W7は総合の吸引力の波形、W8は外部反抗力
を示す。但し、横軸は時間を示す。この一般の交
流電磁石装置おいては、第2図からわかるよう
に、吸引力W7の最小値W7nioは常に外部反抗力
W8よりも大であるので、騒音は発生しない。
が、吸引力W7の最大値W7naxと最小値W7nioの差
が大きくなつているため、鉄心内で電磁吸引力に
よる圧縮応力の強弱が生じているので、唸り音が
発生する。この唸り音が大きいと不快感を与える
ことになる。なお、W9は電磁駆動装置の可動鉄
心の変位置(ストローク)を示す。なお、第6図
の電源周波数は60Hz240V(最大値)電圧の場合
を示している。一方、純直流の電磁石装置は、吸
引力に脈動成分が含まれないため唸り音は発生し
ないが、同一の電圧値で比較すると、吸着後は、
交流の場合のように電流は交番しないで一定電流
が流れ、その電流は励磁(電磁)コイルの抵抗分
のみによつて決まるので、もし交流電磁石装置と
鉄心、励磁コイルが同一として考えた場合、交流
電磁石装置よりも大きな電流が流れ、コイルの銅
損が大きくなつて長時間使用にはコイルが焼損し
てしまう。そのため、直流電磁石装置はコイルの
抵抗値を大きくとるが、そうすると、電流が小さ
くなり起磁力が小さくなつてしまうのでコイルの
巻数を多くとらなければならないため、コイルが
大きくなり、交流電磁石装置に比して全体的に装
置が大きくなる欠点を有している。
Figure 2 is a simulation of the characteristics of a general AC electromagnet device in excessive attraction and steady attraction states as shown in Figure 1. In the figure, W 1 is the voltage waveform of the AC power supply, W 2 and W 3 are the magnetic pole heads of the iron core. The magnetic flux waveform passing through,
W 4 shows the composite magnetic flux waveform passing through the iron core, W 5 shows the current waveform of the excitation coil, W 6 shows the current waveform of the shaded coil, W 7 shows the waveform of the total attractive force, and W 8 shows the external repulsive force. However, the horizontal axis indicates time. In this general AC electromagnet device, as can be seen from Figure 2, the minimum value W 7nio of the attractive force W 7 is always equal to the external repulsive force
Since it is larger than W 8 , no noise is generated.
However, since the difference between the maximum value W 7nax and the minimum value W 7nio of the attraction force W 7 is increasing, the strength of compressive stress due to the electromagnetic attraction force is generated within the iron core, and a whirring sound is generated. If this growling noise is loud, it will cause discomfort. Note that W9 indicates the displacement (stroke) of the movable iron core of the electromagnetic drive device. In addition, the power supply frequency in FIG. 6 shows the case of 60Hz240V (maximum value) voltage. On the other hand, pure DC electromagnet devices do not generate whirring noise because the attraction force does not include a pulsating component, but when compared at the same voltage value, after attraction,
As in the case of alternating current, a constant current flows without alternation, and the current is determined only by the resistance of the excitation (electromagnetic) coil, so if we assume that the AC electromagnet device, iron core, and excitation coil are the same, A larger current flows than in an AC electromagnet device, and the copper loss in the coil increases, resulting in the coil burning out if used for a long time. Therefore, in DC electromagnet devices, the resistance value of the coil is increased, but in this case, the current becomes smaller and the magnetomotive force becomes smaller, so the number of turns of the coil must be increased, making the coil larger and compared to AC electromagnet devices. This has the disadvantage that the overall size of the device increases.

このような装置が大きくなるの防ぐ方法として
は、第3図に示すように、励磁(電磁)コイル2
と直列に節約抵抗7を接続し、この節約抵抗7に
並列に常閉路用接点8を挿入して、投入時は常閉
路用接点で励磁(電磁)コイル2に直流電圧を印
加し、投入後は常閉路用接点8を開路して励磁
(電磁)コイル2に節約抵抗7を介して印加する
ことにより電流を抑制して励磁(電磁)コイル2
の銅損を小さくし励磁(電磁)コイル2の焼損を
防ぐ方法がとられている。この方法は常閉路用の
接点と節約抵抗を使用しなければならず、接点の
動作及接触の信頼性が要求される。また総合の消
費電力が変らないという欠点を有している。な
お、9は直流電源、10は投入用スイツチであ
る。
As a way to prevent such devices from increasing in size, as shown in Figure 3, the excitation (electromagnetic) coil 2
A saving resistor 7 is connected in series with the saving resistor 7, and a normally-closed circuit contact 8 is inserted in parallel with this saving resistor 7. When the normally-closed circuit contact is turned on, DC voltage is applied to the excitation (electromagnetic) coil 2, and after turning on. By opening the normally closed contact 8 and applying it to the excitation (electromagnetic) coil 2 via the saving resistor 7, the current is suppressed and the excitation (electromagnetic) coil 2 is
A method has been adopted to reduce the copper loss of the excitation (electromagnetic) coil 2 and prevent burnout of the excitation (electromagnetic) coil 2. This method requires the use of normally closed contacts and economical resistors, and requires reliable contact operation and contact. It also has the disadvantage that the total power consumption remains unchanged. In addition, 9 is a DC power supply, and 10 is a switch for turning on.

本発明は、従来の位相制御方式とは異なる電子
制御方法によつて、電磁石装置を励磁するための
消費電力を低減しつつ唸り音を、従来よりも、ま
た位相制御方式よりも低減させて性能を向上させ
ることができる電磁石装置の制御装置を提供する
ことを目的とするものである。
The present invention uses an electronic control method different from the conventional phase control method to reduce the power consumption for exciting the electromagnetic device and reduce whirring noise compared to the conventional method and compared to the phase control method. It is an object of the present invention to provide a control device for an electromagnet device that can improve the performance.

次に本発明の原理を、交流電源使用の場合につ
いて説明する。
Next, the principle of the present invention will be explained with reference to the case where an AC power source is used.

第4図、第5図がその原理を示すように、交流
電源11を整流装置12で全波整流して、第5図
aに示すように直流電圧(全波整流)に変換し、
同時連動するスイツチSW10,SW20によつて、あ
る時間だけ端子13A−13BをスイツチSW10
によつて電源11から切り離すと同時にスイツチ
SW20によつて端子13A−13Bを短絡して電
磁石装置14への電圧の供給を零にし、次は、あ
る時間だけSW20によつて端子13A−13Bの
短絡を開放し、同時にスイツチSW10によつて電
磁石装置14への電圧の供給を行うという操作を
繰り返し、第5図bに示すような電圧供給を行な
わされるものである。スイツチSW10とSW20は次
のように機能する。スイツチSW10による電源供
給の切り離しは、全波整流による電流増加を制限
し、コイルの銅損による温度上昇を抑制する。ま
た吸引力が十分余裕のある場合は消費電力の節約
を可能にする。スイツチSW20による端子13A
−13Bの短絡は電磁石装置14が蓄積している
電磁エネルギーを電気的エネルギーへ変換させ
て、吸引力を発生させ、電源からの電気的エネル
ギの供給が零状態にあつても吸引力の保持を行わ
せる。すなわち、吸引力のフライホイール的な働
きをさせる。場合によつては、端子13A−13
Bを短絡せず関放させても良い。
As shown in FIGS. 4 and 5, the AC power supply 11 is full-wave rectified by a rectifier 12 and converted into a DC voltage (full-wave rectification) as shown in FIG.
Switches SW 10 and SW 20 operate simultaneously to switch terminals 13A-13B for a certain period of time .
At the same time as disconnecting from the power supply 11 by
The voltage supply to the electromagnetic device 14 is made zero by shorting the terminals 13A-13B with SW 20. Next, the short-circuiting of the terminals 13A-13B is opened with SW 20 for a certain period of time, and at the same time, the switch SW 10 is opened. By repeating the operation of supplying voltage to the electromagnetic device 14 by using the above steps, the voltage is supplied as shown in FIG. 5b. Switches SW 10 and SW 20 function as follows. Cutting off the power supply using switch SW 10 limits the increase in current due to full-wave rectification and suppresses the temperature rise due to copper loss in the coil. Furthermore, if the suction power is sufficiently strong, it is possible to save power consumption. Terminal 13A with switch SW 20
A short circuit of -13B causes the electromagnetic device 14 to convert the accumulated electromagnetic energy into electrical energy, generate an attractive force, and maintain the attractive force even when the electrical energy supply from the power supply is in a zero state. Let it happen. In other words, it acts like a flywheel of suction force. In some cases, terminal 13A-13
B may be left open without being short-circuited.

次に、電子計算機によるシミユレーシヨン計算
結果を例について説明する。
Next, an example of a simulation calculation result using an electronic computer will be explained.

第6図は第2図の特性の交流電磁石装置に、本
発明による第4図に示す原理によつて、第2図と
同一周波、電圧の交流電源で、半波毎に電圧の零
点を基準にして、第7図に示すようにスイツチ
SW10−SW20、スイツチSW11−SW21を共に同時
に、0.1mSec通電→1.6msec無電圧のスイツチン
グを繰り返したときのシユミレーシヨンを示す。
第2図と第6図を比較すると、本発明の原理にお
いては、従来の場合よりも吸引力W7の特性すな
わち吸引力の最大値W7naxと最小値W7nioの差が
大巾に小さくなつていることがわかる。すなわち
唸り音が大巾に低減していることがわかる。また
吸引力の最大値W7nioは従来よりも大巾に増加し
ている。第8図は、第2図と同様の交流電磁石装
置を、第2図と同一周波、電圧の交流電源で、従
来のサイリスタ位相制御方式(7msec無電圧、
1msec通電)によつて動作させた場合のシミユ
レーシヨンを示す。第6図と第8図を比較する
と、本発明による吸引力の最大値W7naxと最小値
7nioとの差は、従来のサイリスタ位相制御方式
の吸引力の最大値W7naxと最小値W7nioとの差よ
りも約2分の1以下になつている事がわかる。鉄
心の唸り音は、前述のように吸引力の最大値と最
小値との差の大きさに比例するので、本発明は従
来の位相制御方式の比し唸り音は半分以下に低減
することが云え、性能が大巾に向上することが云
える。第9図は、本発明による交流電磁石装置の
唸り音低減装置のブロツク図を示し、10は正弦
波交流電源、102は一般の交流電磁石装置、1
03は整流装置、104は唸り音及び消費電力低
減のための電子制御装置で、スイツチSW0を投入
後ある適当な時間T0後に、第10図に示すよう
に、電源電圧の零点を基準にして、半波毎に、
T1時間通電→T2時間無電圧を繰り返し、T3時間
無通電後、T1時間通電→T2時間無通電を繰り返
すもので、T0,T1,T2,T3は自由に調整できる
ように第3図、第4図のスイツチ類の機能を電子
回路で構成している。
Fig. 6 shows an AC electromagnet device having the characteristics shown in Fig. 2, based on the principle shown in Fig. 4 according to the present invention, using an AC power source of the same frequency and voltage as Fig. 2, and using the zero point of the voltage as a reference every half wave. and turn the switch as shown in Figure 7.
The simulation is shown when switching SW 10 -SW 20 and switches SW 11 -SW 21 are repeatedly switched from energizing for 0.1 msec to no voltage for 1.6 msec at the same time.
Comparing FIG. 2 and FIG. 6, it can be seen that according to the principle of the present invention, the characteristics of the attraction force W 7 , that is, the difference between the maximum value W 7nax and the minimum value W 7nio of the attraction force, are significantly smaller than in the conventional case. You can see that In other words, it can be seen that the whining noise is significantly reduced. Also, the maximum suction force W7nio has increased significantly compared to the conventional model. Figure 8 shows an AC electromagnet device similar to that shown in Figure 2 using an AC power source with the same frequency and voltage as in Figure 2, using the conventional thyristor phase control method (7 msec no-voltage,
A simulation is shown when the device is operated with 1 msec current supply). Comparing FIG. 6 and FIG. 8, the difference between the maximum value W 7nax and the minimum value W 7nio of the attraction force according to the present invention is the same as the difference between the maximum value W 7nax and the minimum value W 7nio of the attraction force of the conventional thyristor phase control method. It can be seen that the difference is less than 1/2 of the difference. As mentioned above, the whining noise of the iron core is proportional to the difference between the maximum value and the minimum value of the suction force, so the present invention can reduce the whining noise to less than half compared to the conventional phase control method. It can be said that the performance is greatly improved. FIG. 9 shows a block diagram of a humming noise reduction device for an AC electromagnet device according to the present invention, in which 10 is a sine wave AC power supply, 102 is a general AC electromagnet device, and 1
03 is a rectifier, 104 is an electronic control device for reducing humming noise and power consumption, and after a certain appropriate time T 0 after turning on the switch SW 0 , as shown in Fig. 10, the power supply voltage is set to zero. So, every half wave,
T 1 hour energization → T 2 hours no voltage is repeated, T 3 hours no energization, T 1 hour energization → T 2 hours no energization is repeated, and T 0 , T 1 , T 2 , and T 3 can be adjusted freely. The functions of the switches shown in Figs. 3 and 4 are constructed with electronic circuits to enable this.

なお、T1,T2の時間は必らずしも電圧の零点
を基準にしなくともよく、パルス発振を利用した
通電、無通電操作であつてもよいが、T3の時間
は電圧波形の最大値の点を対称とした時間図(チ
ヤート)であることが、シミユレーシヨン結果か
ら望ましい。また、電源が直流である場合は、整
流装置103を省略し、T1,T2,T3を調整すれ
ばよい。第11図は、第2図の特性の交流電磁石
装置に、第2図と同一周波乃電圧の交流電源で、
半波毎に0.1msec通電→1msec無電圧→0.1m
sec通電→3.2msec無電圧→0.1msec通電→1m
sec無電圧→0.1msec通電→1msec無電圧→0.1
msec通電を周期的に繰り返した場合のシミユレ
ーシヨンを示すが、吸引力W7の最大値W7naxと最
小値W7nioの差は、第6図のそれとほとんど変ら
ないが、高周波成分の最大値W70naxと最小値W70
nioの差が若干小さくなり、従つて高周波成分の
唸り音が小さくなつている事が云える。
Note that the times T 1 and T 2 do not necessarily have to be based on the zero point of the voltage, and may be energized or non-energized operations using pulse oscillation, but the time T 3 is based on the voltage waveform. From the simulation results, it is desirable to have a time chart that is symmetrical about the point of the maximum value. Furthermore, when the power source is DC, the rectifier 103 may be omitted and T 1 , T 2 , and T 3 may be adjusted. Figure 11 shows an AC electromagnet device with the characteristics shown in Figure 2, using an AC power source with the same frequency and voltage as in Figure 2.
0.1msec energization per half wave → 1msec no voltage → 0.1m
sec energization → 3.2msec no voltage → 0.1msec energization → 1m
sec no voltage → 0.1msec energization → 1msec no voltage → 0.1
The simulation is shown when msec energization is repeated periodically. The difference between the maximum value W 7nax and the minimum value W 7nio of the attractive force W 7 is almost the same as that in Fig. 6, but the maximum value W 70nax of the high frequency component is and minimum value W 70
It can be said that the difference in nio has become slightly smaller, and therefore the humming sound of high frequency components has become smaller.

第12図は、第2図の特性の交流電磁石装置
に、第2図と同一周波、異電圧(340V(最大
値))の交流電源で、半波毎に、0.1msec通電→
1.6msec無電圧→0.1msec通電→3.3msec無電圧
→0.1msec通電→1.6msec無電圧→0.1msec通電
→1.4msec無電圧を周期的に繰り返した場合のシ
ミユレーシヨンを示すが、通常の吸着状態の吸引
力の平均値およびコイルの銅損(消費電力W10
もほぼ同じになつている。この事から、前述した
ように第10図のT1,T2,T3を調整することに
より電磁コイルは同一で、電源電圧の異電圧を使
用の適用範囲が大きくなる(例えばAC200〜
400Vまで励磁(電磁)コイルの共用化が計れ
る。)という特徴と有する。
Fig. 12 shows an AC electromagnet device with the characteristics shown in Fig. 2 that is energized for 0.1 msec every half wave with an AC power supply of the same frequency and different voltage (340V (maximum value)) as in Fig. 2.
This is a simulation of periodically repeating 1.6msec no voltage → 0.1msec energization → 3.3msec no voltage → 0.1msec energization → 1.6msec no voltage → 0.1msec energization → 1.4msec no voltage, but it is a normal adsorption state. Average value of force and copper loss of the coil (power consumption W 10 )
are also almost the same. From this, as mentioned above, by adjusting T 1 , T 2 , and T 3 in Figure 10, the applicable range of using the same electromagnetic coil and different power supply voltages can be expanded (for example, from AC200 to
Enables sharing of excitation (electromagnetic) coils up to 400V. ).

第13図は第10図のT0の時間を25msecから
16.6msecに変え、それ以外は第12図と全く同
じ条件でのシミユレーシヨンを示すが、第12図
と第13図を比較すると電磁石装置の可動鉄心4
が固定鉄心1に吸着されたときの変位量W90の点
の時間後の吸引力W7の様子がかなり違つている
ことがわかる。すなわち、第12図においては、
可動鉄心4の吸着後の吸引力は急上昇している
が、第13図においては、吸着後は吸引力は一度
減小して以後漸増上昇して一定値になつている。
これは、第12図においては可動鉄心4と固定鉄
心1との吸着時の衝撃が激しく、第13図におい
ては衝撃が第12図に比して穏やかで多数回の駆
動操作(例えば100〜500万回)による鉄心の磨耗
が少なくなり、またこの電磁石装置により駆動さ
れる装置(例えば電磁接触器、継電器)に与える
投入動作の衝撃が小さくてすみ、例えば電磁接触
器に使用される場合は接点のバウジングが小さく
なり、従つて接点のアーク発生により消耗量が少
なくなり、電気的に寿命回数が延びるという性能
的な利点を与える事になる。
Figure 13 shows the T 0 time in Figure 10 from 25 msec.
16.6 msec, but otherwise the simulation is shown under the same conditions as in Fig. 12. Comparing Fig. 12 and Fig. 13, the movable core 4 of the electromagnet device
It can be seen that the appearance of the attraction force W 7 after the time at the point of displacement W 90 when is attracted to the fixed iron core 1 is quite different. That is, in FIG. 12,
The suction force after the movable iron core 4 is attracted increases rapidly, but in FIG. 13, after the suction, the suction force decreases once and then gradually increases to a constant value.
This is because, in FIG. 12, the impact when the movable core 4 and the fixed core 1 are attracted is severe, whereas in FIG. 13, the impact is mild compared to that in FIG. This reduces wear on the iron core due to 10,000 cycles), and the impact of the closing operation on devices driven by this electromagnetic device (e.g. electromagnetic contactors, relays) is small.For example, when used in electromagnetic contactors, the contact This provides performance advantages such as less bouncing and therefore less wear due to contact arcing and longer electrical life.

このように、第10図のT0の時間を調整する
ことにより、可動鉄心4と固定鉄心1との吸着時
の衝撃荷重を小さくすることができる。
In this way, by adjusting the time T 0 in FIG. 10, it is possible to reduce the impact load when the movable iron core 4 and the fixed iron core 1 are attracted to each other.

以上説明したように、本発明は次のような利点
が挙げられる。
As explained above, the present invention has the following advantages.

吸引力の最大値と最小値との差を小さくする
ことによつて唸り音を低減することができる。
By reducing the difference between the maximum value and the minimum value of the suction force, the humming noise can be reduced.

定常吸着状態時の消費電力を節約できる。 Power consumption during steady adsorption can be saved.

励磁(電磁)コイルを変えないで、電源(入
力)電圧の定格の適用範囲を広げることができ
る。
The applicable range of power supply (input) voltage ratings can be expanded without changing the excitation (electromagnetic) coil.

吸着時の衝撃を小さくすることができる。 The impact during adsorption can be reduced.

AC電源でもDC電源にも適用できる。 Applicable to both AC and DC power sources.

DC変換するため、従来の交流電磁石装置の
くま取りコイルが廃止される。
Because it converts to DC, the shaded coil of the conventional AC electromagnet device is abolished.

DC変換するため、従来の交流電磁石装置の
ように、鉄心に交番磁束が通らなく、従つて渦
電流が発生しないので鉄損がないため従来のよ
うなケイ素鋼板の成層鉄心でなくても、安価な
鋳鋼、成形鋼等の鉄心とすることができる。
Due to DC conversion, unlike conventional AC electromagnet devices, no alternating magnetic flux passes through the iron core, and therefore no eddy current is generated, so there is no iron loss. The core can be made of cast steel, formed steel, etc.

なお、本発明の制御装置は電磁石装置に別個に
取付けられていても、或は電磁石装置と組合せ内
蔵されても良い。
Note that the control device of the present invention may be separately attached to the electromagnet device, or may be built in in combination with the electromagnet device.

第14図は第9図の電子制御装置104を用い
た具体的な一実施例を示しており、動作を第15
図にもとづき説明する。
FIG. 14 shows a specific embodiment using the electronic control device 104 shown in FIG.
This will be explained based on the diagram.

第14図において、11は交流電源、12は整
流装置、14は電磁石装置、D1,D2はダイオ
ード、R1〜R5は抵抗、TRはトランジスタ、
IC1は比較増幅器、IC2は論理積素子(以下ア
ンド素子)、IC3は論理和素子(以下オア素
子)、IC4は否定素子(以下ノツト素子)であ
る。なお、400は定電圧回路、401は発振回
路、402は遅延回路である。
In FIG. 14, 11 is an AC power supply, 12 is a rectifier, 14 is an electromagnetic device, D1 and D2 are diodes, R1 to R5 are resistors, TR is a transistor,
IC1 is a comparison amplifier, IC2 is an AND element (hereinafter referred to as AND element), IC3 is an OR element (hereinafter referred to as OR element), and IC4 is a NOT element (hereinafter referred to as NOT element). Note that 400 is a constant voltage circuit, 401 is an oscillation circuit, and 402 is a delay circuit.

このように構成されたものにおいて、交流電源
11が整流装置12に印加されると(第15図a
参照)整流装置12の出力に接続された抵抗R1
とR2の圧力回路より出力される全波整流波形
V2(第15図c参照)が比較増幅器IC1に入力
される。この全波整流波形V2は、抵抗R3とR
4の分圧回路より出力される基準電圧V3(第1
5図b参照)と比較増幅され、波形V4(第15
図d参照)が比較増幅器IC1より出力される。
アンド素子IC2は、比較増幅器IC1の出力が高
電位のときのみ、発振回路401の出力V5(第
15図e参照)を出力するため、波形V6(第1
5図f参照)が得られる。またノツト素子IC4
は、交流電源11の印加後、遅延回路402によ
つて決められた時間T0間高電位を出力するた
め、トランジスタTRは、時間T0間、導通状態と
なり従つて電磁石装置14は励磁される。前記時
間T0は、電磁石装置14が、吸引をするのに必
要な時間以上に設定されているので時間T0後で
は吸引動作は完了している。次に時間T0後はア
ンド素子IC2の出力波形V6に従つてトランジス
タTRは導通、遮断を、つまりスイツチングをく
り返す。ここでトランジスタTRが導通すれば、
電磁石装置14に電流が流れるのは言うまでもな
いが、トランジスタTRが遮断状態となつた場
合、電磁石装置14のコイルエネルギーはダイオ
ードD1によつて還流されるため、電磁石装置1
4には電流が流れ続ける。即ちコイル電流は断続
電流とならないため、吸引状態を保持する。
In this configuration, when the AC power source 11 is applied to the rectifier 12 (Fig. 15a)
Reference) Resistor R1 connected to the output of the rectifier 12
Full-wave rectified waveform output from pressure circuit R2
V 2 (see FIG. 15c) is input to the comparison amplifier IC1. This full wave rectified waveform V 2 is created by resistor R3 and R
The reference voltage V 3 (first
waveform V 4 (see Figure 5 b) and is amplified.
(see Figure d) is output from the comparison amplifier IC1.
Since the AND element IC2 outputs the output V 5 (see FIG. 15e) of the oscillation circuit 401 only when the output of the comparison amplifier IC1 is at a high potential, the waveform V 6 (first
(see Figure 5 f) is obtained. Also note element IC4
outputs a high potential for a time T 0 determined by the delay circuit 402 after the AC power supply 11 is applied, so that the transistor TR is in a conductive state for the time T 0 and the electromagnetic device 14 is excited. . Since the time T 0 is set longer than the time necessary for the electromagnetic device 14 to perform suction, the suction operation is completed after the time T 0 . Next, after time T0 , the transistor TR repeats conduction and cutoff, that is, switching, in accordance with the output waveform V6 of the AND element IC2. If the transistor TR conducts here,
Needless to say, current flows through the electromagnet device 14, but when the transistor TR is cut off, the coil energy of the electromagnet device 14 is circulated by the diode D1, so the electromagnet device 1
4, the current continues to flow. That is, since the coil current does not become an intermittent current, the attraction state is maintained.

ここで交流電源11のピーク値をカツトする時
間T3は、抵抗R3とR4の分圧比を変えること
によつて、適当に制御できるのはいうまでもな
い。また、発振回路401を適当に設定すること
により、導通時間T1と遮断時間T2は可変できる
ため、うなりを最小にし、消費エネルギーを最小
にするように設定できるのはいうまでもない。
It goes without saying that the time T3 during which the peak value of the AC power supply 11 is cut can be appropriately controlled by changing the voltage division ratio of the resistors R3 and R4. Further, by appropriately setting the oscillation circuit 401, the conduction time T1 and the cutoff time T2 can be varied, so it goes without saying that the settings can be made to minimize beats and energy consumption.

また、本実施例は、発振回路を非同期式で説明
したが、交流電源に同期させれば、零点付近での
導通を確実に保証できるため、本発明の効果がよ
り期待できるのはいうまでもない。また、交流電
源のピーク値をカツトする時間T3は、本実施例
ではある一定電圧以上になつたらカツトするよう
に説明したが、カツトを開始する電圧と終了する
電圧を適当に変えても同様の効果が得られるのは
いうまでもない。
Further, in this embodiment, the oscillation circuit has been described as an asynchronous type, but it goes without saying that if the oscillation circuit is synchronized with the AC power supply, continuity near the zero point can be ensured, so that the effects of the present invention can be expected to be even more effective. do not have. In addition, the time T3 for cutting the peak value of the AC power supply is explained in this embodiment as cutting when the voltage exceeds a certain level, but the same effect can be obtained by appropriately changing the voltage at which cutting starts and the voltage at which cutting ends. Needless to say, this effect can be obtained.

また交流電源11が直流電源となつた場合、ピ
ーク値カツトのT3は設定できないが発振回路4
01を適当に設定することによつて同様の効果が
得られるのはいうまでもない。なお、場合によつ
ては、ダイオードD1の代わりにコンデンサを使
用しても良く、またダイオードD1を省略しても
良い。更にトランジスタTRの代りにサイリスタ
で構成されたチヨツパを用いることも可能であ
る。なお、第15図は本実施例の各出力のタイム
チヤートである。
In addition, when the AC power supply 11 becomes a DC power supply, the peak value cut T3 cannot be set, but the oscillation circuit 4
It goes without saying that similar effects can be obtained by appropriately setting 01. In some cases, a capacitor may be used instead of the diode D1, or the diode D1 may be omitted. Furthermore, it is also possible to use a chopper composed of a thyristor instead of the transistor TR. Incidentally, FIG. 15 is a time chart of each output of this embodiment.

以上述べたように、本発明によれば、電磁石装
置を励磁するための消費電力を低減しつつ唸り音
を低減することができ、また装置を大形化するこ
となく構成することができるなど、種々の有益な
効果を得ることができる。
As described above, according to the present invention, it is possible to reduce whirring noise while reducing the power consumption for exciting the electromagnet device, and it is possible to configure the device without increasing its size. Various beneficial effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な単相交流電磁石装置の概略構
成を示す正面図、第2図は一般的な交流電磁石装
置が給電されている時の各部の波形を示す波形
図、第3図は一般的は直流電磁石装置の回路構成
を示す接続図、第4図は本発明の原理を説明する
ための回路構成図、第5図a,bは第4図を説明
するための波形図、第6図は本発明の一実施例に
おける制御装置の動作時の各部波形を示す波形
図、第7図は本発明の一実施例を示す回路構成
図、第8図は従来のサイリスタ位相の制御方式に
おける各部の波形を示す波形図、第9図は本発明
を一般的な交流電磁石装置に適用した場合の接続
関係を示すブロツク図、第10図は第9図の動作
を説明するための波形図、第11図〜第13図は
本発明の他の実施例における各部波形を示す波形
図、第14図は本発明を電子回路にて構成した具
体的な一実施例を示す回路接続図、第15図は第
14図の回路の動作を説明するための各部波形を
示す波形図である。 図中、1は固定鉄心、2は励磁(電磁)コイ
ル、4は可動鉄心、11,101は交流電源、1
2,103は整流装置、14,102は電磁石装
置、SW0,SW10,SW20,SW11,SW21はスイツ
チ、103は電子制御装置である。なお、図中同
一符号は同一もしくは相当部分を示す。
Fig. 1 is a front view showing the schematic configuration of a general single-phase AC electromagnet device, Fig. 2 is a waveform diagram showing the waveforms of various parts when a general AC electromagnet device is being supplied with power, and Fig. 3 is a general Figure 4 is a circuit configuration diagram for explaining the principle of the present invention, Figures 5 a and b are waveform diagrams for explaining Figure 4, and Figure 6 is a connection diagram showing the circuit configuration of the DC electromagnet device. The figure is a waveform diagram showing the waveforms of various parts during operation of the control device in one embodiment of the present invention, FIG. 7 is a circuit configuration diagram showing one embodiment of the present invention, and FIG. 8 is a waveform diagram in the conventional thyristor phase control system. A waveform diagram showing the waveforms of each part, FIG. 9 is a block diagram showing the connection relationship when the present invention is applied to a general AC electromagnet device, and FIG. 10 is a waveform diagram for explaining the operation of FIG. 9. 11 to 13 are waveform diagrams showing waveforms of various parts in other embodiments of the present invention, FIG. 14 is a circuit connection diagram showing a specific embodiment in which the present invention is configured with an electronic circuit, and FIG. 15 The figure is a waveform diagram showing waveforms of various parts for explaining the operation of the circuit of FIG. 14. In the figure, 1 is a fixed core, 2 is an excitation (electromagnetic) coil, 4 is a movable core, 11, 101 is an AC power supply, 1
2, 103 is a rectifier, 14, 102 is an electromagnet device, SW 0 , SW 10 , SW 20 , SW 11 , SW 21 are switches, and 103 is an electronic control device. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 電磁石装置の励磁コイルと交流電源との間に
介在し、上記励磁コイルへの給電を通電状態と無
通電状態を周期的に繰り返すように制御するスイ
ツチを備えた制御装置であつて、上記スイツチは
上記交流電源を全波整流した出力を、半波毎に少
なくとも2回以上通電状態と無通電状態を周期的
に繰り返すようにスイツチングされることを特徴
とした電磁石装置の制御装置。 2 通電状態と無通電状態を少なくとも3回以上
繰り返し、上記出力の半波の途中において無通電
状態の時間を他の繰り返しの無通電状態の時間に
比して大きくなるよう上記スイツチをスイツチン
グするようにしたことを特徴とする特許請求の範
囲第1項記載の電磁石装置の制御装置。 3 半波毎の通電状態と無通電状態の繰り返しが
電圧の最大値となる時間を対象にして、無通電状
態の時間を他の繰り返しの無通電状態の時間に比
して大きくなるよう上記スイツチをスイツチング
するようにしたことを特徴とする特許請求の範囲
第1項または第2項に記載の電磁石装置の制御装
置。 4 通電状態と無通電状態の時間巾を調整するよ
うにしたことを特徴とする特許請求の範囲第1項
記載の電磁石装置の制御装置。
[Scope of Claims] 1. A control device provided with a switch that is interposed between an excitation coil of an electromagnet device and an AC power supply and controls the supply of power to the excitation coil so that it periodically repeats an energized state and a de-energized state. The electromagnetic device is characterized in that the switch is switched so as to periodically repeat the energized state and the non-energized state at least twice every half wave of the full-wave rectified output of the AC power source. Control device. 2 Repeat the energized state and de-energized state at least three times or more, and switch the switch so that the time in the de-energized state is longer than the time in the de-energized state during the other repetitions in the middle of the half wave of the output. A control device for an electromagnet device according to claim 1, characterized in that: 3 Targeting the time when the repetition of the energized state and de-energized state for each half wave reaches the maximum voltage value, set the above switch so that the time of the de-energized state is larger than the time of the de-energized state of other repetitions. A control device for an electromagnet device according to claim 1 or 2, characterized in that the control device switches the electromagnet device. 4. A control device for an electromagnet device according to claim 1, wherein the time duration between the energized state and the non-energized state is adjusted.
JP3831081A 1981-03-16 1981-03-16 Controlling device for electromagnetic driving device Granted JPS57152108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3831081A JPS57152108A (en) 1981-03-16 1981-03-16 Controlling device for electromagnetic driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3831081A JPS57152108A (en) 1981-03-16 1981-03-16 Controlling device for electromagnetic driving device

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP13642790A Division JPH0327503A (en) 1990-05-25 1990-05-25 Control device for electromagnetic device
JP13642990A Division JPH0328774A (en) 1990-05-25 1990-05-25 Control device for electromagnet device
JP13643090A Division JPH0327504A (en) 1990-05-25 1990-05-25 Control device of electromagnetic device

Publications (2)

Publication Number Publication Date
JPS57152108A JPS57152108A (en) 1982-09-20
JPS6251485B2 true JPS6251485B2 (en) 1987-10-30

Family

ID=12521716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3831081A Granted JPS57152108A (en) 1981-03-16 1981-03-16 Controlling device for electromagnetic driving device

Country Status (1)

Country Link
JP (1) JPS57152108A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2626147B2 (en) * 1990-03-30 1997-07-02 富士電機株式会社 Drive device for electromagnet device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5151753A (en) * 1974-10-31 1976-05-07 Sharp Kk HOJIDENRYUKYOKYUKAIRO
JPS5126410B2 (en) * 1971-11-19 1976-08-06
JPS5271668A (en) * 1975-12-10 1977-06-15 Nippon Air Brake Co Dc solenoid coil excitation control device
JPS55103684A (en) * 1979-02-01 1980-08-08 Seikosha Co Ltd Driving unit of electromagnet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126410U (en) * 1974-08-16 1976-02-26

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126410B2 (en) * 1971-11-19 1976-08-06
JPS5151753A (en) * 1974-10-31 1976-05-07 Sharp Kk HOJIDENRYUKYOKYUKAIRO
JPS5271668A (en) * 1975-12-10 1977-06-15 Nippon Air Brake Co Dc solenoid coil excitation control device
JPS55103684A (en) * 1979-02-01 1980-08-08 Seikosha Co Ltd Driving unit of electromagnet

Also Published As

Publication number Publication date
JPS57152108A (en) 1982-09-20

Similar Documents

Publication Publication Date Title
Pollock et al. Acoustic noise cancellation techniques for switched reluctance drives
EP0952663A2 (en) Driving circuit for oscillatory actuator
JPS6251485B2 (en)
JPS59181004A (en) Driving circuit for coil of electromagnet device
JPH0562442B2 (en)
JPH0327503A (en) Control device for electromagnetic device
JPH0327504A (en) Control device of electromagnetic device
JP3147830B2 (en) Drive circuit for electromagnetic relay
JP2740495B2 (en) Power circuit
JPH046167Y2 (en)
RU2153726C1 (en) Electromagnet booster control device
JPS643157Y2 (en)
JPS62114228U (en)
JPH0627926Y2 (en) Drive circuit for electromagnet
JPS59168607A (en) Ac electromagnet
SU1472957A1 (en) Contactor drive solenoid with built-in rectifier
JPS61219113A (en) Ac electromagnet
CN114974799A (en) Single pulse controlled AC electromagnet and its control method
SU59762A1 (en) Device for rapidly demagnetizing an electromagnet of direct current
SU1046878A1 (en) Power pulse-width regulator with current feedback
JPS63307710A (en) Alternating current electromagnet device
JP3567321B2 (en) Power supply circuit
JPH04169023A (en) Switch drive unit for electromagnetic switchgear
JPH04262117A (en) Magnetic bearing drive circuit
JPH0212119U (en)