JPH0328774A - Control device for electromagnet device - Google Patents

Control device for electromagnet device

Info

Publication number
JPH0328774A
JPH0328774A JP13642990A JP13642990A JPH0328774A JP H0328774 A JPH0328774 A JP H0328774A JP 13642990 A JP13642990 A JP 13642990A JP 13642990 A JP13642990 A JP 13642990A JP H0328774 A JPH0328774 A JP H0328774A
Authority
JP
Japan
Prior art keywords
voltage
energized state
switch
time
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13642990A
Other languages
Japanese (ja)
Other versions
JPH0562442B2 (en
Inventor
Tomomi Arimoto
智美 有本
Masami Sakakibara
正己 榊原
Shigeharu Otsuka
大塚 重治
Hiroyuki Okado
岡戸 弘行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13642990A priority Critical patent/JPH0328774A/en
Publication of JPH0328774A publication Critical patent/JPH0328774A/en
Publication of JPH0562442B2 publication Critical patent/JPH0562442B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Electromagnets (AREA)

Abstract

PURPOSE:To reduce a hamming while reducing a power consumption by switching a rectified output so as to periodically repeat the current applying and non-applying conditions in plural times for every half wave. CONSTITUTION:A voltage of AC power supply 11 is rectified 12 in full-wave and converted to a pulsating voltage, and both terminals 13A, 13B are cut off from the power supply by a switch SW 10 for a certain time and simultaneously short-circuited by a coupled switch SW 20 to make a voltage supply for electromagnet device 14 to zero. Then, the short-circuit for both terminals 13A,13B is released by the switch SW 20 for a certain time and simultaneously the voltage supply for the device 14 is repeated by the switch SW 10 to supply the voltage as shown in the figure. With the cutting-off of voltage supply made by the switch SW 10, at this time a current increase according to the full-wave rectification is restricted, temperature increase of a coil is suppressed, and power consumption can be saved. Also with the short-circuiting of terminals 13A,13B made by the SW 20, an accumulated electromagnetic energy of the device 14 is converted to an electric energy to generate an attraction which is held also at the time of no voltage supplied.

Description

【発明の詳細な説明】 本発明は.電磁石装置の制御装置に関し,特に消費電力
を低減しつつ唸り音を低減することかできる制御装置に
関するものである。
[Detailed Description of the Invention] The present invention... The present invention relates to a control device for an electromagnet device, and particularly to a control device that can reduce whirring noise while reducing power consumption.

一般に単相交流電磁石装置は直流電磁石装置に比較して
,小形,軽量で,動作速度が速いという特長をもってい
るか,交番磁束による騒音または唸り註を允生ずるとい
う欠点をイイしている。そのため,交流電磁石装置は第
1図に示ずように構成されている。
In general, single-phase AC electromagnets have the advantage of being smaller, lighter, and faster than DC electromagnets, or they have the disadvantage of producing noise or whirring due to alternating magnetic flux. Therefore, the AC electromagnet device is constructed as shown in FIG.

第1図は一般的な単相交流電磁石装置を示しており,左
半分は正面図,右半分はその断面図となつている。図に
おいて,(1)は成層鉄心からなる固定鉄心,(2)は
該固定鉄心(11の中央極(3)に巻回された励磁コイ
ル,(4)は成層鉄心からなる可動鉄心.およびF51
  (6)は固定鉄心(11の磁極頭部分で,磁極頭部
分(5)にはくま取りコイル(7)が装着されている。
Figure 1 shows a general single-phase AC electromagnet device, with the left half being a front view and the right half being a cross-sectional view. In the figure, (1) is a fixed core made of a stratified core, (2) is an excitation coil wound around the central pole (3) of the fixed core (11), (4) is a movable core made of a stratified core, and F51.
(6) is the magnetic pole head portion of the fixed iron core (11), and a shade coil (7) is attached to the magnetic pole head portion (5).

このような構成を有する単相交流電磁石装置目″.くま
取りコイル(7)で囲まれた磁極頭(5)を通る磁束φ
5と,くま取りコイル(7)で囲まれていない磁極頭(
6)を通る磁束φ。どの間に位相差を生ぜしめて,固定
鉄心(1)が可動鉄心(4)を吸引する合成の吸引力の
最小値が常に可動鉄心(4)の外部反抗力よりも大なる
ようにして交@磁束による騒音を除去している。
Single-phase AC electromagnet device having such a configuration.The magnetic flux φ passing through the magnetic pole head (5) surrounded by the shaded coil (7)
5 and the magnetic pole head (
6) Magnetic flux φ passing through. A phase difference is created between them so that the minimum value of the combined attraction force of the fixed core (1) attracting the movable core (4) is always greater than the external repulsive force of the movable core (4). Eliminates noise caused by magnetic flux.

また唸り音については.吸引力は電源の2倍の周波数の
脈動成分を含んでいるため.この脈動分の最大値と最小
値の差が鉄心内で電磁吸引力による圧縮応力の強弱を生
じ,これが唸り音の発生となるが,一般的に強弱の程度
の差をもって発生?ている。
Also, regarding the whining noise. This is because the attraction force includes a pulsating component with a frequency twice that of the power supply. The difference between the maximum and minimum values of this pulsation component causes the strength of compressive stress due to electromagnetic attraction within the iron core, and this causes the generation of whining noise, but does it generally occur with a difference in strength? ing.

次に,電子計算機によるシミュレーション計算結果を例
にして説明する。
Next, an explanation will be given using the results of simulation calculations using an electronic computer as an example.

第2図は第1図に示すような一般の交流電磁石装置の過
渡吸引及び定常吸着状態における特性のシミュレーショ
ンで,図中,W+は交流電源の電圧波形,W2 ,W3
は鉄心磁極頭を辿る磁束波形,W4は鉄心を通る合成の
磁束波形,W5は励磁コイルの電流波形,W6はくま取
りコイルの電流波形,W7は総合の吸引力の波形,Wa
は外部反抗力を示す。但し,横軸は時間を示す。この一
般の交流電磁石装置においては,第2図からわかるよう
に,吸引力W7の最小値W7■,nは常に外部反抗力W
8よりも大であるので,騒音は発生しない。が,吸引力
W,の最大値W 7 m a xと最小値W 7 m 
i ,,の差が大きくなっているため,鉄心内で電磁吸
引力による圧縮応力の強弱が生じているので,唸り音が
発生ずる。この唸り音が大きいと不快感を与えることに
なる。なお,W9は電磁石装置の可動鉄心の変位箪(ス
トローク)を示す。なお,第6図の電源周波数は60H
z240V(辰大値)電圧の場合を示している。一方,
純直流の電磁石装置は,吸引力に脈動成分が含まれない
ため唸り音は発生しないが.同一の電圧値で比較すると
,吸着後は.交流の場合のように電流は交番しないで一
定電流が流れ,その電流は励磁(電磁)コイルの抵抗分
のみにJ:って決まるので,もし交流電磁石装置と鉄心
,励磁コイルが同一として考えた場合,交流電磁石装置
より6大きな電流が流れ,コイルの銅相が大きくなって
長時間使用にはコイルが焼損してしまう。そのため.直
流電磁石装置はコイルの抵抗値を大きくとるが,そうす
ると,電流が小さくなり起磁力が小さくなってしまうの
でコイルの巻数を多くとらなければならないため,コイ
ルが大きくなり,交流電磁装置に比して全体的に装置が
大きくなる欠点を有している。
Figure 2 is a simulation of the characteristics of the general AC electromagnet device shown in Figure 1 in transient attraction and steady attraction states. In the figure, W+ is the voltage waveform of the AC power supply, W2, W3
is the magnetic flux waveform tracing the iron core magnetic pole head, W4 is the composite magnetic flux waveform passing through the iron core, W5 is the current waveform of the excitation coil, W6 is the current waveform of the shaded coil, W7 is the waveform of the total attractive force, Wa
indicates an external counterforce. However, the horizontal axis indicates time. In this general AC electromagnet device, as can be seen from Fig. 2, the minimum value W7,n of the attractive force W7 is always equal to the external repulsive force W7.
Since it is larger than 8, no noise is generated. is the maximum value W 7 m a x and the minimum value W 7 m of the attraction force W,
Since the difference in i, , is large, the strength of compressive stress due to electromagnetic attraction force is generated within the iron core, and a whirring sound is generated. If this growling noise is loud, it will cause discomfort. Note that W9 indicates the displacement (stroke) of the movable core of the electromagnet device. Note that the power frequency in Figure 6 is 60H.
The case of z240V (highest value) voltage is shown. on the other hand,
Pure DC electromagnet devices do not generate whirring noise because the attraction force does not include a pulsating component. Comparing with the same voltage value, after adsorption. As in the case of alternating current, a constant current flows without alternating, and the current is determined only by the resistance of the excitation (electromagnetic) coil, so if we assume that the AC electromagnet device, iron core, and excitation coil are the same, In this case, a current larger than that of an AC electromagnet device flows, and the copper phase of the coil becomes large, causing the coil to burn out if used for a long time. Therefore. DC electromagnetic devices have a large coil resistance, but this reduces the current and the magnetomotive force, so the number of turns in the coil must be increased, making the coil larger and making it smaller than AC electromagnetic devices. This has the disadvantage that the overall size of the device increases.

このような装置が大きくなるのを防ぐ方法としては,第
3図に示すように.励磁(電磁)コイル(2)と直列に
節約抵抗(7)を接続し,この節約抵抗(7)に並列に
常閉路用接点(8)を挿入して,投入時は常閉路用接点
で励FIFi(電磁)コイル(2)に直流電圧を印加し
,投入後は常閉路用接点(8)を開路して励EFi(電
磁)コイル(2)に節約抵抗(7)を介して印加するこ
とにより電流を抑制して励磁(電磁)コイル(2)の銅
損を小さくし励磁(電磁)コイル(2)の焼損を防ぐ方
法がとられている。この方法は常閉路用の接点と節約抵
抗を使用しなければならず,接点の動作及び接触の信頼
性が要求される。また総合の消費電力が変らないという
欠点を有している。なお,(9)は直流電源,(10)
は投入用スイッチである。
Figure 3 shows a way to prevent such a device from becoming too large. A saving resistor (7) is connected in series with the excitation (electromagnetic) coil (2), and a normally-closed contact (8) is inserted in parallel with this saving resistor (7), so that the normally-closed contact is used to excite the coil when it is turned on. Apply DC voltage to the FIFi (electromagnetic) coil (2), and after turning on, open the normally closed circuit contact (8) and apply it to the excitation EFi (electromagnetic) coil (2) via the saving resistor (7). A method has been adopted in which the current is suppressed to reduce the copper loss of the excitation (electromagnetic) coil (2) and prevent burnout of the excitation (electromagnetic) coil (2). This method requires the use of normally closed contacts and economical resistors, and requires reliable contact operation and contact. It also has the disadvantage that the total power consumption remains unchanged. Note that (9) is a DC power supply, (10)
is the input switch.

本発明は,従来の位相制御方式とは異なる電子制御方法
によって,電磁石装置を励磁するための消費電力を低減
しつつ唸り音を,従来よりも,また位相制御方式よりも
低減させて性能を向上させることができる電磁石装置の
制御装置を提供することを目的とするものである。
The present invention uses an electronic control method different from the conventional phase control method to improve performance by reducing the power consumption for exciting the electromagnetic device and reducing whirring noise compared to the conventional method and compared to the phase control method. An object of the present invention is to provide a control device for an electromagnet device that can control the operation of the electromagnet device.

次に本発明の原理を,交流電源使用の場合について説明
する。
Next, the principle of the present invention will be explained in the case of using an AC power source.

第4図,第5図がその原理を示すように,交流電源(1
l)を整流装置(12)で全波整流して,第5図(a)
に示すように直流電圧(全波整流)に変換し,同時連動
ずるスイツヂSW,Q,SW2.によって,ある時間だ
け端子(13A)−(13B)をスイッヂSW,によっ
て電源(11)から切り離すと同時にスイツヂS W 
2 0によって端子(13A+−(13B)を短絡して
MMI石装置(14)への電圧の供給を零にし次は,あ
る時間だけS W +によって端子(13A)(13B
+の短絡を開放し,同時にスイッチsw2oによって電
磁石装置(l4)への電圧の供給を行うという操作を繰
り返し,第5図(b)に示すような電圧供給を行なわさ
せるものである。スイッチSW,.とSW2oぱ次のよ
うに機能ずる。スイッチS W + oによる電源供給
の切り離しは,全波整流による電流増加を制限し,コイ
ルの銅損による温度上昇を抑制ずる。また吸引力が十分
余裕のある場合は消費電力の節約を可能にする。スイッ
ヂsw2oによる端子(13Al−(13B)の短絡は
電磁石装置(14)が?積している電磁エネルギーを電
気的エネルギーへ変換させて,吸引力を発生させ,電源
からの電気的エネルギーの供給が零状態にあっても吸引
力の保持を行わせる。すなわち,吸引力のフライホイー
ル的な働きをさせる。場合によっては,端子(13A)
−(13B)を短絡せず解放させても良い。
As shown in Figures 4 and 5, the principle is shown in Figures 4 and 5.
l) is full-wave rectified by the rectifier (12), and the result is shown in Fig. 5(a).
As shown in the figure, the switches SW, Q, SW2. , the terminals (13A)-(13B) are disconnected from the power supply (11) by the switch SW for a certain period of time, and at the same time the switch SW is disconnected from the power supply (11).
20 to short-circuit the terminals (13A+-(13B)) to make the voltage supply to the MMI stone device (14) zero, and then short-circuit the terminals (13A) (13B) by SW+ for a certain period of time.
The operation of opening the short circuit of + and simultaneously supplying voltage to the electromagnet device (l4) using switch sw2o is repeated, thereby supplying the voltage as shown in FIG. 5(b). Switch SW, . And SW2o functions as follows. The disconnection of the power supply by the switch SW+o limits the increase in current due to full-wave rectification and suppresses the temperature rise due to copper loss in the coil. Furthermore, if the suction power is sufficiently strong, it is possible to save power consumption. When the terminal (13Al-(13B)) is shorted by the switch sw2o, the electromagnet device (14) converts the accumulated electromagnetic energy into electrical energy, generates an attractive force, and stops the supply of electrical energy from the power source. The suction force is maintained even in the zero state.In other words, the suction force acts like a flywheel.In some cases, the terminal (13A)
- (13B) may be opened without being short-circuited.

次に,電子計算機によるシミュレーション計算結果を例
について説明する。
Next, the results of simulation calculations using an electronic computer will be explained using examples.

第6図は第2図の特性の交流電磁石装置に,本発明によ
る第4図に示す原理によって,第2図と同一周波,電圧
の交流電源で,半波毎に電圧の零点を基準にして,第7
図に示すようにスイッチSWIO  SW20,スイッ
チSW11−SW2,を共に同時に, O.  lms
ec通電−11 . 6 mSec無電圧のスイッチン
グを繰り返したときのシミュレーションを示す。第2図
と第6図を比較すると,本発明の原理においては,従来
の場合よりも吸引力w7の特性すなわち吸引力の最大値
W 7m■と最小値W7■。の差が大巾に小さくなって
いることがわかる。すなわち唸り音が大巾に低減してい
ることがわかる。また吸引力の最大値W7。.。は従来
よりも大巾に増加している。
Fig. 6 shows an AC electromagnet device having the characteristics shown in Fig. 2, using an AC power source of the same frequency and voltage as Fig. 2, using the principle shown in Fig. 4 according to the present invention, and using the zero point of the voltage as a reference every half wave. , 7th
As shown in the figure, the switch SWIO SW20 and the switches SW11-SW2 are both operated at the same time. lms
ec energization-11. A simulation is shown when voltage-free switching is repeated for 6 mSec. Comparing FIG. 2 and FIG. 6, it can be seen that in the principle of the present invention, the characteristics of the suction force w7, that is, the maximum value W7m■ and the minimum value W7■ of the suction force, are better than in the conventional case. It can be seen that the difference has become significantly smaller. In other words, it can be seen that the whining noise is significantly reduced. Also, the maximum value of suction force W7. .. . has increased significantly compared to before.

第8図は,第2図と同様の交流電磁石装置を,第2図と
同一周波,N圧の交流電源で,従来のサイリスク位相制
御方式( 7 mSec無電圧,1mSec通電)によ
って動作させた場合のシミュレーションを示す。第6図
と第8図を比較ずると,本発明による吸引力の最大値W
 7maxと最小値W 7 m i nの差は,従来の
サイリスク位相制御方式の吸引力の最大値W 7 m 
lI Xと最小値W 7 ffiI nとの差よりも約
2分の1以下になっている事がわかる。鉄心の唸り&は
,前述のように吸引力の最大値と最小値との差の大きさ
に比例するので,本発明は従来の位相制御方式に比し唸
り音は半分以下に低減することが云え,性能が大巾に向
上することが云える。第9図は,本発明による交流電磁
石装置の唸り音低減装置のブロック図を示し, (10
)は正弦波交流電源, (102)は一般の交流電磁石
装置, (103)は整流装置, (104)は唸り音
及び消費電力低減のための電子制御装置で,スイッチS
Woを投入後ある適当な時間T。後に,第lO図に示す
ように,電源電圧の零点を基準にして,半波毎に,T1
時間通電→T2時間無電圧を繰り返し,′F3時間無通
電後,T1時間通電→T2時間無通電を繰り返すもので
,To , T+ ,T2 ,T3は自由に調整できる
ように第3図,第4図のスイッチ類の機能を電子回路で
構成している。
Figure 8 shows the case where an AC electromagnet device similar to that shown in Figure 2 is operated using the same frequency and N pressure AC power supply as in Figure 2, using the conventional Cyrisk phase control method (7 mSec no voltage, 1 mSec energized). The simulation is shown below. Comparing Figure 6 and Figure 8, the maximum value W of the suction force according to the present invention
The difference between 7max and the minimum value W7min is the maximum value W7m of the suction force of the conventional Cyrisk phase control method.
It can be seen that the difference between lI X and the minimum value W 7 ffiI n is about 1/2 or less. As mentioned above, the noise of the iron core is proportional to the difference between the maximum value and the minimum value of the suction force, so the present invention can reduce the noise by more than half compared to the conventional phase control method. It can be said that the performance is greatly improved. FIG. 9 shows a block diagram of a whirring noise reduction device for an AC electromagnet device according to the present invention, (10
) is a sine wave AC power supply, (102) is a general AC electromagnet device, (103) is a rectifier, (104) is an electronic control device for reducing whirring noise and power consumption, and switch S
T at a certain appropriate time after inserting Wo. Later, as shown in Figure 1O, T1 is calculated every half wave with reference to the zero point of the power supply voltage.
It repeats energizing for a time → no voltage for T2 hours, then repeats no energizing for 3 hours, then energizing for T1 → no energizing for T2 hours. The functions of the switches shown in the figure are made up of electronic circuits.

なお,T,,T2の時間は必ずしも電圧の零点を基準に
しなくともよく,パルス発振を利用した通電,無通電操
作であってもよいが,T,の時間は電圧波形の最大値の
点を対称とした時間図(チャート)であることが,シミ
ュレーション結果から望ましい。また,電源が直流であ
る場合は,整流装置(1031 を省略し,T+ ,T
2 ,T3を調整すればよい。第11図は,第2図の特
性の交流電磁石装置に,第2図と同一周波及び電圧の交
流電源で,半波毎に, 0.  1mSec通電−4 
1 mSec無電圧−+0.  1mSec通電−3.
 2mSec無電圧−0.  1msec通電→1 m
sec無電圧−+0.  1msec通電→1mSec
焦電圧→O.lmSec通電を周期的に繰り返し(9) (10) ?場合のシミュレーションを示すか,吸引力W7のJi
B人f直W7−1とh1小値W7■4■の差は,第6図
のそれとほとんど変らないが,高周波成分の最大植W 
tomnウと最小値W 7 Q■.、の差が若干小さく
なり.従って高周波成分の唸り−昌が小さくなっている
事が云える。
Note that the time T,, T2 does not necessarily have to be based on the zero point of the voltage, and may be energized or non-energized using pulse oscillation, but the time T2 does not necessarily have to be based on the voltage zero point. Based on the simulation results, it is desirable to have a symmetrical time diagram (chart). In addition, if the power source is DC, rectifier (1031 omitted, T+, T
2, just adjust T3. Fig. 11 shows an AC electromagnet device having the characteristics shown in Fig. 2, with an AC power supply having the same frequency and voltage as in Fig. 2, and applying 0.0. 1mSec energization-4
1 mSec no voltage - +0. 1mSec energization-3.
2mSec no voltage-0. 1 msec energization → 1 m
sec no voltage -+0. 1msec energization → 1mSec
Pyrovoltage → O. Repeat lmSec energization periodically (9) (10) ? In this case, Ji of attraction force W7 is shown.
The difference between the B person's f directivity W7-1 and the h1 small value W7■4■ is almost the same as that in Figure 6, but the maximum implantation W of the high frequency component is
Tomn U and minimum value W 7 Q■. The difference between , becomes slightly smaller. Therefore, it can be said that the beat of the high frequency component is reduced.

第12図は,第2図の特性の交流電磁石父置に.第2図
と同一周波.先電圧(340V (最大値))の交流電
源で,半波毎に, 0.  1+nScc通電−+].
6mSec無電圧− 0 .  ] msecjl電→
3.3mSec無電圧−40.  1mSec通電− 
1 . 6 msec無電圧−0.  lmsQc通T
fi →l . 4 msecp.’,電圧を周期的に
繰り返した場合のシミュレーションを示すが.通常の吸
着状態の吸引力の平均値およびコイルの銅1(j(消費
′題力W+o)もほぼ同じになっている。
Figure 12 shows an AC electromagnet with the characteristics shown in Figure 2. Same frequency as Figure 2. With an AC power source with a voltage of 340V (maximum value), every half wave, 0. 1+nScc energization -+].
6mSec no voltage - 0. ] msecjlden→
3.3mSec no voltage -40. 1mSec energization-
1. 6 msec no voltage -0. lmsQc T
fi →l. 4 msecp. ', shows a simulation when the voltage is repeated periodically. The average value of the suction force in the normal suction state and the copper 1 (j (consumed power W+o) of the coil) are almost the same.

この事から,Aii+したように第101’Rlの1゛
’I−2,T,を調幣ずることにより,電はコイルは同
一で,電諒電圧の異電圧を使用の適用範囲が大きくなる
(例えばAC200〜400Vまで励耐(電磁)コイル
の共用化が計れる。)という特徴を不jずる。
From this, by calculating the 1゛'I-2,T of the 101'Rl as in Aii +, the scope of application of using different voltages of electric voltages with the same coil can be expanded. (For example, it is possible to share excitation (electromagnetic) coils up to 200 to 400 VAC.)

′f!′41 3図は第10図の1゛oの時間を25m
Secから16.6mSecに変え,それ以外は第12
図と全く同じ条件でのシミュレーションを示すが,第l
2{゛ス1と第13図を比較すると電磁石突置の可動鉄
心(4)が固定鉄心(1)に吸着されたときの変位la
−: w , ,の点の時間後の吸引力W7の特性の様
子がかなり違っていることがわかる。すなわち,第12
図においては,可動鉄心(4)の吸着後の吸弓力は二そ
L昇しているが,第13図においては,吸若後は吸引力
は−度減少して以後漸増上昇して−定イ直になっている
。これは,第12図においては可動鉄心(4)と固定鉄
心([)との1及着時の衝撃が激しく,第13図におい
ては衝撃が第■2図に比して穏やかで多数回の駆動操作
(例えばI. O O〜500万回)による鉄心の摩耗
が少なくなり.またこの電磁石装置により駆動される装
置(例えば電磁接触器.継電器)に与える投入動作の衝
撃が小さくてすみ,例えば−7Hffj接触器に使用さ
れる場合は桜点のハつンシングが小さくなり,従って接
(l1) (12) 点のアーク発土により消耗重が少なくなり,電気的にノ
t命回数が延びるという性能的な利点なり−える事にな
る。
'f! '41 Figure 3 shows the time of 1゛o in Figure 10 for 25m.
Sec to 16.6mSec, otherwise the 12th
The simulation is shown under exactly the same conditions as in the figure.
2. Comparing Figure 13 with Figure 13, the displacement la when the movable core (4) with a protruding electromagnet is attracted to the fixed core (1) is
-: It can be seen that the characteristics of the attraction force W7 after the time points w, , and are quite different. That is, the 12th
In the figure, the suction force after suction of the movable iron core (4) increases by 2 L, but in Fig. 13, after suction, the suction force decreases by − degrees, and then gradually increases. He is very regular. This is because, in Fig. 12, the impact is severe when the movable core (4) and the fixed core ([) collide once, whereas in Fig. 13, the impact is milder than in Fig. 2, and occurs many times. The wear of the iron core due to drive operations (for example, I.O.O. ~ 5 million times) is reduced. In addition, the impact of the closing operation on devices driven by this electromagnetic device (e.g., electromagnetic contactors, relays) is small, and when used in, for example, -7Hffj contactors, the cherry blossom point is small, so that (l1) (12) Due to the arcing at the point, the consumption weight is reduced and the number of electrical lifespans is extended, which is a performance advantage.

このように,第10図の]゛。の時間を調整することに
j二り ’iiT動鉄心(4)と囚定秩心(1)との吸
青時の衝撃荷重を小さくすることができる。
In this way, ]゛ in Fig. 10. By adjusting the time, it is possible to reduce the impact load at the time of blue absorption between the T dynamic iron core (4) and the fixed iron core (1).

以上説明したように,本発明は次のような利点が挙げら
れる。
As explained above, the present invention has the following advantages.

■ 吸引力の最大値と最小値との差を小さくずることに
よって唸り身をイ氏減ずることかできる。
■ The amount of groaning can be reduced by reducing the difference between the maximum and minimum suction force.

■ 定常吸着状態時の消費電力を節約できる。■ Power consumption during steady adsorption can be saved.

■ 励EH (電磁)コイルを変えないで,電源(人力
)電圧の定格の適用範囲を広げることができる。
■ The applicable range of power supply (human power) voltage ratings can be expanded without changing the excitation EH (electromagnetic) coil.

■ 吸着時の衝撃を小さくすることができる。■ The impact during adsorption can be reduced.

■ AC電源でもDCW源にも適用できる。■ Applicable to both AC and DCW sources.

■ DC変換するため,従来の交流電磁石装置のくま取
りコイルが廃止される。
■ Due to DC conversion, the shaded coil of the conventional AC electromagnet device is abolished.

■ DC変換ずるため,従来の交流電磁石装置のように
,鉄心に交番磁束が通らなく,従って渦電流が発生しな
いので鉄損がないため従来のようなケイ素鋼板の成層鉄
心でなくても,安価な鋳鋼,成形鋼等の鉄心とすること
ができる。
■ Because of DC conversion, no alternating magnetic flux passes through the core like in conventional AC electromagnet devices, and therefore no eddy current is generated, so there is no iron loss, so it is inexpensive even if it is not a laminated core made of silicon steel sheets like conventional ones. The core can be made of cast steel, formed steel, etc.

なお,本発明の制御装置は電磁石装置に別個に取付けら
れても,或は電磁石装置と組合せ内蔵されても良い。
Note that the control device of the present invention may be attached separately to the electromagnet device, or may be built-in in combination with the electromagnet device.

第14図は第9図の電子制御装置(104)を用いた具
体的な一実施例を示しており.動作を第15図にもとづ
き説明ずる。
FIG. 14 shows a specific example using the electronic control device (104) of FIG. 9. The operation will be explained based on FIG.

第14図において,  (11.1は交流電源, (1
21は整流装置. (14)は電磁石装置,Di,D2
はダイオード,I’{l〜R5は抵抗,TRはトランジ
スタ,TCIは比較増幅器,IC2は論理積素子(以下
アンド素子),TC3は論理和素子(以下オア素子).
IC4は否定素子(以下ノット素子)である。なお, 
(400)は抵抗電圧回路, (401)は発振揮1路
,(402)は遅延回路である。
In Figure 14, (11.1 is an AC power supply, (1
21 is a rectifier. (14) is an electromagnetic device, Di, D2
is a diode, I'{l~R5 are resistors, TR is a transistor, TCI is a comparison amplifier, IC2 is an AND element (hereinafter referred to as AND element), and TC3 is an OR element (hereinafter referred to as OR element).
IC4 is a negation element (hereinafter referred to as a not element). In addition,
(400) is a resistance voltage circuit, (401) is an oscillation voltage circuit, and (402) is a delay circuit.

(13) このように構成されたものにおいて,交流電源(11)
が整流装置([2)に印加されると(第15図(a) 
参照)整流装置(l2)の出力レこ接続された抵抗R1
とR2の分圧回路より出力される全波整流波形V2 (
第15図(c)参照)が比較増幅器ICIに入力される
。この全波整流波形V2は,抵抗R3とR4の分圧回路
より出力される基準電圧V3 (第15図(b)参照)
と比較増幅され,波形V4 (第15図(d)参照)が
比較増幅器ICIより出力される。アンド素子IC2は
,比較増幅器ICIの出力が高電位のときのみ,発振回
路(401)の出力V5 (第15図(e)参照)を出
力するため.波形■6 (第15図if)参照)が得ら
れる。またノット素子IC4は交流電源(l1)の印加
後,遅延回路(402)によって決められた時間T。
(13) In a device configured in this way, the AC power source (11)
is applied to the rectifier ([2) (Fig. 15(a)
Reference) Resistor R1 connected to the output of the rectifier (l2)
The full-wave rectified waveform V2 (
(see FIG. 15(c)) is input to the comparator amplifier ICI. This full-wave rectified waveform V2 is the reference voltage V3 output from the voltage divider circuit of resistors R3 and R4 (see Figure 15(b)).
The comparison amplifier ICI outputs a waveform V4 (see FIG. 15(d)). The AND element IC2 outputs the output V5 (see FIG. 15(e)) of the oscillation circuit (401) only when the output of the comparison amplifier ICI is at a high potential. Waveform 6 (see FIG. 15 if) is obtained. Further, the knot element IC4 waits for a time T determined by the delay circuit (402) after the application of the AC power (l1).

間高電位を出力するため,1・ランジスタTRは,時間
T。間,導通状態となり従って電磁石装置(l4)は励
磁される。前記時間T。は,電磁石装置(14)が,吸
引をするのに必要な時間以上に設定されているのでDi
′f間−1−。後では吸引動作は完Yしている。次に時
間T。後はアンド素子IC2の出力波形■6に従って1
・ランジスタ1゛Rは導通,遮断を,つまりスイッチン
グをくり返す。
In order to output a high potential for a period of time T, transistor 1. During this time, the electromagnetic device (14) is in a conductive state and thus the electromagnetic device (14) is energized. Said time T. Di is because the electromagnet device (14) is set longer than the time required for suction.
'f between -1-. Afterwards, the suction operation is completed. Next is time T. After that, according to the output waveform ■6 of AND element IC2, 1
- The transistor 1'R repeats conduction and cutoff, that is, switching.

ここでトランジスタT Rが導通ずれば,電磁石装置(
l4)に電流が流れるのは言うまでもないが,トランジ
スタTRが遮断状態となった場合,電磁石装置(l4)
のコイルエネルギーはダイオードI) 1によって還流
されるため,電磁石装置(14)には電流が流れ続ける
。即ちコイル電流は断続電流とならないため,吸引状態
を保持する。
If the transistor TR conducts here, the electromagnetic device (
Needless to say, current flows through the electromagnetic device (l4) when the transistor TR is cut off.
Since the coil energy is circulated by the diode I)1, current continues to flow through the electromagnetic device (14). In other words, since the coil current does not become an intermittent current, the attraction state is maintained.

ここで交流電源(11)のピーク値をカットする時間T
3は,抵抗R3とR4の分圧比を変えることによって,
適当に制御できるのはいうまでもない。また,発振回路
(401)を適当に設定することにより,導通時間TI
と遮断時間T2は可変できるため,うなりを最小にし,
消費エネルギーを最小にするように設定できるのはいう
までもない。
Here, the time T to cut the peak value of the AC power supply (11)
3, by changing the voltage division ratio of resistors R3 and R4,
Needless to say, it can be controlled appropriately. In addition, by appropriately setting the oscillation circuit (401), the conduction time TI
Since the cutoff time and T2 can be varied, the beat can be minimized and
Needless to say, settings can be made to minimize energy consumption.

また,本実施例は.発振回路を非同期式で説明したが,
交流電源に同期させれば,零点付近での導通を確実に保
証できるため,本発明の効果がよ(15) (I6) り期待できるのはいうまでもない。また2交流電源のビ
ーク埴をカツ1・ずる時間−1” 3は,本実施例では
ある一定電圧以上になったらカットするように説明した
が,カツ1・を開始ずる電圧と終rずる電圧を適当に変
えても同様の効果か得られるのはいうまでもない。
Also, in this example. I explained the oscillation circuit using an asynchronous method, but
It goes without saying that by synchronizing with an AC power supply, continuity near the zero point can be reliably guaranteed, so that the effects of the present invention can be expected to be even greater (15) (I6). In addition, in this embodiment, the explanation was given that the beak cut time of the AC power supply is cut when the voltage exceeds a certain level, but the voltage at which the beak of the AC power supply begins to cut and the voltage at which it ends will vary. It goes without saying that the same effect can be obtained by appropriately changing .

また交流電源(1l)が直流電源となった場合.ピーク
値カットの′I゛3は設定できないが発振同路fllo
1)を適当に設定することによって同様の効果が得られ
るのはいうまでちない。なお,場合によっては,ダイオ
ードI) 1の代わりにコンデンザを使用しても良く,
またダイオードI) 1を省略しても良い。更にトラン
ジスタT Rの代りにサイリスクで構成されたヂョツバ
を用いることも可能である。なお.第15図は本実施例
の各出力のタイムヂャートである。
Also, when the AC power supply (1L) becomes a DC power supply. The peak value cut 'I゛3 cannot be set, but the oscillation same line flo
It goes without saying that a similar effect can be obtained by appropriately setting 1). In some cases, a capacitor may be used instead of diode I) 1.
Furthermore, the diode I) 1 may be omitted. Furthermore, it is also possible to use a stopper made of silicon in place of the transistor TR. In addition. FIG. 15 is a time chart of each output of this embodiment.

以−ヒ述べたように,本発明によれば,電磁石装置を励
磁するための消費電力を低減し,1つ唸り音を低減する
ことができ,また装置を大形化することなく構成するこ
とができるなど,種勺の有益な効果を得ることができる
As described below, according to the present invention, the power consumption for exciting the electromagnet device can be reduced, the whirring noise can be reduced, and the device can be constructed without increasing the size. You can obtain the beneficial effects of seedlings, such as being able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は−M的な単相交流電磁石装置の概略構成を示す
正面図.第2図は−p2的な交流電磁石装置が給電され
ている時の各部の波形を示す波形図,第3図は一般的な
直流電磁石装置の回路構成を示す接続図,第4図は本発
明の原理を説明するための回路構成図,第5図(a) 
(b)は第4図を説明するための波形図,第6図は本発
明の一実施例における制御装置の動作時の各部波形を示
す波形図,第7図は本発明の一実施例を示ず回路構成図
,第8図は従来のサイリスク位相の制御方式における各
部の波形を示す波形図,第9図は本発明を一般的な交流
電磁石装置に適用した場合の接続関係を示すブロック図
,第10図は第9図の動作を説明するための波形図,第
11図〜第13図は本発明の他の実施例における各部波
形を示す波形図,第14図は本発明を電子回路にて構成
した具体的な−実施例を示す回路接続図,第15図は第
14図の回路の動作を説明するための各部波形を(17
) (IR) 示す波形図である。 図中.(l)は固定鉄心,(2)は励磁(電磁)コイル
,(4)は可動鉄心,  (11) (101)は交流
電源,fl2) (+031は整流装置. (14) 
[102)は電磁石装置,SWo ,SW+o,SW2
0.SW.,   SW2はスイッチ, (104)は
電子制御装置である。 なお.図中同一符号は同一もしくは相当部分を示す。
Figure 1 is a front view showing the schematic configuration of a -M type single-phase AC electromagnet device. Figure 2 is a waveform diagram showing the waveforms of various parts when a -p2 type AC electromagnet device is being supplied with power, Figure 3 is a connection diagram showing the circuit configuration of a general DC electromagnet device, and Figure 4 is the invention of the present invention. Circuit configuration diagram for explaining the principle of , Figure 5 (a)
(b) is a waveform diagram for explaining FIG. 4, FIG. 6 is a waveform diagram showing waveforms of various parts during operation of the control device in one embodiment of the present invention, and FIG. 7 is a waveform diagram for explaining one embodiment of the present invention. Figure 8 is a waveform diagram showing the waveforms of various parts in the conventional control system for the Cyrisk phase. Figure 9 is a block diagram showing the connection relationship when the present invention is applied to a general AC electromagnet device. , FIG. 10 is a waveform diagram for explaining the operation of FIG. 9, FIGS. 11 to 13 are waveform diagrams showing waveforms of various parts in other embodiments of the present invention, and FIG. 14 is a waveform diagram showing the waveform of each part in other embodiments of the present invention. FIG. 15 is a circuit connection diagram showing a specific example constructed in the following manner. Waveforms of various parts (17
) (IR) FIG. In the figure. (l) is a fixed core, (2) is an excitation (electromagnetic) coil, (4) is a movable core, (11) (101) is an AC power supply, fl2) (+031 is a rectifier. (14)
[102) is an electromagnet device, SWo, SW+o, SW2
0. SW. , SW2 is a switch, and (104) is an electronic control device. In addition. The same reference numerals in the figures indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)電磁石装置の励磁コイルと交流電源との間に介在
し,上記励磁コイルへの給電を通電状態と無通電状態を
周期的に繰り返すように制御するスイツチを備えた制御
装置であつて,上記スイツチは上記交流電源を全波整流
した出力を,半波毎に少なくとも2回以上通電状態と無
通電状態を周期的に繰り返すようにスイツチングされる
ことを特徴とした電磁石装置の制御装置。
(1) A control device comprising a switch interposed between an excitation coil of an electromagnet device and an alternating current power source and controlling the supply of power to the excitation coil so as to periodically repeat an energized state and a de-energized state, A control device for an electromagnet device, characterized in that the switch is switched so that an output obtained by full-wave rectification of the AC power source is periodically repeated between a energized state and a non-energized state at least twice every half wave.
(2)通電状態と無通電状態を少なくとも3回以上繰り
返し,上記出力の半波の途中において無通電状態の時間
を他の繰り返しの無通電状態の時間に比して大きくなる
よう上記スイツチをスイツチングするようにしたことを
特徴とする特許請求の範囲第1項記載の電磁石装置の制
御装置。
(2) Repeat the energized state and de-energized state at least three times, and switch the switch so that the time in the de-energized state is longer than the time in the de-energized state in the middle of the half-wave of the above output compared to the time in the de-energized state in other repetitions. A control device for an electromagnet device according to claim 1, characterized in that the control device is configured to:
(3)半波毎の通電状態と無通電状態の繰り返しが電圧
の最大値となる時間を対象にして,無通電状態の時間を
他の繰り返しの無通電状態の時間に比して大きくなるよ
う上記スイツチをスイッチングするようにしたことを特
徴とする特許請求の範囲第1項または第2項に記載の電
磁石装置の制御装置。
(3) Targeting the time when the repetition of the energized state and de-energized state in each half wave reaches the maximum voltage value, the time in the de-energized state is set to be larger than the time in the de-energized state in other repetitions. 3. The control device for an electromagnet device according to claim 1, wherein the switch is configured to perform switching.
(4)通電状態と無通電状態の時間巾を調整するように
したことを特徴とする特許請求の範囲第1項記載の電磁
石装置の制御装置。
(4) The control device for an electromagnet device according to claim 1, wherein the time duration between the energized state and the non-energized state is adjusted.
JP13642990A 1990-05-25 1990-05-25 Control device for electromagnet device Granted JPH0328774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13642990A JPH0328774A (en) 1990-05-25 1990-05-25 Control device for electromagnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13642990A JPH0328774A (en) 1990-05-25 1990-05-25 Control device for electromagnet device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3831081A Division JPS57152108A (en) 1981-03-16 1981-03-16 Controlling device for electromagnetic driving device

Publications (2)

Publication Number Publication Date
JPH0328774A true JPH0328774A (en) 1991-02-06
JPH0562442B2 JPH0562442B2 (en) 1993-09-08

Family

ID=15174939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13642990A Granted JPH0328774A (en) 1990-05-25 1990-05-25 Control device for electromagnet device

Country Status (1)

Country Link
JP (1) JPH0328774A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190409A (en) * 2000-09-15 2002-07-05 General Electric Co <Ge> Device and method for actuating apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251485A (en) * 1985-08-30 1987-03-06 Ricoh Co Ltd Thermal recording material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251485A (en) * 1985-08-30 1987-03-06 Ricoh Co Ltd Thermal recording material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190409A (en) * 2000-09-15 2002-07-05 General Electric Co <Ge> Device and method for actuating apparatus

Also Published As

Publication number Publication date
JPH0562442B2 (en) 1993-09-08

Similar Documents

Publication Publication Date Title
WO2018143182A1 (en) Brake drive circuit
JP2003113763A5 (en)
JPH0328774A (en) Control device for electromagnet device
JPS6251485B2 (en)
JPH0327504A (en) Control device of electromagnetic device
JPH0327503A (en) Control device for electromagnetic device
JP2740495B2 (en) Power circuit
JPS59175105A (en) Electromagnet
JPS61188905A (en) Electromagnet
CN113436934B (en) Control circuit and method for controlling alternating current contactor by using direct current voltage
JP7011358B1 (en) Pulse control device for inductor-based electromagnetic devices
JPH046167Y2 (en)
JP2931950B2 (en) Electromagnet drive
JP2002519977A (en) High pressure pulse generator for magnetron drive
RU2153726C1 (en) Electromagnet booster control device
JP3505736B2 (en) Electric vacuum cleaner
CN1256746C (en) Alternating current electro magnet device of actuating maintaining static conversion
JPH0627926Y2 (en) Drive circuit for electromagnet
JP2002190378A (en) High-frequency heating device
JPS63307710A (en) Alternating current electromagnet device
CN103413726B (en) Be provided with the power-saving alternating-current contactor of threshold voltage
JPH02160393A (en) High frequency heating device
JPS62244280A (en) Controller for air conditioner
JPH0474954B2 (en)
JPS61219113A (en) Ac electromagnet