JPS6251440B2 - - Google Patents

Info

Publication number
JPS6251440B2
JPS6251440B2 JP15393482A JP15393482A JPS6251440B2 JP S6251440 B2 JPS6251440 B2 JP S6251440B2 JP 15393482 A JP15393482 A JP 15393482A JP 15393482 A JP15393482 A JP 15393482A JP S6251440 B2 JPS6251440 B2 JP S6251440B2
Authority
JP
Japan
Prior art keywords
sulfur
shielding
radiation
weight
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15393482A
Other languages
Japanese (ja)
Other versions
JPS5943395A (en
Inventor
Yoshimasa Igari
Akio Tamura
Yoichi Yamamoto
Hisahiko Pponko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP15393482A priority Critical patent/JPS5943395A/en
Publication of JPS5943395A publication Critical patent/JPS5943395A/en
Publication of JPS6251440B2 publication Critical patent/JPS6251440B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は放射線及び放射性物質の漏洩による障
害を防止する遮蔽、防止材に関する。 医療、原子炉運転などにおいて放射線の遮蔽材
料として多種多様なものが使用されれている。こ
の中でコンクリートが一般の建築の主要構造部と
し利用されると同時に、放射線施設では最も重要
な遮蔽材料の一つとして用いられている。しかし
コンクリートで遮蔽能力を上げるにはかなり厚み
を大きくとらなければならないという問題があ
る。また密度が小さい軽量コンクリートなどは、
放射線の透過率が大きいので、特に厚みを大きく
しなければならない。さらにコンクリートは一般
に、保存条件にもよるが、密度の経年変化が大き
いので遮蔽能力が低下するという難点があつた。
さらにまた、コンクリートはヒビ割れの問題も注
意を要する点であつた。本発明者らはこのような
従来の遮蔽材料としてのコンクリートの難点・問
題点を克服するため全く新しい材料を開発すべく
種々検討を重ねた。その結果、製鋼工程の副生物
であるダクト(ガス灰)と鉄鋼スラグと硫黄とを
所定割合で混融加熱したのち冷却固化して得た固
化材が、圧縮強度が高く耐久性にすぐれ、その
上、遮蔽能力の良いとされる重量コンクリートな
どよりはるかに高い放射線遮蔽能力を示すことを
見出した。本発明はこの知見に基づいてなされる
に至つたものである。 すなわち本発明は、製鋼ダスト1〜3重量部、
鉄鋼スラグ3〜6重量部及び硫黄2〜3重量部の
割合で含有する組成物を95〜130℃で溶融混練し
たのち冷却固化してなることを特徴とする放射線
及び放射性物質の遮蔽、防止材を提供するもので
ある。 本発明において用いられる製鋼ダスト(ガス
灰)は平炉工場、電炉工場などの製鋼過程で、集
塵器に補集され、例えば平炉ダスト(平炉ガス
灰)は酸化鉄約68〜89%、転炉ダスト(転炉ガス
灰)は酸化鉄約84〜89%含有しいる。その大部分
が0.5〜1.0ミクロンの微細な粉状物である。 次に本発明において用いられる鉄鋼スラグと
は、高炉スラグ製鋼スラグなどの製鉄にあたり副
生するスラグを指称する。 化学組成は、高炉スラグでは、鉄鉱石の品質に
より変わるが主成分の成分範囲は重量%で
SiO230〜40%、CaO35〜50%、Al2O35〜20%、
MgO5〜10%、FeO3%未満、MnO3%未満となつ
ている。また製鋼スラグは平炉、転炉における製
鋼過程で生じる平炉スラグ、転炉スラグである。
その化学組成例を次表に示す。
The present invention relates to shielding and prevention materials that prevent damage caused by leakage of radiation and radioactive substances. A wide variety of materials are used as radiation shielding materials in medical treatment, nuclear reactor operation, etc. Among these, concrete is used as the main structure of general buildings, and at the same time, it is used as one of the most important shielding materials in radiation facilities. However, there is a problem in that in order to increase the shielding ability of concrete, it must be made considerably thicker. In addition, lightweight concrete with low density, etc.
Since the radiation transmittance is high, the thickness must be particularly large. In addition, concrete generally has the disadvantage that its density changes significantly over time, reducing its shielding ability, depending on storage conditions.
Furthermore, the problem of cracking in concrete was also an issue that required attention. The inventors of the present invention have conducted various studies in order to develop a completely new material in order to overcome the difficulties and problems of concrete as a conventional shielding material. As a result, the solidified material obtained by mixing and heating duct (gas ash), a by-product of the steelmaking process, steel slag, and sulfur in a predetermined ratio, and then cooling and solidifying it, has high compressive strength and excellent durability. As mentioned above, it was found that the radiation shielding ability is much higher than that of heavy concrete, which is said to have good shielding ability. The present invention has been made based on this knowledge. That is, the present invention includes 1 to 3 parts by weight of steelmaking dust,
A material for shielding and preventing radiation and radioactive substances, which is obtained by melting and kneading a composition containing 3 to 6 parts by weight of steel slag and 2 to 3 parts by weight of sulfur at 95 to 130°C, and then cooling and solidifying the composition. It provides: The steelmaking dust (gas ash) used in the present invention is collected in a dust collector during the steelmaking process at an open hearth factory, an electric furnace factory, etc. Dust (converter gas ash) contains approximately 84-89% iron oxide. Most of it is fine powder of 0.5 to 1.0 microns. Next, the steel slag used in the present invention refers to slag produced as a by-product during iron manufacturing, such as blast furnace slag and steelmaking slag. The chemical composition of blast furnace slag varies depending on the quality of the iron ore, but the range of the main components is expressed in weight percent.
SiO2 30-40%, CaO35-50%, Al2O3 5-20 %,
MgO is 5 to 10%, FeO is less than 3%, and MnO is less than 3%. Further, steelmaking slag is open hearth slag and converter slag produced during the steelmaking process in open hearth and converter furnaces.
An example of its chemical composition is shown in the table below.

【表】 本発明の放射線及び放射性物質の遮蔽、防止材
において骨材として上記のような製鋼ダスト(ガ
ス灰)及び鉄鋼スラグを使用する主な理由は、鉄
(酸化鉄)及び重金属分含有量が多いので比重が
大であり、しかも硫黄との結合力が大で加熱下で
の溶融混練処理により長期安定性にすぐれた放射
線遮蔽材料を与えるからである。しかもこれらが
製鋼工程の副生物であるのでコストが安くこうし
た副生物の有効利用を果たすことができるという
利点も有するからである。 本発明方法に用いられる硫黄は必ずしも高純度
のものである必要はなく、コークス製造、製鉄、
石明精製工場などの脱硫工程から副生する副生硫
黄でも良い。 本発明方法において、このような製鋼ダストと
鉄鋼スラグと硫黄を1〜3重量部:3〜6重量
部:2〜3重量部の割合で混合し所定温度で混融
混練する。 この場合製鋼ダストが3重量部を越えると比重
が大きくなるが、強度、粘性が低下する。また詰
まり方の密度が悪いため、遮蔽力が悪くなる。一
方、1重量部未満では粘性が良くなるが比重が小
さくなつてしまう。 鉄鋼スラグが6重量部を越えると粘性が低減し
圧縮強度も出なくなり、3重量部未満では比重が
小さくなり、遮蔽力が悪くなる。 一方、硫黄が3重量部を越えると圧縮強度が低
下し、2重量部未満では骨材としての製鋼ダスト
と鉄鋼スラグの、硫黄とのなじみが不足し、十分
な粘性のものが得られなくなる。 溶融温度は、通常95〜130℃好ましくは95〜120
℃である。溶融温度が95℃より低い場合は溶融硫
黄の粘度が加熱しても十分に上昇しない。溶融硫
黄の粘度は120℃での加熱で最高になる。120℃を
越えると溶融硫黄からのSO2ガスの発生量が
5ppmを越える。このSO2ガスの発生に伴い溶融
硫黄の粘度が劣化して混融が不十分となるので上
限は130℃以下となる。なお安全衛生上からは
SO2の発生量を5ppm以下に抑えるのが好まし
い。 この溶融加熱は、溶融混合物の粘性が十分に発
現するまで行うが、通常5〜30分間で十分であ
る。 次に、硫黄、製鋼ダスト及び鉄鋼スラグの三者
を混融混練し、冷却固化する際の好ましい操作方
法を述べる。 まず、容器内に硫黄を入れて95〜130℃に加熱
して液状に溶融する。一方別の容器内で製鋼ダス
トと鉄鋼スラグとを95〜130℃に加熱処理し、こ
れを前記の溶融した硫黄に混合し、混練する。次
いで同じく95〜130℃で三者全体に粘性が発現す
るまで十分にかきまぜる。 このようにして得られた製鋼ダスト、鉄鋼スラ
グ及び硫黄からなる混融物は、自然放冷により冷
却して放射線及び放射性物質の遮蔽、防止材が得
られる。 この場合、冷却後の固化物を再度95〜130℃に
加熱することにより、その圧縮強度をさらに高め
ることができる。 このようにして得られたものは比重3.410〜
3.650で遮蔽材料としてコンクリートの中で、最
も遮蔽能力の高いとされているPSコンクリート
よりもさらにすぐれた放射線の遮蔽能力を示す。 また、圧縮強度が500Kg/cm2以上のものが得ら
れ耐久性にすぐれた構造材料として用いられる。
また硫黄の特性として耐薬品性もすぐれる。 さらに本発明の遮蔽、防止材は速乾性で粘着性
にすぐれている。したがつて放射性物質の貯蔵
庫、放射線使用室の壁が振動、風化などにより亀
裂が生じた場合で溶融液状として、そのわれ目に
充填することができる。そのため補修作業が安全
かつ能率的で短時間に行うことができ、経済性が
高い。またこのものの固化収縮率は5〜7×10-4
と普通コンクリートの自由収縮率とほぼ等しい値
を示す。 このように本発明の遮蔽、防止材によれば、単
に放射線を遮蔽するばかりでなく、保管中の放射
性物質の漏洩を防止できる。したがつて子炉運
転、保安作業、医療などで発生する放射性産業廃
棄物の遮蔽材料としても好適である。 次に本発明を実施例に基づきさらに詳細に説明
する。 実施例 1 硫黄(純度約70%)450gを反応容器に採り、
有炎熱源で110℃に加熱して液状に溶融した。一
方、電気炉ダスト(組成:SiO25.32%、CaO5.5
%、Al2O31.59%、Fe2O331%、ZnO11%、
MgO3.9%)200gと転炉スラグ(組成:SiO233.4
%、CaO41%、Al2O314.5%、Fe2O34.0%、
MgO6.0%、S1.0%、MgO0.7%、TiO21.5%)
850gとを別の反応容器にとり、有炎熱源で110℃
に加熱処理後、前記の加熱した液状硫黄中に添
加、混合し、110℃に保持して粘性が発現するま
でヘラでかきまぜた。次いでこの溶融混練物を1
cm×20cm×20cmの型枠に注型し自然冷却(型枠注
型後脱型迄約5分)して放射線遮蔽、防止材を製
造した。 このものの比重は3.595圧縮強度は650Kg/cm2
あり後記の試験例1、2で示すようにすぐれた放
射線(γ線)遮蔽能力を示した。 実施例 2 硫黄(純度70%)400gを反応容器にとり有炎
熱源で110℃に加熱して液状に溶融した。一方転
炉ダスト(素成:Fe54%、Zn3%、Mn1%、
Pb0.4%、Cu0.05%)200gと転炉スラグ(組成:
SiO210.9%、CaO42.9%、Al2O31.5%、FeO20.7
%、MgO7.2%、S0.09%、MnO5.2%、TiO21.4
%)800gとを別の反応容器にとり、有炎熱源で
110℃に加熱処理後、実施例1と同様にこれを溶
融硫黄中の添加混合し、以下実施例1と同様の手
順で処理、注型して放射線遮蔽、防止材を得た。
このものの比重は3.415、圧縮強度は510Kg/cm2
あり、これは実施例1のものと同様のすぐれた放
射線遮蔽能力を示した。 試験例 1 実施例1の放射線遮蔽、防止材(本発明品)、
PSコンクリート及び鉛ブロツクそれぞれを所定
の厚さに重ね、Co―60を線源とするγ線の透過
率を測定した。試験方法は国際放射線測定委員会
(ICRU)の測定法に準じて行つた。この時の測
定条件は次の通り。 1 コバルト―60:2分間照射 2 吸収体―線源距離:50cm 3 吸収体―線量計距離:50cm 4 照射野:10cm×10cm 5 線量計:IONEX TYPE2500/3S.No.1416 Probe:0.6mmlS.No.4060 この試験結果を第1図に示した。同図の結果よ
り、本発明品がコンクリートの中でも遮蔽能力の
良いとされるPSコンクリートに対し、同一厚さ
で比較してはるかに、低い透過率を示すことがわ
かる。 試験例 2 試験例1で用いた高エネルギーγ線の線源Co
―60に代えてそれよりエネルギーの低い線源I―
131又はさらに低エネルギーの線源であるTc―
99mを用いて、試験例1の方法に準じて、本発明
品(実施例1の放射線遮蔽、防止材)の透過率を
測定した。その結果を第2図のグラフに示した。 この結果より本発明品は高エネルギーから低エ
ネルギーにわたるγ線を効果的に遮蔽することが
わかる。
[Table] The main reason for using the above-mentioned steelmaking dust (gas ash) and steel slag as aggregates in the material for shielding and preventing radiation and radioactive substances of the present invention is because of the iron (iron oxide) and heavy metal content. This is because it has a high specific gravity because of its large amount of sulfur, and also has a high bonding force with sulfur, so that it can be melted and kneaded under heating to provide a radiation shielding material with excellent long-term stability. Furthermore, since these are by-products of the steel manufacturing process, they have the advantage of being low in cost and allowing effective use of these by-products. The sulfur used in the method of the present invention does not necessarily have to be of high purity.
It may also be by-product sulfur produced from the desulfurization process at the Shimei refinery. In the method of the present invention, such steelmaking dust, steel slag, and sulfur are mixed in a ratio of 1 to 3 parts by weight: 3 to 6 parts by weight: 2 to 3 parts by weight, and then melted and kneaded at a predetermined temperature. In this case, if the steelmaking dust exceeds 3 parts by weight, the specific gravity will increase, but the strength and viscosity will decrease. Furthermore, the density of the clogging is poor, resulting in poor shielding power. On the other hand, if it is less than 1 part by weight, the viscosity will be improved but the specific gravity will be decreased. If the amount of steel slag exceeds 6 parts by weight, the viscosity will be reduced and the compressive strength will not be obtained, and if it is less than 3 parts by weight, the specific gravity will become small and the shielding power will deteriorate. On the other hand, if the sulfur content exceeds 3 parts by weight, the compressive strength will decrease, and if it is less than 2 parts by weight, the compatibility of the steelmaking dust and steel slag as aggregates with the sulfur will be insufficient, making it impossible to obtain a product with sufficient viscosity. Melting temperature is usually 95-130℃, preferably 95-120℃
It is ℃. If the melting temperature is lower than 95°C, the viscosity of the molten sulfur will not increase sufficiently even when heated. The viscosity of molten sulfur is highest when heated to 120°C. When the temperature exceeds 120℃, the amount of SO 2 gas generated from molten sulfur increases.
Exceeds 5ppm. With the generation of SO 2 gas, the viscosity of the molten sulfur deteriorates and mixing becomes insufficient, so the upper limit is 130°C or less. From a safety and health perspective,
It is preferable to suppress the amount of SO 2 generated to 5 ppm or less. This melting and heating is carried out until the molten mixture becomes sufficiently viscous, and usually 5 to 30 minutes is sufficient. Next, a preferred operating method for mixing and kneading sulfur, steelmaking dust, and steel slag, and cooling and solidifying the mixture will be described. First, sulfur is placed in a container and heated to 95-130°C to melt it into a liquid. On the other hand, steelmaking dust and steel slag are heated to 95 to 130°C in a separate container, and mixed with the molten sulfur and kneaded. Next, stir thoroughly at 95 to 130°C until all three components become viscous. The thus obtained mixed melt consisting of steelmaking dust, steel slag, and sulfur is cooled by natural cooling to obtain a material for shielding and preventing radiation and radioactive substances. In this case, the compressive strength can be further increased by heating the solidified product after cooling to 95 to 130°C again. The product obtained in this way has a specific gravity of 3.410~
3.650, it shows even better radiation shielding ability than PS concrete, which is said to have the highest shielding ability among concrete as a shielding material. It also has a compressive strength of 500 kg/cm 2 or more and is used as a highly durable structural material.
Sulfur also has excellent chemical resistance. Furthermore, the shielding and preventing material of the present invention is quick-drying and has excellent adhesiveness. Therefore, if cracks occur in the walls of radioactive substance storage or radiation usage rooms due to vibration, weathering, etc., it can be filled in the cracks in the form of molten liquid. Therefore, repair work can be carried out safely, efficiently, and in a short time, making it highly economical. Also, the solidification shrinkage rate of this material is 5 to 7×10 -4
shows a value almost equal to the free shrinkage rate of ordinary concrete. As described above, according to the shielding and prevention material of the present invention, it is possible not only to simply shield radiation but also to prevent leakage of radioactive substances during storage. Therefore, it is also suitable as a shielding material for radioactive industrial waste generated during child reactor operation, security work, medical care, etc. Next, the present invention will be explained in more detail based on examples. Example 1 450g of sulfur (purity about 70%) was placed in a reaction vessel,
It was heated to 110°C with a flaming heat source and melted into a liquid state. On the other hand, electric furnace dust (composition: SiO2 5.32%, CaO5.5
%, Al2O3 1.59 % , Fe2O3 31 %, ZnO11%,
MgO3.9%) 200g and converter slag (composition: SiO 2 33.4
%, CaO41%, Al2O3 14.5 %, Fe2O3 4.0 %,
MgO6.0%, S1.0%, MgO0.7%, TiO2 1.5%)
Place 850g of the liquid in a separate reaction container and heat to 110℃ using a flaming heat source.
After heat treatment, it was added to the heated liquid sulfur, mixed, held at 110°C, and stirred with a spatula until viscosity developed. Next, this melt-kneaded product was mixed with 1
A radiation shielding and prevention material was produced by pouring into a mold of cm x 20 cm x 20 cm and cooling naturally (about 5 minutes from casting the mold to removing the mold). The specific gravity of this material was 3.595, the compressive strength was 650 Kg/cm 2 , and as shown in Test Examples 1 and 2 below, it exhibited excellent radiation (γ ray) shielding ability. Example 2 400 g of sulfur (purity 70%) was placed in a reaction vessel and heated to 110° C. with a flaming heat source to melt it into a liquid. On the other hand, converter dust (composition: Fe54%, Zn3%, Mn1%,
Pb0.4%, Cu0.05%) 200g and converter slag (composition:
SiO2 10.9%, CaO42.9%, Al2O3 1.5 %, FeO20.7
%, MgO7.2%, S0.09%, MnO5.2%, TiO2 1.4
%) and 800g in a separate reaction container and heat with a flaming heat source.
After heat treatment at 110°C, this was added and mixed in molten sulfur in the same manner as in Example 1, and then treated and cast in the same manner as in Example 1 to obtain a radiation shielding and prevention material.
This material had a specific gravity of 3.415 and a compressive strength of 510 Kg/cm 2 , and exhibited excellent radiation shielding ability similar to that of Example 1. Test Example 1 Radiation shielding and prevention material of Example 1 (product of the present invention),
PS concrete and lead blocks were stacked to a predetermined thickness, and the transmittance of γ-rays using Co-60 as a radiation source was measured. The test method was conducted in accordance with the measurement method of the International Commission on Radiometry (ICRU). The measurement conditions at this time were as follows. 1 Cobalt-60: 2 minute irradiation 2 Absorber-source distance: 50cm 3 Absorber-dosimeter distance: 50cm 4 Irradiation field: 10cm x 10cm 5 Dosimeter: IONEX TYPE2500/3S.No.1416 Probe: 0.6mmlS. No.4060 The test results are shown in Figure 1. From the results shown in the figure, it can be seen that the product of the present invention exhibits a much lower transmittance than PS concrete, which is said to have good shielding ability among concrete types, at the same thickness. Test Example 2 High-energy γ-ray source Co used in Test Example 1
-Instead of 60, lower energy source I-
131 or even lower energy source Tc—
The transmittance of the product of the present invention (the radiation shielding and prevention material of Example 1) was measured using a 99m beam according to the method of Test Example 1. The results are shown in the graph of FIG. This result shows that the product of the present invention effectively blocks gamma rays ranging from high energy to low energy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の放射線遮蔽、防止材、従来の
放射線遮蔽用コンクリート(PSコンクリート)
及び鉛ブロツクの、厚さと放射線透過率の関係を
示すグラフ、第2図は放射線の線源を変えた場合
の本発明品の厚さと放射線透過率との関係を示す
グラフである。
Figure 1 shows the radiation shielding and prevention material of the present invention, and conventional radiation shielding concrete (PS concrete).
and FIG. 2 is a graph showing the relationship between the thickness and the radiation transmittance of the product of the present invention when the radiation source is changed.

Claims (1)

【特許請求の範囲】[Claims] 1 製鋼ダスト1〜3重量部、鉄鋼スラグ3〜6
重量部及び硫黄2〜3重量部の割合で含有する組
成物を95〜130℃で混融加熱したのち冷却固化し
てなることを特徴とする放射線及び放射性物質の
遮蔽、防止材。
1 1 to 3 parts by weight of steelmaking dust, 3 to 6 parts by weight of steel slag
1. A material for shielding and preventing radiation and radioactive substances, which is obtained by melting and heating a composition containing 2 to 3 parts by weight of sulfur and sulfur at 95 to 130°C, and then cooling and solidifying the composition.
JP15393482A 1982-09-06 1982-09-06 Radiation shielding material Granted JPS5943395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15393482A JPS5943395A (en) 1982-09-06 1982-09-06 Radiation shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15393482A JPS5943395A (en) 1982-09-06 1982-09-06 Radiation shielding material

Publications (2)

Publication Number Publication Date
JPS5943395A JPS5943395A (en) 1984-03-10
JPS6251440B2 true JPS6251440B2 (en) 1987-10-29

Family

ID=15573268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15393482A Granted JPS5943395A (en) 1982-09-06 1982-09-06 Radiation shielding material

Country Status (1)

Country Link
JP (1) JPS5943395A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744226A1 (en) * 1995-05-26 1996-11-27 Ikari-Laboratory For Environmental Science Co., Ltd. Method for manufacturing molded materials solidified by sulfur and apparatus used in the method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120896A (en) * 1984-07-10 1986-01-29 サノヤ産業株式会社 Material for shielding radiation
JP2007231692A (en) * 2006-03-03 2007-09-13 Japan Atomic Energy Agency Heavy concrete placing joint method
JP5904053B2 (en) * 2012-08-15 2016-04-13 Jfeスチール株式会社 Radiation shielding structure and embankment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744226A1 (en) * 1995-05-26 1996-11-27 Ikari-Laboratory For Environmental Science Co., Ltd. Method for manufacturing molded materials solidified by sulfur and apparatus used in the method

Also Published As

Publication number Publication date
JPS5943395A (en) 1984-03-10

Similar Documents

Publication Publication Date Title
US4514329A (en) Process for vitrifying liquid radioactive waste
JP2011528992A (en) Waste containment process by vitrification in metal cans
JPH05215880A (en) Nuclear fuel element containing trap for fission product mainly composed of oxide
GB1593202A (en) Method of making a cellular body from a high silica borosilicate composition
JPH0249680B2 (en)
US4094809A (en) Process for solidifying high-level nuclear waste
JPS6251440B2 (en)
US5221646A (en) Neutron absorbing glass compositions
JPH0252839B2 (en)
JP2001027694A (en) Solidified body of radioactive condensed waste substance and manufacture of the same
CN114105472A (en) Iron-containing high-phosphate glass, preparation method and application thereof
Barlow et al. Synthesis of simulant ‘lava-like’fuel containing materials (LFCM) from the Chernobyl reactor Unit 4 meltdown
GB2039536A (en) Desulphurising molten metals
RU2215340C2 (en) Cement for nuclear reactor molten core catcher
US1925560A (en) Vitreous enamel composition and methods of making same
JP2004037458A (en) Method for fixing metallic sodium in glass form
Rudolph et al. Lab-scale R+ D work on fission product solidification by vitrification and thermite processes
Pilania et al. Synthesis of the chemically durable glass-ceramic matrix for radioactive waste immobilisation
JP3956336B2 (en) Method for melting radioactive waste
CN101709353B (en) Composite sulfur removal material for cast iron and preparation method thereof
CN112551889A (en) Glass matrix composition of lead-boron-polyethylene, glass solidified body and preparation method thereof
JPS5514865A (en) Powder for continuous casting of steel
JPS6042698A (en) Method of vitrifying radioactive waste
Ross Process for solidifying high-level nuclear waste
JPH0556479B2 (en)