JPS6251315B2 - - Google Patents

Info

Publication number
JPS6251315B2
JPS6251315B2 JP56127631A JP12763181A JPS6251315B2 JP S6251315 B2 JPS6251315 B2 JP S6251315B2 JP 56127631 A JP56127631 A JP 56127631A JP 12763181 A JP12763181 A JP 12763181A JP S6251315 B2 JPS6251315 B2 JP S6251315B2
Authority
JP
Japan
Prior art keywords
coo
nach
cooh
heat storage
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56127631A
Other languages
Japanese (ja)
Other versions
JPS5828992A (en
Inventor
Takahiro Wada
Ryoichi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12763181A priority Critical patent/JPS5828992A/en
Priority to US06/395,707 priority patent/US4426307A/en
Priority to EP82303567A priority patent/EP0070648B1/en
Priority to AU85700/82A priority patent/AU540264B2/en
Priority to DE8282303567T priority patent/DE3267154D1/en
Priority to CA000406862A priority patent/CA1178429A/en
Publication of JPS5828992A publication Critical patent/JPS5828992A/en
Publication of JPS6251315B2 publication Critical patent/JPS6251315B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、少なくともNaCH3COO,
NH2CH2COOHおよびH2Oよりなる蓄熱材に関す
るものである。 一般に蓄熱材には、物質の顕熱を利用したもの
と、潜熱を利用したものとが知られている。潜熱
を利用した蓄熱材は、顕熱を利用した蓄熱材に比
較して、単位重量当り、また単位体積当りの蓄熱
量が大きく、必要量の熱を蓄熱しておくのに少量
の蓄熱材でよく、そのため蓄熱装置を小型化する
ことができる。潜熱を利用した蓄熱材は、顕熱を
利用した蓄熱材のように、放熱とともに温度が低
下してしまわずに、転移点において一定温度の熱
を放熱するという特徴を有している。特に無機水
化物の融解潜熱を利用した蓄熱材は、単位体積当
りの蓄熱量の大きなことが知られている。 ところで、従来よりNaCH3COO・3H2O(融点
58.2℃)は、無機水化物の中でも融解潜熱は
63cal/gと特に大きな物質であることが知られ
ている。しかし、NaCH3COO・3H2Oは、融点が
58.2℃と高いため、太陽熱を利用する蓄熱装置な
どへの幅広い応用が困難なものであつた。そのた
め、NaCH3COO・3H2Oに各種酢酸塩やその他の
無機塩類を添加して融点を低下させる方法などが
提案されているが、それら方法によると融点の低
下に伴つて必要以上に融解潜熱が低下してしま
い、実用化が困難であつた。 本発明は、少なくともNaCH3COO,
NH2CH2COOHおよびH2Oよりなる系の組成を変
化させることによつて蓄熱温度と放熱温度を制御
することができ、安価で吸放熱性能の安定した蓄
熱量の大きな蓄熱材を提供することを目的とす
る。本発明の蓄熱材の特徴は、少なくとも
NaCH3COO,NH2CH2COOHおよびH2Oの3成分
で構成されているところにある。より好ましく
は、これら三者の組成比率がNaCH3COOについ
ては45.0〜62.5重量%の範囲にあり、
NH2CH2COOHについては1.25〜25.0重量%の範
囲にあり、H2Oについては30〜42.5重量%の範囲
にある蓄熱材である。さらに望ましいのは、
NaCH3COO・3H2OとNH2CH2COOHを両端成分
とする組成を有し、NH2CH2COOHを30重量%以
下(ただし0%を除く)の範囲で含有している蓄
熱材である。 以下本発明の実施例を挙げて説明する。 市販の試薬特級のNaCH3COO,NaCH3COO・
3H2O,NH2CH2COOHと、蒸留した後イオン交
換して精製したH2Oとを用いて、第1表および第
2表に示すように所定量配合し、それを65℃まで
加熱して、できるだけ固形物を溶解させて試料と
して用いた。これらの試料を示差走査熱量計
(D.S.C)を用いて潜熱の大きさと転移温度の測
定を行つた。それらの測定結果を第3表および第
4表に示す。ところで第1表に示したのは
NaCH3COO・3H2OとNH2CH2COOHを両端成分
とする試料であり、第2表に示したのは、
NaCH3COO・3H2OとNH2CH2COOHを両端成分
とする組成の周辺組成である。 第3表および第4表において、転移温度として
はDSCカーブのピーク温度を記し、また、二つ
の温度で転移を行う試料については、それらの温
度をそれぞれ記した。潜熱は、それらの転移によ
るものを合計した値を記した。ところで当然のこ
とであるが、0℃以下の転移については、この場
合不必要と考えられるので、対象とした。 第3表および第4表の評価は、潜熱が30cal/
g以上の試料には〇印を付し、潜熱が20cal/g
以上30cal/g未満の試料には△、それ以外は×
とした。ところで当然のことであるが〇印を付し
た試料は蓄熱量が大きく実用化可能なものであ
り、△印を付した試料は、蓄熱量はそれほど大き
くないが、転移温度が、従来の潜熱蓄熱材にない
温度範囲にあるため十分実用化が可能であると考
えられるものである。
The present invention provides at least NaCH 3 COO,
This invention relates to a heat storage material made of NH 2 CH 2 COOH and H 2 O. In general, there are two types of heat storage materials known: those that utilize the sensible heat of substances and those that utilize latent heat. Heat storage materials that use latent heat have a larger amount of heat storage per unit weight and unit volume than heat storage materials that use sensible heat, and require only a small amount of heat storage material to store the required amount of heat. Therefore, the heat storage device can be downsized. A heat storage material that uses latent heat has a characteristic that unlike a heat storage material that uses sensible heat, the temperature does not drop with heat radiation, and instead radiates heat at a constant temperature at a transition point. In particular, heat storage materials that utilize the latent heat of fusion of inorganic hydrates are known to have a large amount of heat storage per unit volume. By the way, NaCH 3 COO・3H 2 O (melting point
58.2℃) is the latent heat of fusion among inorganic hydrates.
It is known to be a particularly large substance at 63 cal/g. However, NaCH 3 COO・3H 2 O has a melting point of
Because of its high temperature of 58.2 degrees Celsius, it has been difficult to widely apply it to heat storage devices that utilize solar heat. Therefore, methods have been proposed to lower the melting point by adding various acetates and other inorganic salts to NaCH 3 COO 3H 2 O, but these methods reduce the latent heat of fusion more than necessary as the melting point decreases. However, it was difficult to put it into practical use. The present invention provides at least NaCH 3 COO,
By changing the composition of a system consisting of NH 2 CH 2 COOH and H 2 O, heat storage temperature and heat radiation temperature can be controlled, and a heat storage material that is inexpensive, has stable heat absorption and radiation performance, and has a large amount of heat storage is provided. The purpose is to The heat storage material of the present invention is characterized by at least
It is composed of three components: NaCH 3 COO, NH 2 CH 2 COOH and H 2 O. More preferably, the composition ratio of these three is in the range of 45.0 to 62.5% by weight for NaCH 3 COO,
The heat storage material has a content of NH 2 CH 2 COOH in a range of 1.25 to 25.0% by weight, and a content of H 2 O in a range of 30 to 42.5% by weight. Even more desirable is
A heat storage material that has a composition of NaCH 3 COO・3H 2 O and NH 2 CH 2 COOH as both end components, and contains NH 2 CH 2 COOH in an amount of 30% by weight or less (excluding 0%). be. The present invention will be described below with reference to Examples. Commercially available reagent grade NaCH 3 COO, NaCH 3 COO・
Using 3H 2 O, NH 2 CH 2 COOH and H 2 O purified by distillation and ion exchange, predetermined amounts were blended as shown in Tables 1 and 2, and the mixture was heated to 65°C. The solids were dissolved as much as possible and used as a sample. The magnitude of latent heat and transition temperature of these samples were measured using a differential scanning calorimeter (DSC). The measurement results are shown in Tables 3 and 4. By the way, Table 1 shows
The sample whose end components are NaCH 3 COO・3H 2 O and NH 2 CH 2 COOH is shown in Table 2.
This is a peripheral composition with NaCH 3 COO・3H 2 O and NH 2 CH 2 COOH as both end components. In Tables 3 and 4, the peak temperature of the DSC curve is shown as the transition temperature, and for samples that undergo transition at two temperatures, those temperatures are shown, respectively. The latent heat is the sum of those due to these transitions. By the way, as a matter of course, the transition below 0° C. was considered unnecessary in this case, so it was targeted. The evaluations in Tables 3 and 4 show that the latent heat is 30cal/
Samples with a weight of 20g or more are marked with a circle, and the latent heat is 20cal/g.
△ for samples with more than 30 cal/g, otherwise ×
And so. By the way, as a matter of course, the samples marked with ○ have a large amount of heat storage and can be put to practical use, and the samples marked with △ have a not so large amount of heat storage, but their transition temperature is higher than that of conventional latent heat storage. Since the temperature range is not found in other materials, it is thought that it can be put to practical use.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 第3表のデータを解析すると、NaCH3COO・
3H2OとNH2CH2COOHを両端成分とする組成を
有する、NaCH3COO,NH2CH2COOH,H2Oの3
成分系において、NH2CH2COOHを0.2重量%含
有する試料1では、転移点が57.9℃まで低下する
が、潜熱は63cal/gであり、NaCH3COO・
3H2Oのそれとほとんど等しい。それで、
NH2CH2COOHの含有量を増加させていくと、転
移点は少しづつ低下し、それにともなつて潜熱も
若干ではあるが減少する。NH2CH2COOHの含有
量が2重量%以上である試料では、45℃付近に従
来の転移とは別の転移が観測される。
NH2CH2COOHの含有量が増加するにつれて高温
側の転移点は低下し、低温側の転移点はほぼその
温度を保つ。NH2CH2COOHを15重量%以上含有
している試料では、低温側の転移が高温側の転移
とほぼ重なつて観測される。それで、試料8,
9,10のように、NH2CH2COOHを15〜30重量%
程度含有する、NaCH3COO・3H2Oと
NH2CH2COOHを両端成分とする組成物は、45℃
付近に転移点を有し、潜熱も40cal/g以上を有
する優秀な蓄熱材となつているのがわかる。
NH2CH2COOHをそれ以上含有する試料では、転
移点が若干低下するが、潜熱は大きく減少する。 結局NaCH3COO・3H2OとNH2CH2COOHを両
端成分とし、NH2CH2COOHを30重量%以下(た
だし0%を除く)の範囲で含有する、
NaCH3COO,NH2CH2COOH,H2Oの3成分系組
成物は、それらの組成を変化させることによつて
蓄熱温度および放熱温度を制御できるものであ
り、しかも潜熱も40cal/g以上を有し、従来に
ないきわめて優秀な蓄熱材となつている。 つぎに、第4表で示したNaCH3COO・3H2Oと
NH2CH2COOHを両端成分とする組成の周辺領域
にある試料の特性を解析する。試料13から試料20
はNH2CH2COOHの含有量を5重量%一定に保持
して、NaCH3COOとH2Oの含有量を変化させた
ものである。ところで試料13から試料16は、
NaCH3COO・3H2OとNH2CH2COOHとを両端成
分とする組成のH2O過剰側、つまりNaCH3COO
不足側の組成を有する試料であり、試料17から試
料20は、逆にNaCH3COO・3H2Oと
NH2CH2COOHを両端成分とする組成のH2Oの不
足側つまりNaCH3COO過剰側の組成を有する試
料である。したがつて、H2O過剰側の試料13から
NH2CH2COOHの含有量を変化させることなく、
NaCH3COOの含有量を増加させていくと、つま
り試料14、試料15、試料16と変化するにつれて、
潜熱は増加し、転移温度も上昇する。 そして、NaCH3COO・3H2OとNH2CH2COOH
を両端成分とする組成を有し、しかも
NH2CH2COOHを5重量%含有する第3表で示し
た試料4で、潜熱は最大となり、さらに
NaCH3COOの含有量を増加させても、試料17、
試料18、試料19、試料20の特性からわかるよう
に、潜熱の増加は見られず逆に減少する。転移温
度はNaCH3COOの含有量の増加に伴い、途中で
極大を有することなく、上昇する。このような関
係は、NH2CH2COOHを25重量%含有する試料の
間でも認められ、NaCH3COO・3H2Oと
NH2CH2COOHを両端とする組成にもつとも近い
試料27がもつとも大きな潜熱を有し、転移点は、
NaCH3COOの含有量の増加とともに上昇してい
るのがわかる。 つまり、NaCH3COO・3H2OとNH2CH2COOH
を両端成分とする組成に比較して、H2Oの過剰
側、つまりNaCH3COO不足側では転移点が低下
し、逆にH2O不足側、つまりNaCH3COO過剰側
では転移点が若干上昇する。そして、潜熱は
NaCH3COO・3H2OとNH2CH2COOHを両端成分
とする組成からH2O過剰側、H2O不足側、つまり
NaCH3COO不足側、NaCH3COO過剰側のいずれ
の方向にずれても減少する。 以上の結果をまとめると、第3表、第4表の評
価で△印と〇印を付した試料の組成領域のうち特
に融点が大きく低下したにもかかわらず潜熱がそ
れほど低下しない領域つまり、NaCH3COO,
NH2CH2COOH,H2Oの3成分系において、
NaCH3COOが45〜62.5重量%の範囲にあり、
NH2CH2COOHが1.25重量%〜25重量%の範囲に
ありH2Oが30〜42.5重量%の範囲にあるのが望ま
しい。 つぎに、NaCH3COOを48.2重量%、
NH2CH2COOHを20重量%、H2Oを31.8重量%の
割合で混合した試料9と同一組成の混合物800g
に過冷却防止材として、Na4P2O7・10H2Oを20g
加え、内径100mm、高さ100mmの円筒形容器に収納
し、熱電対挿入管付の栓で密封した。その容器を
35℃と55℃の間で加熱、冷却を繰り返したとこ
ろ、ほとんど過冷却を示さず、安定して融解およ
び凝固を繰り返し、連続使用においても本発明の
蓄熱材にはなんら問題は存在せず、安定した吸放
熱性能を有することが確認できた。 本発明は、上述のように、少なくとも
NaCH3COO,NH2CH2COOおよびH2Oの3成分
からなり、それらの組成を変化させることによつ
て蓄熱温度と放熱温度を制御でき、安価で、吸放
熱性能の安定した蓄熱量の大きな蓄熱材を提供す
ることができる。また、本発明において、CO
(NH22などの他の融点降下剤を併用したり、
Na2H2P4O7などの過冷却防止材を加えたり、さら
にその過冷却防止材の沈降や凝集を防止するため
に増粘剤を加えたり、その他添加剤を適宜加えた
りしてもよいのは当然である。 以上の説明から明らかなように、本発明の蓄熱
材は、冷房や暖房を目的とした空調用蓄熱装置だ
けでなく、蓄熱を利用するあらゆる方面に応用す
ることができるものである。
[Table] Analyzing the data in Table 3, NaCH 3 COO・
3 of NaCH 3 COO , NH 2 CH 2 COOH, and H 2 O, which has a composition of 3H 2 O and NH 2 CH 2 COOH as both end components .
In the component system, in sample 1 containing 0.2% by weight of NH 2 CH 2 COOH, the transition point decreases to 57.9°C, but the latent heat is 63 cal/g, and NaCH 3 COO・
Almost equal to that of 3H 2 O. So,
As the content of NH 2 CH 2 COOH increases, the transition point gradually decreases, and the latent heat also decreases, albeit slightly. In samples containing NH 2 CH 2 COOH of 2% by weight or more, a transition different from the conventional transition is observed around 45°C.
As the content of NH 2 CH 2 COOH increases, the transition point on the high temperature side decreases, and the transition point on the low temperature side almost maintains that temperature. In samples containing 15% by weight or more of NH 2 CH 2 COOH, the transition on the low temperature side is observed to almost overlap with the transition on the high temperature side. So, sample 8,
9,10, 15-30% by weight of NH 2 CH 2 COOH
Contains NaCH 3 COO・3H 2 O and
The composition containing NH 2 CH 2 COOH as both end components is heated to 45°C.
It can be seen that it has a transition point nearby and has a latent heat of over 40 cal/g, making it an excellent heat storage material.
For samples containing more NH 2 CH 2 COOH, the transition point decreases slightly, but the latent heat decreases significantly. After all, it has NaCH 3 COO・3H 2 O and NH 2 CH 2 COOH as both end components, and contains NH 2 CH 2 COOH in a range of 30% by weight or less (excluding 0%).
The three-component composition of NaCH 3 COO, NH 2 CH 2 COOH, and H 2 O can control the heat storage temperature and heat radiation temperature by changing their composition, and has a latent heat of 40 cal/g or more. This makes it an extremely excellent heat storage material that has never existed before. Next, with NaCH 3 COO・3H 2 O shown in Table 4,
Analyze the characteristics of samples in the region around the composition with NH 2 CH 2 COOH as both end components. Sample 13 to sample 20
The content of NH 2 CH 2 COOH was kept constant at 5% by weight, and the contents of NaCH 3 COO and H 2 O were varied. By the way, samples 13 to 16 are
NaCH 3 COO・3H 2 O and NH 2 CH 2 COOH are the H 2 O-excess side of the composition, that is, NaCH 3 COO
Samples 17 to 20 have compositions on the deficient side, and conversely, NaCH 3 COO 3H 2 O.
This sample has a composition with NH 2 CH 2 COOH as both end components, on the H 2 O deficient side, that is, on the NaCH 3 COO excess side. Therefore, from sample 13 on the H 2 O excess side,
Without changing the content of NH 2 CH 2 COOH,
As the content of NaCH 3 COO increases, that is, as it changes from sample 14 to sample 15 to sample 16,
The latent heat increases and the transition temperature also increases. And NaCH 3 COO 3H 2 O and NH 2 CH 2 COOH
has a composition with both end components, and
Sample 4 shown in Table 3 containing 5% by weight of NH 2 CH 2 COOH has the maximum latent heat, and
Even with increasing the content of NaCH 3 COO, sample 17,
As can be seen from the characteristics of Samples 18, 19, and 20, the latent heat does not increase, but rather decreases. The transition temperature increases as the content of NaCH 3 COO increases, without having a maximum in the middle. Such a relationship was also observed among samples containing 25% by weight of NH 2 CH 2 COOH, and between NaCH 3 COO and 3H 2 O.
Sample 27, which has a composition with both ends of NH 2 CH 2 COOH, has the largest latent heat, and the transition point is
It can be seen that the value increases as the content of NaCH 3 COO increases. That is, NaCH 3 COO・3H 2 O and NH 2 CH 2 COOH
Compared to a composition with , as both end components, the transition point is lower on the H 2 O excess side, that is, the NaCH 3 COO-deficient side, and conversely, the transition point is slightly lower on the H 2 O-deficient side, that is, on the NaCH 3 COO-excess side. Rise. And the latent heat is
From the composition with NaCH 3 COO・3H 2 O and NH 2 CH 2 COOH as both end components, the H 2 O excess side and the H 2 O deficiency side, i.e.
It decreases whether it shifts to the NaCH 3 COO-deficient side or the NaCH 3 COO-excess side. To summarize the above results, among the compositional regions of the samples marked with △ and ○ in the evaluations of Tables 3 and 4, the region where the latent heat does not decrease much even though the melting point has decreased significantly, that is, NaCH 3 COO,
In the three-component system of NH 2 CH 2 COOH, H 2 O,
NaCH3COO ranges from 45 to 62.5% by weight;
Preferably, NH2CH2COOH is in the range of 1.25% to 25% by weight and H2O is in the range of 30 to 42.5 % by weight. Next, 48.2% by weight of NaCH 3 COO,
800 g of a mixture with the same composition as Sample 9, which was a mixture of 20% by weight of NH 2 CH 2 COOH and 31.8% by weight of H 2 O.
20g of Na 4 P 2 O 7・10H 2 O as a supercooling prevention material.
In addition, it was placed in a cylindrical container with an inner diameter of 100 mm and a height of 100 mm, and sealed with a stopper equipped with a thermocouple insertion tube. that container
When repeatedly heated and cooled between 35°C and 55°C, there was almost no supercooling, and the heat storage material of the present invention repeatedly melted and solidified stably, and there were no problems with the heat storage material of the present invention even during continuous use. It was confirmed that it had stable heat absorption and radiation performance. As mentioned above, the present invention provides at least
It consists of three components: NaCH 3 COO, NH 2 CH 2 COO, and H 2 O. By changing their composition, the heat storage temperature and heat radiation temperature can be controlled. It is inexpensive and has stable heat absorption and radiation performance. A large heat storage material can be provided. In addition, in the present invention, CO
(NH 2 ) 2 or other melting point depressants,
Even if a supercooling prevention agent such as Na 2 H 2 P 4 O 7 is added, a thickener is added to prevent the supercooling prevention agent from settling or agglomeration, or other additives are added as appropriate. Of course it's good. As is clear from the above description, the heat storage material of the present invention can be applied not only to air conditioning heat storage devices for cooling and heating purposes, but also to all fields that utilize heat storage.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくともNaCH3COO,H2NCH2COOHお
よびH2Oを構成成分とし、NaCH3COOが45重量
%〜60重量%の範囲にあり、H2NCH2COOHが2
重量%〜25重量%の範囲にあり、H2Oが30重量%
〜40重量%の範囲にあることを特徴とする蓄熱
材。
1 Containing at least NaCH 3 COO, H 2 NCH 2 COOH and H 2 O as constituent components, NaCH 3 COO is in the range of 45% to 60% by weight, and H 2 NCH 2 COOH is 2% by weight.
Ranges from wt% to 25wt% with H2O at 30wt%
A heat storage material characterized by being in the range of ~40% by weight.
JP12763181A 1981-07-17 1981-08-13 Heat accumulating material Granted JPS5828992A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP12763181A JPS5828992A (en) 1981-08-13 1981-08-13 Heat accumulating material
US06/395,707 US4426307A (en) 1981-07-17 1982-07-06 Heat accumulative material
EP82303567A EP0070648B1 (en) 1981-07-17 1982-07-07 Heat accumulative material
AU85700/82A AU540264B2 (en) 1981-07-17 1982-07-07 Heat accumulative material
DE8282303567T DE3267154D1 (en) 1981-07-17 1982-07-07 Heat accumulative material
CA000406862A CA1178429A (en) 1981-07-17 1982-07-08 Heat accumulative material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12763181A JPS5828992A (en) 1981-08-13 1981-08-13 Heat accumulating material

Publications (2)

Publication Number Publication Date
JPS5828992A JPS5828992A (en) 1983-02-21
JPS6251315B2 true JPS6251315B2 (en) 1987-10-29

Family

ID=14964863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12763181A Granted JPS5828992A (en) 1981-07-17 1981-08-13 Heat accumulating material

Country Status (1)

Country Link
JP (1) JPS5828992A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314173A (en) * 1976-07-26 1978-02-08 Mitsubishi Electric Corp Heat regenerating material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314173A (en) * 1976-07-26 1978-02-08 Mitsubishi Electric Corp Heat regenerating material

Also Published As

Publication number Publication date
JPS5828992A (en) 1983-02-21

Similar Documents

Publication Publication Date Title
JPS6251314B2 (en)
US4561989A (en) Heat storage material
Feilchenfeld et al. Calcium chloride hexahydrate: a phase-changing material for energy storage
EP0070648B1 (en) Heat accumulative material
US4272390A (en) Hydrated CaCl2 reversible phase change compositions with nucleating additives
JPS6251315B2 (en)
EP0146304B1 (en) Heat storage material
JPS5828993A (en) Heat accumulating material
US4338208A (en) Hydrated MgCl2 reversible phase change compositions
JPS6015665B2 (en) heat storage material
US4465611A (en) Heat storage material
US4271029A (en) Hydrated Mg(NO3)2 reversible phase change compositions
JPS58142969A (en) Heat accumulative material
JPS58138772A (en) Heat storing material
JPS58141281A (en) Thermal energy storage material
JPS6367836B2 (en)
JPH0140075B2 (en)
JPS6031586A (en) Thermal energy storage material
SU983134A1 (en) Zinc nitrate crystallohydrate based heat accumulating composition
JPS58124197A (en) Heat-accumulating material
JPS6121579B2 (en)
JPH10279931A (en) Heat storage material composition
JPS58141280A (en) Thermal energy storage material
JPH0115549B2 (en)
JPS6238398B2 (en)