JPH0115549B2 - - Google Patents

Info

Publication number
JPH0115549B2
JPH0115549B2 JP6257184A JP6257184A JPH0115549B2 JP H0115549 B2 JPH0115549 B2 JP H0115549B2 JP 6257184 A JP6257184 A JP 6257184A JP 6257184 A JP6257184 A JP 6257184A JP H0115549 B2 JPH0115549 B2 JP H0115549B2
Authority
JP
Japan
Prior art keywords
heat storage
storage material
weight
parts
silicone oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6257184A
Other languages
Japanese (ja)
Other versions
JPS60203689A (en
Inventor
Susumu Matsubara
Toshiharu Maruoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Chemicals Corp
Original Assignee
Shikoku Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Chemicals Corp filed Critical Shikoku Chemicals Corp
Priority to JP6257184A priority Critical patent/JPS60203689A/en
Publication of JPS60203689A publication Critical patent/JPS60203689A/en
Publication of JPH0115549B2 publication Critical patent/JPH0115549B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は硫酸ナトリウム10水塩(Na2SO4
10H2Oという)を主体とする蓄熱材に関するも
のであり、その目的とするところは擬固、放熱の
繰り返しによつて起こる相分離現象を防止し、長
期に亘つて蓄熱性能を安定して保持するように改
善したものである。 Na2SO4・10H2Oは約32℃に融点を持ち、約
60cal/gの潜熱を有するもので、レーヨン紡糸
工程の副産物あるいは石油脱硫時の副産物として
大量かつ安価に得られ、且つ毒性がない等の理由
により潜熱型蓄熱材の有用である。また
Na2SO4・10H2Oは共融物を造ることによりその
融点を変えられるという性質を有しており、例え
ば、Na2SO4・10H2Oに塩化ナトリウム、塩化ア
ンモニウム等を添加することにより、その添加量
に応じて約10℃付近まで融点を下げることができ
る。 潜熱蓄熱量はNa2SO4・10H2O1モルに塩化ナ
トリウム0.5モル及び塩化アンモニウム0.5モルを
添加した場合(融点約13℃)約44cal/gである。 従つて、Na2SO4・10H2O及びその共融物は、
太陽熱、排熱、余熱の回収蓄熱システムあるいは
夏場の電力ピーク緩和を目的として夜間電力で稼
動された冷房機からの冷熱蓄熱システムの潜熱蓄
熱材料に適している。 しかしながら、Na2SO4・10H2Oを潜熱蓄熱材
として長期に亘つて使用する場合には、2つの問
題点がある。即ちその一つは冷却時に擬固点を過
ぎても擬固しないいわゆる過冷却現象であり、他
の一つは、その融点が包晶点であるため、蓄放熱
の繰り返しと共に次第に未融解結晶(無水硫酸ナ
トリウム)が沈澱し、この沈澱物が相変化に関与
しなくなつて、潜熱蓄熱量が減少する所謂蓄熱量
の劣化がある。 過冷却現象については、核生成物質として四ホ
ウ酸ナトリウム10水塩を添加することにより解決
されることが米国特許第2667664号明細書に開示
されている。蓄熱量の劣化を回避するためには、
濃化剤を添加し溶液をゲル状態にして無水硫酸ナ
トリウムの沈澱を防止し、溶液中に均一に分散し
て保持する方法が提案されている。濃化剤の代表
的なものは、おがくず、木材パルプ、カルボキシ
メチルセルロース、メチルセルロース、澱分、有
機アルギン酸塩、ポリアクリル酸塩、架橋型ポリ
アクリル酸塩などの有機高分子化合物、微粉末シ
リカ、ケイソウ土、シリカゲル、ベントナイト、
アタパルガイド型粘土などの無機物である。 さらに特開昭57−200482号公報にはオレイン酸
塩、特開昭58−132075号公報には有機スルフオン
酸塩、特開昭57−159871号公報にはポリエチレン
オキシド類及びエトキシル化アミン類、ヘモサメ
タリン酸ナトリウムなどの晶癖変調剤を添加し、
蓄熱量の劣化を防止する方法が提案されている。 しかしながらこのような方法によつて無水硫酸
ナトリウムの沈澱を防止し、晶癖変調剤を添加し
た場合においても、融解、凝個の繰り返しにより
無水硫酸ナトリウムの結晶粒子が成長し、凝固時
に粒子表面のみが水和塩を形成し、粒子中心部が
無水物のまま残留する傾向を伴ない、蓄熱量がサ
イクルによつて減少することとなり、満足すべき
状態にあるとは云えない。 本発明者等はこのような事情に鑑み種々の試験
研究を重ねた結果、Na2SO4・10H2Oに水を添加
し、芒硝10水塩を芒硝飽和溶液に近づけることに
より融解、凝固のサイクルにより起る無水硫酸ナ
トリウム結晶粒子の生成、成長を防止できるので
はないかと考え、更に水の添加のみでは蓄熱量劣
化を防止できないが、これにシリコン系消泡剤及
びキレート剤の添加を行なうことにより蓄熱量劣
化を防止できることを知見し、本発明を完遂した
ものである。 本発明を実施するに当つては、Na2SO4
10H2O100重量部に対して30〜50重量部の水を添
加すべきであり、30重量部より少ない場合には充
分な蓄熱量劣化防止の効果が得られず、一方50重
量部を超えると蓄熱量劣化防止の効果はあるもの
の蓄熱材単位重量当りの蓄熱量が少なくなるので
実践的でない。 本発明によれば、例えばNa2SO4・10H2O100
重量部に水35重量部、メチルシリコン油0.01重量
部及びクペロン0.5重量部を添加した蓄熱材は、
500サイクルの融解凝固の繰り返し後においても
融点29℃を維持し、蓄熱量は36cal/gであり、
初期の蓄熱量と比べると蓄熱量劣化は僅かに
2cal/gに抑えることができる。 このような蓄熱量劣化防止効果は、各実施例か
らも明らかなように水の添加とメチルシリコン
油、メチルフエニルシリコン油及びメチル水素シ
リコン油などのシリコン系消泡剤及びクペロン、
エチレンジアミン四酢酸・2ナトリウム塩、ニト
リロトリ酢酸・2ナトリウム塩、トリエタノール
アミン等のキレート剤の添加を行つた場合に特異
的に起るものであり、これらのいずれが欠けても
所期の効果を挙げることはできない。 本発明の実施に際しては過冷却防止のために公
知の四ホウ酸ナトリウム10水塩を使用し、また、
発核剤及び未融解結晶の沈澱分離を防止するため
に、濃化剤としてカルボキシメチルセルロース、
メチルセルロース、有機アルギン酸塩、ポリアク
リル酸塩、架橋型ポリアクリル酸塩等の水溶性有
機高分子化合物を併用すべきである。 更に本発明はNa2SO4・10H2Oと塩化ナトリウ
ム、塩化アンモニウム等の共融物についても同様
に適応しうるものであり、蓄熱材としての耐久性
を大幅に向上させることができる。 以下実施例及び比較例によつて本発明を具体的
に説明する。 実施例 1 Na2SO4・10H2O100重量部に対して、水35重
量部、メチルシリコン油0.01重量部、クペロン
0.5重量部及び濃化剤としてカルボキシメチルセ
ルロース4重量部、発核剤として四ホウ酸ナトリ
ウム10水塩4重量部を含有させた試料を40℃の恒
温水槽内で融解混合した。このようにして得られ
た蓄熱剤100gを内径45mm、高さ60mmのポリエチ
レン製円筒容器に入れ、熱電対を挿入し密封した
試料を4本用意し、その3本を40℃15℃で温度
サイクルを繰り返すようセツトした恒温槽に入
れ、加熱−冷却を繰り返させた。 長期の繰り返しサイクルを行ない、100、250、
500サイクル経過ごとに試料を1本づつ取り出し
相変化温度及び潜熱蓄熱量を測定した。 なお、他の1本は初期他(サイクル回数0回)
の測定に充てた。 潜熱蓄熱量の測定は、試料を1日間40℃の恒温
槽に保持した後、10〜15℃の氷を入れたジユワー
瓶に浸し、水温と試料温度が同一になるまでのそ
れぞれの温度変化を読み取つて行ない、容器およ
び試料の顕熱分を差し引いて潜熱蓄熱量を算出し
た。 このようにして得られた試験結果を表1に示し
た。
The present invention uses sodium sulfate decahydrate (Na 2 SO 4 .
The purpose is to prevent the phase separation phenomenon that occurs due to repeated heat dissipation and maintain stable heat storage performance over a long period of time . It has been improved to do so. Na 2 SO 4・10H 2 O has a melting point of about 32℃ and about
It has a latent heat of 60 cal/g, is obtained in large quantities at low cost as a by-product of the rayon spinning process or petroleum desulfurization process, and is non-toxic, making it a useful latent-heat type heat storage material. Also
Na 2 SO 4 · 10H 2 O has the property that its melting point can be changed by creating a eutectic; for example, by adding sodium chloride, ammonium chloride, etc. to Na 2 SO 4 · 10H 2 O. Depending on the amount added, the melting point can be lowered to around 10°C. The amount of latent heat storage is about 44 cal/g when 0.5 mole of sodium chloride and 0.5 mole of ammonium chloride are added to 1 mole of Na 2 SO 4 .10H 2 O (melting point: about 13°C). Therefore, Na 2 SO 4 10H 2 O and its eutectic are
It is suitable as a latent heat storage material for solar heat, waste heat, residual heat recovery and storage systems, and cold heat storage systems from air conditioners operated on nighttime power to alleviate power peaks in the summer. However, when using Na 2 SO 4 .10H 2 O as a latent heat storage material for a long period of time, there are two problems. One of these is the so-called supercooling phenomenon in which pseudo-solidification does not occur even after passing the pseudo-solidification point during cooling, and the other is the phenomenon in which unmelted crystals ( Anhydrous sodium sulfate) is precipitated, and this precipitate no longer participates in the phase change, resulting in a so-called deterioration of the amount of heat storage, in which the amount of latent heat storage decreases. It is disclosed in US Pat. No. 2,667,664 that the supercooling phenomenon can be solved by adding sodium tetraborate decahydrate as a nucleating substance. In order to avoid deterioration of heat storage capacity,
A method has been proposed in which a thickening agent is added to turn the solution into a gel state to prevent precipitation of anhydrous sodium sulfate and to uniformly disperse and maintain the solution in the solution. Typical thickening agents include sawdust, wood pulp, carboxymethyl cellulose, methyl cellulose, lees, organic polymer compounds such as organic alginates, polyacrylates, and cross-linked polyacrylates, finely powdered silica, and diatom. soil, silica gel, bentonite,
It is an inorganic material such as attapal guide type clay. Furthermore, oleate salts are described in JP-A No. 57-200482, organic sulfonates are described in JP-A-58-132075, polyethylene oxides and ethoxylated amines, and hemosamethalin are described in JP-A-57-159871. Adding a crystal habit modifier such as sodium chloride,
A method has been proposed to prevent the deterioration of the amount of heat storage. However, even if precipitation of anhydrous sodium sulfate is prevented by such a method and a crystal habit modifier is added, crystal particles of anhydrous sodium sulfate will grow due to repeated melting and coagulation, and only the surface of the particles will grow during solidification. The particles tend to form hydrated salts and the center of the particles remains anhydrous, and the amount of heat storage decreases with cycling, which is not a satisfactory condition. In view of these circumstances, the present inventors have conducted various tests and researches, and have found that by adding water to Na 2 SO 4 10H 2 O and bringing Glauber's salt decahydrate close to a saturated solution of Glauber's salt, melting and solidification can be reduced. We thought that it might be possible to prevent the formation and growth of anhydrous sodium sulfate crystal particles that occur during cycles, and although adding water alone cannot prevent heat storage deterioration, we added a silicone antifoaming agent and a chelating agent. It was discovered that the deterioration of the amount of heat storage can be prevented by this, and the present invention was completed. In carrying out the present invention, Na 2 SO 4 .
30 to 50 parts by weight of water should be added to 100 parts by weight of 10H 2 O. If it is less than 30 parts by weight, a sufficient effect of preventing heat storage deterioration will not be obtained, while if it exceeds 50 parts by weight, Although this method has the effect of preventing deterioration of the amount of heat storage, it is not practical because the amount of heat storage per unit weight of the heat storage material decreases. According to the invention, for example Na 2 SO 4 .10H 2 O100
The heat storage material is made by adding 35 parts by weight of water, 0.01 parts by weight of methyl silicone oil, and 0.5 parts by weight of Cuperon.
Even after 500 cycles of melting and solidification, it maintains a melting point of 29°C and a heat storage capacity of 36 cal/g.
Compared to the initial heat storage amount, the heat storage amount deteriorates slightly.
It can be suppressed to 2 cal/g. As is clear from each example, such an effect of preventing deterioration of heat storage amount can be achieved by adding water, silicone-based antifoaming agents such as methyl silicone oil, methylphenyl silicone oil, and methyl hydrogen silicone oil, and cuperone,
This occurs specifically when a chelating agent such as ethylenediaminetetraacetic acid disodium salt, nitrilotriacetic acid disodium salt, or triethanolamine is added, and even if any of these is absent, the desired effect will not be achieved. I can't list them. In carrying out the present invention, known sodium tetraborate decahydrate is used to prevent supercooling, and
In order to prevent precipitation of the nucleating agent and unmelted crystals, carboxymethylcellulose is used as a thickening agent.
A water-soluble organic polymer compound such as methylcellulose, organic alginate, polyacrylate, or crosslinked polyacrylate should be used in combination. Furthermore, the present invention can be similarly applied to eutectic products such as Na 2 SO 4 .10H 2 O, sodium chloride, ammonium chloride, etc., and the durability as a heat storage material can be greatly improved. The present invention will be specifically explained below using Examples and Comparative Examples. Example 1 To 100 parts by weight of Na 2 SO 4 10H 2 O, 35 parts by weight of water, 0.01 part by weight of methyl silicone oil, Cuperone
A sample containing 0.5 parts by weight, 4 parts by weight of carboxymethyl cellulose as a thickening agent, and 4 parts by weight of sodium tetraborate decahydrate as a nucleating agent was melted and mixed in a constant temperature water bath at 40°C. Put 100g of the heat storage agent obtained in this way into a polyethylene cylindrical container with an inner diameter of 45mm and a height of 60mm, prepare four samples by inserting thermocouples and sealing them, and temperature cycle the three of them at 40℃ and 15℃. The sample was placed in a constant temperature bath set to repeat heating and cooling. Perform long repeated cycles, 100, 250,
After every 500 cycles, one sample was taken out and the phase change temperature and amount of latent heat storage were measured. In addition, the other one is the initial stage (number of cycles is 0)
The money was spent on measurements. To measure the amount of latent heat storage, the sample is kept in a constant temperature bath at 40°C for one day, then immersed in a juice bottle filled with ice at 10 to 15°C, and the temperature changes are measured until the water temperature and sample temperature become the same. The amount of latent heat storage was calculated by reading and subtracting the sensible heat content of the container and sample. The test results thus obtained are shown in Table 1.

【表】 同表から判るように、本例の組成物は500回の
加熱−冷却を繰り返したのちにおいてもほとんど
性能は変化していない。 比較例 1 実施例1において、メチルシリコン油、クペロ
ンを添加しない組成物について、同様の耐久試験
を行なつた。その結果を第2表に示した。
[Table] As can be seen from the table, the performance of the composition of this example hardly changed even after heating and cooling were repeated 500 times. Comparative Example 1 In Example 1, a similar durability test was conducted for a composition without the addition of methyl silicone oil and cuperone. The results are shown in Table 2.

【表】 同表から判るように、本例の組成物は加熱−冷
却の繰り返しにおいて蓄熱量が大幅に低下するも
のであつた。 比較例 2 実施例1において、メチルシリコン油のみを添
加しない組成物について、同様の耐久試験を行な
つたところ、潜熱蓄熱量は500サイクル経過後
38.0cal/gから30.0cal/gに減少した。 比較例 3 実施例1においてクペロンのみを添加しない組
成物について、同様の耐久試験を行なつたとこ
ろ、潜熱蓄熱量は500サイクル経過後35.0cal/g
から31.0cal/gに減少した。 実施例2及び3 実施例1においてメチルシリコン油に替えてメ
チルフエニルシリコン油及びメチルレ・水素シリ
コン油を夫々0.01重量部づつ添加した組成物を造
り、同様の耐久試験を行なつた。 500サイクル経過後の結果を表3に示した。
[Table] As can be seen from the table, the amount of heat stored in the composition of this example was significantly reduced by repeated heating and cooling. Comparative Example 2 In Example 1, when a similar durability test was conducted on the composition without adding only methyl silicone oil, the amount of latent heat storage after 500 cycles was
It decreased from 38.0 cal/g to 30.0 cal/g. Comparative Example 3 When a similar durability test was conducted on a composition in which only cuperone was not added in Example 1, the amount of latent heat storage was 35.0 cal/g after 500 cycles.
It decreased from 31.0 cal/g to 31.0 cal/g. Examples 2 and 3 Compositions were prepared in which 0.01 parts by weight of methylphenyl silicone oil and methyl hydrogen silicone oil were added in place of methyl silicone oil in Example 1, and the same durability tests were conducted. Table 3 shows the results after 500 cycles.

【表】 実施例4ないし6 実施例1においてクペロンに替えて、エチレン
ジアミン四酢酸・2ナトリウム塩、ニトリロトリ
酢酸・2ナトリウム塩、トリエタノールアミンを
各々0.5重量部づつ添加した組成物を造り、同様
の耐久試験を行なつた。500サイクル経過後の結
果を表4に示した。
[Table] Examples 4 to 6 A composition was prepared in which 0.5 parts by weight each of ethylenediaminetetraacetic acid disodium salt, nitrilotriacetic acid disodium salt, and triethanolamine were added in place of cuperone in Example 1, and the same composition was prepared. We conducted a durability test. Table 4 shows the results after 500 cycles.

【表】 実施例 7 Na2SO4・10H2O100重量部に対してMaCI8重
量部、水35重量部、メチルシリコン油0.01重量
部、クペロン0.5重量部及び濃化剤として架橋型
ポリアクリル酸(商品名「ハイビスワコー103」)
4重量部、発核剤として四ホウ酸ナトリウム10水
塩4重量部を含有させた組成物を造り、その試料
を40℃の恒温水槽内で融解混合した。得られた蓄
熱材を使用して、実施例1と同様の試験を行なつ
た。その試験結果は表5に示した通りである。
[Table] Example 7 8 parts by weight of MaCI , 35 parts by weight of water, 0.01 parts by weight of methyl silicone oil, 0.5 parts by weight of cuperone, and cross-linked polyacrylic acid (as a thickening agent) Product name: “Hibis Wako 103”)
A composition was prepared containing 4 parts by weight of sodium tetraborate decahydrate as a nucleating agent, and the sample was melted and mixed in a constant temperature water bath at 40°C. A test similar to that in Example 1 was conducted using the obtained heat storage material. The test results are shown in Table 5.

【表】 比較例 4 実施例7においてメチルシリコン油、クペロン
を添加しない組成物について、同様の耐久試験を
行なつたところ、潜熱蓄熱量は500サイクル経過
後31cal/gから21cal/gに減少した。
[Table] Comparative Example 4 When a similar durability test was conducted on the composition in Example 7 without the addition of methyl silicone oil and cuperone, the amount of latent heat storage decreased from 31 cal/g to 21 cal/g after 500 cycles. .

Claims (1)

【特許請求の範囲】 1 硫酸ナトリウム10水塩もしくは硫酸ナトリウ
ム10水塩と他の塩との共融物と四ホウ酸ナトリウ
ム10水塩及び濃化剤を主としてなる蓄熱材におい
て、水をシリコン系消泡剤とキレート剤を添加し
たことを特徴とする蓄熱材。 2 硫酸ナトリウム10水塩もしくは共融物の中の
硫酸ナトリウム10水塩の100重量部に対して、水
30〜50重量部を添加してなる特許請求の範囲1に
記載の蓄熱材。 3 添加されるシリコン系消泡剤が、メチルシリ
コン油、メチルフエニルシリコン油、及びメチ
ル・水素シリコン油のうちの少なくとも1つであ
る特請求の範囲1に記載の蓄熱材。 4 添加されるキレート剤が、クペロン、エチレ
ンジアミン四酢酸・2ナトリウム塩、ニトリロト
リ酢酸・2ナトリウム塩、トリエタノールアミン
のうちの少なくとも1つである特許請求の範囲1
項に記載の蓄熱材。
[Claims] 1. In a heat storage material mainly consisting of sodium sulfate decahydrate or a eutectic of sodium sulfate decahydrate and other salts, sodium tetraborate decahydrate, and a thickening agent, water is converted into a silicon-based A heat storage material characterized by the addition of an antifoaming agent and a chelating agent. 2 For 100 parts by weight of sodium sulfate decahydrate or sodium sulfate decahydrate in the eutectic, add water
The heat storage material according to claim 1, wherein 30 to 50 parts by weight of the heat storage material is added. 3. The heat storage material according to claim 1, wherein the silicone antifoaming agent added is at least one of methyl silicone oil, methylphenyl silicone oil, and methyl-hydrogen silicone oil. 4. Claim 1, wherein the chelating agent added is at least one of cuperone, ethylenediaminetetraacetic acid disodium salt, nitrilotriacetic acid disodium salt, and triethanolamine.
Thermal storage material described in section.
JP6257184A 1984-03-29 1984-03-29 Thermal energy storage material Granted JPS60203689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6257184A JPS60203689A (en) 1984-03-29 1984-03-29 Thermal energy storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6257184A JPS60203689A (en) 1984-03-29 1984-03-29 Thermal energy storage material

Publications (2)

Publication Number Publication Date
JPS60203689A JPS60203689A (en) 1985-10-15
JPH0115549B2 true JPH0115549B2 (en) 1989-03-17

Family

ID=13204114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6257184A Granted JPS60203689A (en) 1984-03-29 1984-03-29 Thermal energy storage material

Country Status (1)

Country Link
JP (1) JPS60203689A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5127991A (en) * 1991-06-03 1992-07-07 At&T Bell Laboratories Uniformity of copper etching in the fabrication of multilayer printed circuit boards
US6784356B1 (en) * 1999-04-09 2004-08-31 Modine Manufacturing Company Phase change material with inhibitor and a method of making the same
JPWO2005066740A1 (en) * 2004-01-05 2007-07-26 玉井化成株式会社 Cooling pad

Also Published As

Publication number Publication date
JPS60203689A (en) 1985-10-15

Similar Documents

Publication Publication Date Title
CN104531077A (en) Preparation method of expanded-graphite-base hydrated salt composite solid-solid phase-change energy storage material
CN107556972B (en) Normal-low temperature phase change energy storage medium and preparation method thereof
WO2020031618A1 (en) Heat storage material composition and heat storage system for air conditioning for building
EP0478637A4 (en) Calcium chloride hexahydrate formulations for low temperature heat storage applications
US4272391A (en) Hydrated Mg(NO3)2 reversible phase change compositions
JPH0115549B2 (en)
JPS6317313B2 (en)
US4288338A (en) Static solar heat storage composition
EP0659863B1 (en) Latent heat storage material composition
US4231885A (en) Thermal energy storage composition comprising peat moss
JPH0446994B2 (en)
US4338208A (en) Hydrated MgCl2 reversible phase change compositions
JP2890197B2 (en) Latent heat storage material
Shahbaz et al. A novel calcium chloride hexahydrate-based deep eutectic solvent as a phase change material
KR100291100B1 (en) Novel latent heat/heat storage composition
US4271029A (en) Hydrated Mg(NO3)2 reversible phase change compositions
JPS5952920B2 (en) Latent heat storage material
KR0150063B1 (en) Heat storage material
NO155972B (en) MIXING WITH REVERSIBLE LIQUID / SOLID PHASE CHANGE OF HYDRATIZED MGCL2 AND SOIL-forming ADDITIVE.
JPH0141672B2 (en)
JPS6142958B2 (en)
AU640154B2 (en) Calcium chloride hexahydrate formulations for low temperature heat storage applications
CA2060215A1 (en) Calcium chloride hexahydrate formulations for low temperature heat storage application
JPS6367836B2 (en)
JPH01292090A (en) Thermal energy storing material composition