JPS58124197A - Heat-accumulating material - Google Patents

Heat-accumulating material

Info

Publication number
JPS58124197A
JPS58124197A JP57007051A JP705182A JPS58124197A JP S58124197 A JPS58124197 A JP S58124197A JP 57007051 A JP57007051 A JP 57007051A JP 705182 A JP705182 A JP 705182A JP S58124197 A JPS58124197 A JP S58124197A
Authority
JP
Japan
Prior art keywords
heat
composition
accumulating
nach3coo
transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57007051A
Other languages
Japanese (ja)
Inventor
Takahiro Wada
隆博 和田
Riyouichi Yamamoto
山本 「りよう」市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57007051A priority Critical patent/JPS58124197A/en
Priority to US06/395,707 priority patent/US4426307A/en
Priority to EP82303567A priority patent/EP0070648B1/en
Priority to AU85700/82A priority patent/AU540264B2/en
Priority to DE8282303567T priority patent/DE3267154D1/en
Priority to CA000406862A priority patent/CA1178429A/en
Publication of JPS58124197A publication Critical patent/JPS58124197A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To obtain a heat-accumulating material having stable heat-absorbing and heat-releasing performances and a high heat-accumulating capacity, by a method wherein sodium acetate, urea, glycine and water are used to produce a heat-accumulating mateial, and the composition of the materials is changed to regulate heat-accumulating and heat-releasing temperatures thereof. CONSTITUTION:The heat-accumulating material is comprised of 20-70wt% of sodium acetate (NaCH3COO) not more than 65wt% of urea[CO(NH2)2]not more than 30wt% of glycine (MH2CH2COOH) and 15-50wt% of water (H2O). When the amount of NH2CH2COOH is increased against the amount of the eutectic composition of NaCH3COO.3H2O and CO(NH2)2, the transition point of the material is lowered, and also the latent heat of transition is slightly reduced. When the amount of CO(NH2)2 is increased against the amount of the eutectic composition of NaCH3COO.3H2O and NH2CH2COOH, the transition point of the material is lowered, and also the latent heat of transition tends to be slightly reduced. Accordingly, the heat-accumulating and heat-releasing temperatures can be regulated by changing the composition of the material, and the heat-accumulating material having stable heat-absorbing and heat-releasing performances and a high heat-accumulating capacity can be obtained.

Description

【発明の詳細な説明】 本発明は、酢酸ナトリウム(NaCH3CO0)。[Detailed description of the invention] The present invention is sodium acetate (NaCH3CO0).

尿素(Co(MHz)2)、クリジン(an2aH2c
oon)及び水の4成分よりなる蓄熱材に関する。
Urea (Co(MHz)2), Clidine (an2aH2c
ooon) and water.

一般的に蓄熱材には、物質の顕熱を利用したものと、潜
熱を利用したものとが知られている。潜熱を利用した蓄
熱材は、顕熱を利用した蓄熱材に比較して、単位重量当
り、又単位体積当りの蓄熱量が大きく、必要量の熱を蓄
熱しておくのに少量の蓄熱材でよく、そのため蓄熱装置
の小型化が可能となる。又潜熱を利用した蓄熱材は、顕
熱を利用した蓄熱材のように、放熱とともに温度が低下
してしまわずに、転移点において一定温度の熱を放熱す
ると言う特徴を有する。特に無機水化物の融解潜熱を利
用した蓄熱材は、単位体積当りの蓄熱量の大きなことが
知られている。
In general, there are two types of heat storage materials: those that utilize the sensible heat of substances and those that utilize latent heat. Heat storage materials that use latent heat have a larger amount of heat storage per unit weight or unit volume than heat storage materials that use sensible heat, and require only a small amount of heat storage material to store the required amount of heat. Therefore, it is possible to downsize the heat storage device. In addition, a heat storage material that uses latent heat has the characteristic that it radiates heat at a constant temperature at a transition point, without causing the temperature to drop as heat is radiated, unlike a heat storage material that uses sensible heat. In particular, heat storage materials that utilize the latent heat of fusion of inorganic hydrates are known to have a large amount of heat storage per unit volume.

ところで従来よりNaCH3000−3H20(融点6
8.2 G )は、無機水化物の中でも特に融解潜熱の
大きな物質であることが知られている。しかしNaCH
3COo・3H20は融点が58.2 Gと高いため、
太陽熱を利用する蓄熱装置等への幅広い応用が困難であ
った。そのためN、CH3COO・3H20に各種詐酸
塩や、その他の無機塩類を添加して融点を低下させる方
法等が提案されているが、それら方法によると、融点の
低下に伴って、必要以上に融解潜熱が低下してしまい、
実用化は困難であった。
By the way, conventionally NaCH3000-3H20 (melting point 6
8.2 G) is known to be a substance with a particularly large latent heat of fusion among inorganic hydrates. However, NaCH
3COo・3H20 has a high melting point of 58.2 G, so
It has been difficult to widely apply it to heat storage devices that utilize solar heat. Therefore, methods have been proposed to lower the melting point of N, CH3COO, 3H20 by adding various types of false acid salts and other inorganic salts. The latent heat decreases,
Practical implementation was difficult.

本発明は、NaCH3COO、Co(MHz )2 。The present invention uses NaCH3COO, Co(MHz)2.

NH2CH2COOH、及びH2Oよりなる系の組成を
変化させることによって蓄熱及び放熱の温度をコントロ
ールでき、しかも安価で吸放熱性能の安定した蓄熱量の
大きな蓄熱材を提供するものであり、本発明の特徴は、
NaCH3Coo 、 Co (N112 ) 2 。
The present invention provides a heat storage material that can control heat storage and heat radiation temperatures by changing the composition of a system consisting of NH2CH2COOH and H2O, is inexpensive, has stable heat absorption and radiation performance, and has a large amount of heat storage. ,
NaCH3Coo, Co(N112)2.

NH2CH2COOH及びN20の4成分よりなる点に
あり、好ましくは、NaCH3COOは、20重量%(
以下単に%で表す)以上70%以下の範囲にあり、Co
(NF2)2は65%以下の範囲にあり、NF2 CH
2C0OHが30%以下の範囲にあり、N20が16%
以上50%以下の範囲がよい。
It consists of four components: NH2CH2COOH and N20, and preferably NaCH3COO is 20% by weight (
Co
(NF2)2 is in the range of 65% or less, NF2 CH
2C0OH is in the range of 30% or less, N20 is 16%
A range of 50% or less is preferable.

以下、実施例を挙げて説明する。Examples will be described below.

市販の試薬特級NaCH3Coo 、 NaCH3Go
 O−3H20,GO(NF2)2.NH2CH2CO
OH,と蒸留した後イオン交換して精製したN20  
を用いて、第1表〜第4表に示すように配合し、それを
65°Gまで加熱してできるだけ固形物を溶解して試料
として用いた。
Commercially available reagent special grade NaCH3Coo, NaCH3Go
O-3H20, GO(NF2)2. NH2CH2CO
N20 purified by ion exchange after distillation with OH,
The mixture was blended as shown in Tables 1 to 4, heated to 65°G to dissolve as much solid matter as possible, and used as a sample.

これらの試料を、示差走査熱量計(p、s、c )を用
いて潜熱の大きさと転移温度を求めた。転移温度として
は、試料が融解する時のDSC曲線の吸熱ピーク温度を
用いた。それらの測定結果を第5表〜第8表に示す。
The magnitude of latent heat and transition temperature of these samples were determined using a differential scanning calorimeter (p, s, c). As the transition temperature, the endothermic peak temperature of the DSC curve when the sample melts was used. The measurement results are shown in Tables 5 to 8.

ところで、第1表に示したのは、NaCH3CO53H
20とCO(NF2)2との共晶組成であるところのN
aCH3cooを38%、 co(NF2)2を37%
By the way, what is shown in Table 1 is NaCH3CO53H
N which is a eutectic composition of 20 and CO(NF2)2
aCH3coo 38%, co(NF2)2 37%
.

N20を26%含有する系とNH2CH2COOHを両
端成分とする組成の試料であり、第2表は、NaCH3
COO・3H2oとNH2OH2000Hとの共晶組成
であるところのNaCH3COOを61.3%。
This is a sample with a system containing 26% N20 and a composition with NH2CH2COOH as both end components, and Table 2 shows that NaCH3
61.3% NaCH3COO, which is a eutectic composition of COO・3H2o and NH2OH2000H.

NH2CH2C00Hを16%、N20を33.7%含
有する糸と、GO(NF2)2を両端成分とする組成の
試料である。
This sample has a composition of yarn containing 16% NH2CH2C00H and 33.7% N20, and GO(NF2)2 as both end components.

又第3表に示したのは、第1表、第2表の周辺の組成を
有する試料であり、N、0M3CooとN20の割合が
、N21CH3Coo−3H20の定比組成になるよう
に一定に保たれているものである。第4表に示したのは
、第1〜3表の周辺の組成の試料である。そしてこの場
合は、NH2CH2COOHの含有量を一定に保って、
Go(NF2)2.NaCH3co。
Also, Table 3 shows samples having compositions around those in Tables 1 and 2, where the ratio of N, 0M3Coo and N20 was kept constant so that the stoichiometric composition was N21CH3Coo-3H20. It is something that is hanging down. Table 4 shows samples with compositions around those in Tables 1 to 3. In this case, keeping the content of NH2CH2COOH constant,
Go (NF2)2. NaCH3co.

とN20の比を変化させたものである。and N20 by changing the ratio.

なお、第6〜8表において、それぞれの試料が2つ以上
の温度で転移を行うものは、それらの温度をそれぞれ記
した。また、当然の事であるが、00C以下の転移につ
いては、この場合不必要と考えられるので問題にしなか
った。
In Tables 6 to 8, if each sample undergoes transition at two or more temperatures, those temperatures are listed. Furthermore, as a matter of course, the transition below 00C was considered unnecessary in this case, so it was not considered a problem.

又、第5〜8表に示した評価は、潜熱が3oct)/y
以上の試料にはO印とし、潜熱が2ocIL1/g以上
3ocal/g未満の試料には△、それ以外は×とした
。○印のものは蓄熱量が大きく実用化可能なものであり
、又△印は、蓄熱量はそれほど大きくないが、転移温度
が従来の潜熱蓄熱材にない温度範囲にあるため十分実用
化が可能であると考えられるものである。
In addition, the evaluations shown in Tables 5 to 8 show that the latent heat is 3 oct)/y
The above samples were marked O, samples with a latent heat of 2ocIL1/g or more and less than 3ocal/g were marked Δ, and the others were marked ×. Those marked with ○ have a large amount of heat storage and can be put to practical use, and those marked with △ have a not so large amount of heat storage, but the transition temperature is in a temperature range not found in conventional latent heat storage materials, so they can be put into practical use. This is considered to be the case.

(以下余白) 第    1     表 第   2   表 第   4   表 第   5   表 第   6   表 第   7   表 第   8   表 第5表のデータを解析する。この表の試料はNaCH3
Coo・3H20とGo (Nl2 )2の共晶組成を
有するN、CH3COOを38%、 Go(Nl2 )
2を37%、H2Oを26%含有する系とNH2CH2
COOHを両端成分とする組成物である。
(Leaving space below) Analyze the data in Table 1, Table 2, Table 4, Table 5, Table 6, Table 7, Table 8, and Table 5. The sample in this table is NaCH3
N with a eutectic composition of Coo・3H20 and Go(Nl2)2, 38% CH3COO, Go(Nl2)
A system containing 37% of 2 and 26% of H2O and NH2CH2
This is a composition containing COOH as both end components.

if、NH2CH2COOHを0.2%含有する試料1
では、転移点は31.O’Cで潜熱は、49cal/&
と大きい。それで、 Nl2 CH2C0OHの含有量
を増加させていくと、転移点は少しずつ低下し、それに
とも々っで潜熱も若干であるが減少する。
if, Sample 1 containing 0.2% NH2CH2COOH
Then, the transition point is 31. The latent heat at O'C is 49 cal/&
It's big. Therefore, as the content of Nl2CH2C0OH is increased, the transition point gradually decreases, and the latent heat also decreases, albeit slightly.

NH2CH2COOHの含有量が2%以上の試料では、
26°C付近に、300C付近との転移とは別の転移が
あられれる。そしてNH2CH2COOHの含有量が増
加するにつれて高温側の転移温度は低下し、低温側の転
移温度は、はぼ26°Cの温度を保つ。
For samples with NH2CH2COOH content of 2% or more,
A different transition from the transition around 300C occurs around 26°C. As the content of NH2CH2COOH increases, the transition temperature on the high temperature side decreases, and the transition temperature on the low temperature side remains at approximately 26°C.

NH2CH2C00Hを8%以上含有する試料では、低
温側の転移は、高温側の転移と重なって観測される。そ
れで、試料7,8.9のように、NH2CH2C00H
を8〜12%含有する組成物は、26°C付近に転移を
有し、潜熱も+ocal/、9以上と大きな潜熱蓄熱材
となっているのがわかる。
In samples containing 8% or more of NH2CH2C00H, the transition on the low temperature side is observed to overlap with the transition on the high temperature side. So, like samples 7 and 8.9, NH2CH2C00H
It can be seen that the composition containing 8 to 12% of has a transition around 26°C and has a latent heat of +ocal/, 9 or more, making it a large latent heat storage material.

ところで、−これらの試料がCo(NHz)2とNaC
H3COO・3H20の共晶組成物とN H20H2C
OOHを両端成分とする組成を有することを考慮すると
、25@Cにおける転移は、N a CH3COO・5
H20。
By the way, - these samples are Co(NHz)2 and NaC
Eutectic composition of H3COO・3H20 and N H20H2C
Considering that it has a composition with OOH as both end components, the transition at 25@C is N a CH3COO・5
H20.

Co(NHz)2.NH2CH2C00Hの3成分の共
晶によるものであると考えられる。
Co(NHz)2. This is thought to be due to the eutectic of the three components NH2CH2C00H.

第6表と同様に第6表の特性を解析する。この表の試料
は、NaCjH3Coo ・3H20とNHz CH2
C0G1の共晶組成を有するNaOH3Cooを61.
3%。
Analyze the characteristics in Table 6 in the same manner as in Table 6. The samples in this table are NaCjH3Coo ・3H20 and NHZ CH2
61. NaOH3Coo having a eutectic composition of C0G1.
3%.

NHz CH200011を16%、H2Oを33.7
%含有する系とCO(NHz)2を両端成分とする組成
物である。
NHZ CH200011 16%, H2O 33.7
% and CO(NHz)2 as both end components.

まず、GO(NHz)2を0.2%含有する試料11で
は、転移温度は47.30であり、その時の潜熱は61
cIL1/gと大きい。それで、GO(NHz)2の含
有量を増加させていくと、転移温度は少しずつ低下し、
それにともなって潜熱も若干であるが減少する。CO(
NHz)2の含有量が2%以上の試料では、26°C付
近に、458C付近とは別の転移があられれる。そして
、GO(NHz)2の含有量が増加するにつれて、高温
側の転移温度は低下し。
First, in sample 11 containing 0.2% GO(NHz)2, the transition temperature is 47.30, and the latent heat at that time is 61
cIL1/g, which is large. Therefore, as the content of GO(NHz)2 increases, the transition temperature gradually decreases,
Along with this, the latent heat also decreases, albeit slightly. CO(
In samples containing 2% or more of NHz)2, a different transition occurs around 26°C than around 458C. As the content of GO(NHz)2 increases, the transition temperature on the high temperature side decreases.

低温側の転移温度は、はぼ26°Cの温度のまま変わら
ない。CO(NHz)2を30%以上含有する試料では
、型温側の転移は高温側の転移と重なって観測される。
The transition temperature on the low temperature side remains unchanged at approximately 26°C. In a sample containing 30% or more of CO(NHz)2, the transition on the mold temperature side is observed to overlap with the transition on the high temperature side.

それで試料17,18.19のように、Go(NHz 
)2を30〜40%含有する試料は、26°C付近に転
移を有し、潜熱も、*ocal/g以上と大きく、潜熱
蓄熱材として、きわめて望ましい特性を有する。この2
6°Cの転移は、第4表の場合ト同F’l N!L C
H3CO0・3H20トG O(N H2) 2 。
Therefore, like samples 17, 18, and 19, Go(NHz
) A sample containing 30 to 40% of 2 has a transition around 26° C. and has a large latent heat of *ocal/g or more, and has extremely desirable characteristics as a latent heat storage material. This 2
The transition at 6°C is the same as in Table 4. L C
H3CO0・3H20G O(NH2) 2 .

NH2OH2(:OOHの3成分系の共晶によるもので
あると考えられる。つまり、第4表の試料は、NaCH
3COO・3H20とco(NHz)2の共晶組成物[
NH2111jH2COOHを加えることによってNa
CH3Coo−3H20、Co (NHz )2.NH
2OH2COOHの3成分系の共晶組成に到達したのに
対して、第6表テハ、NaCH3COO−3H20とN
H2CH2COOHの共晶組成物にCO(NHz)2を
加えることによっテNaCH3Coo−3H20、NH
2OH2COOH。
This is thought to be due to the eutectic three-component system of NH2OH2(:OOH.In other words, the samples in Table 4 are NaCH
Eutectic composition of 3COO・3H20 and co(NHz)2 [
Na by adding NH2111jH2COOH
CH3Coo-3H20, Co (NHz)2. N.H.
While the three-component eutectic composition of 2OH2COOH was reached, Table 6 shows Teha, NaCH3COO-3H20 and N
By adding CO(NHz)2 to the eutectic composition of H2CH2COOH, NaCH3Coo-3H20,NH
2OH2COOH.

CO(NHz)2よりなる3成分の共晶組成に到達した
ものである。そして、この3成分共晶組成物は、はぼN
aCH3COO−3H20ヲ57%CO(NHz)2を
33%、 NH2OH2C0OHを10%含有するもの
と考えられる。この共晶組成は当然のことながら、Na
CH3COOを34.4%、Co(NHz )2を33
%、NH2CH2C00Hを10%、H2Oを22.6
%含有していることになる。
A three-component eutectic composition consisting of CO(NHz)2 has been achieved. This three-component eutectic composition is
aCH3COO-3H20 is considered to contain 57% CO(NHz)2 at 33% and NH2OH2C0OH at 10%. This eutectic composition naturally has Na
CH3COO 34.4%, Co(NHz)2 33%
%, NH2CH2C00H 10%, H2O 22.6
%.

このことから、第1表に示した試料では。From this, for the samples shown in Table 1.

NILCH3Coo ・3H20とC0(NHz)z 
o共晶系にさらに、NH2CH2COOHを加えること
によって、融点を31°Gから26°Cの間でコントロ
ール可能となり、その時の潜熱もaoaal/g以上と
大きな、従来にないきわめて優秀な蓄熱材となっている
のがわかる。又第2表に示した試料では。
NILCH3Coo ・3H20 and C0 (NHz)z
By adding NH2CH2COOH to the eutectic system, it is possible to control the melting point between 31°G and 26°C, and the latent heat at that time is greater than aoaal/g, making it an extremely excellent heat storage material that has never existed before. I can see that it is. Also, in the samples shown in Table 2.

N a OH3CO0・3 H20とNHz CH2c
oono共晶fjに、さらにCO(NHz)2を加える
ことによって、融点を48°Cから26°Cの間でコン
トロールすることが可能になり、その時の潜熱も、3o
cILVg・・7− 以上と大きな、従来にないきわめ
て優秀な蓄熱材となっているのがわかる。
N a OH3CO0・3 H20 and NHz CH2c
By further adding CO(NHz)2 to the oono eutectic fj, it is possible to control the melting point between 48°C and 26°C, and the latent heat at that time is also 3o
It can be seen that cILVg...7- or more, making it an extremely excellent heat storage material that has never existed before.

つぎに第7表の試料の組成は、第1表、第2表で示した
組成の周i22@域にあり、しかもN、CH3COOと
H2Oの比をNaCH3COO−3H20と定圧組成と
なるように一定に保持したものである。この場合は、N
aCH3Coo−5H20,Co(NHz )2 。
Next, the composition of the sample in Table 7 is in the i22@ region around the compositions shown in Tables 1 and 2, and the ratio of N, CH3COO and H2O is kept constant so as to have a constant pressure composition of NaCH3COO-3H20. This is what was held. In this case, N
aCH3Coo-5H20, Co(NHz)2.

NH2CH2C00Hの3成分系として考えることがテ
キ、ソシテ、Na OH3Coo ・3H20トGo 
(NHz)2の共晶組成がCO(NHz)237%を含
有する組成であり、NaCH3COO−sH20とNH
2OH2COOHの共晶組成がNHz ca2 coo
Hの15%を含有すル組成テアリ、N & CH3CO
0・3 H20(!: G O(N H2) 2トNH
zCH2CooHノ3成分ノ共晶組成カco(NHz)
2をs s%、 NHz CH2C0OHを10%を含
有する組成であり、それぞれの共晶温度が、31°C9
48℃、26°Cであることを考慮すると、この表で示
された各試料の特性を理解することができる。
It is best to think of it as a three-component system of NH2CH2C00H, Na OH3Coo ・3H20 Go
The eutectic composition of (NHz)2 is a composition containing 37% of CO(NHz)2, and NaCH3COO-sH20 and NH
The eutectic composition of 2OH2COOH is NHz ca2 coo
Le composition containing 15% of H, N & CH3CO
0.3 H20 (!: G O (NH2) 2t NH
zCH2CooH 3-component eutectic composition co (NHz)
The composition contains s s% of 2 and 10% of NHz CH2C0OH, and the eutectic temperature of each is 31 ° C9
Considering that the temperatures are 48°C and 26°C, the characteristics of each sample shown in this table can be understood.

試料22ノCO(NHz)2を6%、 )fH2CH2
COOHを6%、)ilcH3cOo−sH20ヲeo
%(NaCH3(joo54,3%、H2O35,7%
)含有する試料では、融解した状態から冷却していくと
、過冷却が起こらなければ64°C付近からNaCH3
COO・3H20が析出しはじめ、温度の低下とともに
その量は多くなる。そして43°C程度寸で冷却される
と、溶液組成は、NaCH3Coo・3H20とNH2
CH2COOHの共晶組成と、NaCH3COO・3H
20とNH2CH2COOH,それにCO(Nl2)2
の3成分系共晶組成を結ぶ線上にくると考えられる。こ
こからは、第2表で示した試料と同じと考えることがで
きる。つまり、N a CH3CO0・3H20とNH
2CH2COOHを析出しながら、溶液組成は3成分系
共晶組成に近づいていく。そしてこの3成分系共晶組成
の溶液が残や、これが凝固することによってすべて固体
となる。
Sample 22 CO(NHz)2 at 6%, )fH2CH2
COOH 6%, )ilcH3cOo-sH20woeo
%(NaCH3(joo54,3%, H2O35,7%
) When the sample containing NaCH3 is cooled from the molten state, the NaCH3
COO.3H20 begins to precipitate, and its amount increases as the temperature decreases. Then, when cooled to about 43°C, the solution composition becomes NaCH3Coo・3H20 and NH2
Eutectic composition of CH2COOH and NaCH3COO・3H
20 and NH2CH2COOH, and CO(Nl2)2
It is thought that it lies on the line connecting the three-component eutectic compositions. From this point on, it can be considered that the samples are the same as those shown in Table 2. In other words, N a CH3CO0・3H20 and NH
While precipitating 2CH2COOH, the solution composition approaches a ternary eutectic composition. The remaining solution of this three-component eutectic composition becomes solid by solidification.

このように試料22は、64°Gから25°Gの間で段
階的に結晶を析出しながら放熱を行うことが可能であり
、しかも潜熱が62cal/gときわめて大きく、従来
にないきわめて優秀な蓄熱材となっている。このように
第3表に示した試料21〜39は、それぞれの組成に対
応して、何段階かの熱材として十分な大きさを有してい
る。
In this way, sample 22 is able to dissipate heat while precipitating crystals in stages between 64°G and 25°G, and has an extremely large latent heat of 62 cal/g, making it an extremely excellent product that has never existed before. It serves as a heat storage material. As described above, Samples 21 to 39 shown in Table 3 have a size sufficient to serve as a heat material at several stages, depending on their respective compositions.

第8表の試料の特性を解析する。この場合には、NH2
CH2C00Hの含有量を1%と一定にし、NaOH3
CooO,GO(’NH2)2.H2Oの組成を変化さ
せたものである。試料41から49は、NH2CH2C
0Oの含有量を1%、Co(Nl2)2の含有量を9%
として、N a CH3COOとH2Oの比を変化させ
たものである。これらの試料の特性かられかることは、
N & CH3COOとH2Oの比がNaCH3COO
・3H20を形成する時17)60対4゜にもっとも近
い試料46が本っとも潜熱が大きく、N、lCH3CO
0−sH20の電比組成よりH20過利側の試料44,
43.42と移るにつれて潜熱が減少し、転移温度も低
下する。又N a CH3000・3 H2Oの電比組
成に比較してN !L Ci H3COO過剰側の試料
46.47,48,49ど移るにつれて潜熱が減少する
。しかしこの場合は、転移温度はほとんど変化しない。
Analyze the properties of the samples in Table 8. In this case, NH2
The content of CH2C00H was kept constant at 1%, and the content of NaOH3
CooO, GO('NH2)2. The composition of H2O is changed. Samples 41 to 49 are NH2CH2C
The content of 0O is 1% and the content of Co(Nl2)2 is 9%.
, the ratio of Na CH3COO and H2O was changed. What can be learned from the characteristics of these samples is that
The ratio of N & CH3COO to H2O is NaCH3COO
・When forming 3H20 17) Sample 46, which is closest to 60 to 4°, has the largest latent heat, and N, lCH3CO
Sample 44 on the H20 rich side from the electric ratio composition of 0-sH20,
As it moves to 43.42, the latent heat decreases and the transition temperature also decreases. Also, compared to the electrical specific composition of Na CH3000.3 H2O, N! The latent heat decreases as the samples 46, 47, 48, and 49 move toward the L Ci H3COO excess side. However, in this case, the transition temperature hardly changes.

このような関係は、Nl2 Cl2COOHの含有量を
1%、Co(Nl2)2の含有量を39%と一定に保持
して、NaOH3CooとH2Oの比を変化させた試料
50〜67でも認められ、NaCH3COOとH2Oの
比がNaCH3COO−3H20の組成にもっとも近い
試料64の潜熱がもっとも大きくなっている。
Such a relationship was also observed in samples 50 to 67, in which the content of Nl2Cl2COOH was held constant at 1% and the content of Co(Nl2)2 was held constant at 39%, while the ratio of NaOH3Coo and H2O was varied. Sample 64, whose ratio of NaCH3COO to H2O is closest to the composition of NaCH3COO-3H20, has the largest latent heat.

つまり、Co(Nl2)2.NH2OH2C00Hの含
有量を一定に保持した場合には%NaCH3CooとH
2Oの比がNaCH3Coo ・3H20の電比組成で
、もっとも潜熱が大きくなり、この電比組成よりH2O
過剰側に組成がずれても、NaCH3COO側に組成が
ずれても潜熱は減少する。又転移温度は、NaCH3C
OOとH2O(7)比がNaCH3COO−3H20よ
りH20過利側では大きく下降し、N a Cj H3
000過利側ではほとんど変化しないかもしくは若干上
昇する。
That is, Co(Nl2)2. When the content of NH2OH2C00H is kept constant, %NaCH3Coo and H
When the ratio of 2O is NaCH3Coo ・3H20, the latent heat is the largest, and from this electric ratio H2O
Even if the composition shifts to the excess side or the composition shifts to the NaCH3COO side, the latent heat decreases. Also, the transition temperature is NaCH3C
The ratio of OO to H2O (7) decreases significantly on the H20 overly rich side compared to NaCH3COO-3H20, and Na Cj H3
On the 000-profit side, there is little change or a slight increase.

以上の結果をまとめると、第5〜8表に△印及び○印を
つけた試料の組成領域、つまり。
To summarize the above results, the composition regions of the samples marked with △ and ○ in Tables 5 to 8, that is.

NaCH3COO,Go(Nl2)2.NH2OH2C
OOH。
NaCH3COO, Go(Nl2)2. NH2OH2C
OOH.

H2Oの4成分系において、NaCH3COOが20%
以上7o%以下の範囲にあり、CO(Nl2)2が0%
より大きく、66%以下の範囲にあり、NH2CH2C
OOHが0%、11)大きく、30%以下にあシ、さら
にH2Oが16%以上50%以下の範囲にあるのが望ま
しい。
In the four-component system of H2O, NaCH3COO is 20%
The range is 7o% or less, and CO(Nl2)2 is 0%.
larger, in the range of 66% or less, NH2CH2C
It is preferable that OOH is 0%, 11) large and 30% or less, and H2O is in the range of 16% or more and 50% or less.

次に、 NaCH3(jooを34.2%、、 Go(
Nl2 )2を33.3%、 NH2OH2Coolを
10%、H2Oを22.6%含有した試料8と同一組成
の混合物8oOgに、過冷却防止材としてNIL4P2
07・1oH20を20gを加え内径1oomm、高さ
10071’Lmの円筒容器に収納し、熱電対挿入骨付
の栓で密封した。そして、この容器を10°Cと4o’
lCの間で加熱及び冷却を繰り返したところ、はとんど
過冷却を示さず、安定して融解及び凝固を繰り返し、本
発明の蓄熱材が、連続使用においても何ら問題は存在せ
ず、安定した吸放熱性能を有することがW:認できた。
Next, NaCH3 (joo to 34.2%, Go(
NIL4P2 was added as a supercooling prevention material to 800g of a mixture having the same composition as sample 8 containing 33.3% Nl2)2, 10% NH2OH2Cool, and 22.6% H2O.
20 g of 07.1oH20 was added, and the container was placed in a cylindrical container with an inner diameter of 1 oomm and a height of 10071'Lm, and the container was sealed with a thermocouple-inserted bone stopper. Then, heat this container to 10°C and 4o'
When repeatedly heated and cooled at 1C, the heat storage material of the present invention did not exhibit any supercooling and repeatedly melted and solidified in a stable manner. W: It was confirmed that it had heat absorption and radiation performance.

本発明は、以上のようにNaCHaCoo 。As described above, the present invention is directed to NaCHaCoo.

CO(Nl2)2.NH2CH2C00H1H20の4
成分からなり、それらの組成を変化させることによって
蓄熱及び放熱温度をコントロールでき、安価で、吸放熱
性能の安定した蓄熱量の大きな蓄熱材を提供するもので
ある。また、本発明において、池の融点降下剤を併用し
たり、又過冷却防止材を用いたり、その過冷却防止材の
沈降や凝集を防止するために増粘剤を用いたり、その他
添加剤等を適宜加えてもよいのは当然である。
CO(Nl2)2. 4 of NH2CH2C00H1H20
The object of the present invention is to provide a heat storage material which is composed of components, whose heat storage and heat radiation temperatures can be controlled by changing their composition, is inexpensive, has stable heat absorption and radiation performance, and has a large amount of heat storage. In addition, in the present invention, a melting point depressant may be used in combination, a supercooling prevention material may be used, a thickening agent may be used to prevent the supercooling prevention material from settling or agglomerating, and other additives may be used. Of course, you may add as appropriate.

このように本発明の蓄熱材は、冷圀や暖房を目的とした
空調用蓄熱装置だけでなく、蓄熱を利用するあらゆる方
面に応用可能なものである。
As described above, the heat storage material of the present invention can be applied not only to heat storage devices for air conditioning for cooling and heating purposes, but also to all fields that utilize heat storage.

代理人の氏名 弁理士 中 尾 敗 男 ほか1名手続
補正書 昭和57年10男29日 特許庁長官殿 1事件の表示 昭和67年特許願第 7061  号 2発明の名称 蓄熱材 3補正をする者 事件との関係      特  許   出   願 
 人住 所  大阪府門真市大字門真1006番地名 
称 (582)松下電器産業株式会社代表者    山
  下  俊  彦 4代理人 〒571 住 所  大阪府門真市大字門真1006番地松下電器
産業株式会社内 〜1−□ 6、補正の内容 (1)明細書第4頁第20行の「それぞれの」を「転移
温度としてはDSC曲線゛のビーク温度を記し、又、」
に補正します。
Name of agent: Patent attorney Masao Nakao, and one other person Procedural amendment dated 1980, 10th son, 29th year, Director General of the Patent Office, 1. Display of case, 1986 Patent application No. 7061, 2. Name of invention, heat storage material, 3. Person making the amendment. Relationship to incident Patent application
Address: 1006 Kadoma, Kadoma City, Osaka Prefecture
Name (582) Matsushita Electric Industrial Co., Ltd. Representative Toshihiko Yamashita 4 Agent 571 Address Matsushita Electric Industrial Co., Ltd., 1006 Oaza Kadoma, Kadoma City, Osaka ~1-□ 6. Contents of amendment (1) Specification In page 4, line 20, replace ``each'' with ``as the transition temperature, indicate the peak temperature of the DSC curve, and''
will be corrected.

(2)同書第1o頁〜第13頁の第6表、第6表。(2) Tables 6 and 6 on pages 1o to 13 of the same book.

第7表および第8表をそれぞれ別紙のとおりに補正しま
す。
Tables 7 and 8 will be amended as shown in the attached sheets.

(3]  同誓第14頁第7行の「49」を「64」に
補正します。
(3) "49" in line 7 of page 14 of the same oath is corrected to "64".

(4)同書第16頁第16行の「61」を「66」に補
正します。
(4) "61" on page 16, line 16 of the same book has been corrected to "66".

(6)  同書第19頁第17行の「62」を「57」
に補正します。
(6) “62” in the same book, page 19, line 17, is changed to “57”
will be corrected.

第6表 第6表 第7表 第8表Table 6 Table 6 Table 7 Table 8

Claims (2)

【特許請求の範囲】[Claims] (1)酢酸ナトリクム、尿素、グリシン及び水よりなる
ことを特徴とする蓄熱材。
(1) A heat storage material comprising sodium acetate, urea, glycine, and water.
(2)酢酸ナトリウムが20〜70重量%、尿素が65
重量%以下、グリシンが30重量%以下で、水が16〜
60重量%である特許請求の範囲第1項記載の蓄熱材。
(2) 20 to 70% by weight of sodium acetate, 65% of urea
% by weight or less, glycine is 30% by weight or less, water is 16~
The heat storage material according to claim 1, which has a content of 60% by weight.
JP57007051A 1981-07-17 1982-01-19 Heat-accumulating material Pending JPS58124197A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP57007051A JPS58124197A (en) 1982-01-19 1982-01-19 Heat-accumulating material
US06/395,707 US4426307A (en) 1981-07-17 1982-07-06 Heat accumulative material
EP82303567A EP0070648B1 (en) 1981-07-17 1982-07-07 Heat accumulative material
AU85700/82A AU540264B2 (en) 1981-07-17 1982-07-07 Heat accumulative material
DE8282303567T DE3267154D1 (en) 1981-07-17 1982-07-07 Heat accumulative material
CA000406862A CA1178429A (en) 1981-07-17 1982-07-08 Heat accumulative material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57007051A JPS58124197A (en) 1982-01-19 1982-01-19 Heat-accumulating material

Publications (1)

Publication Number Publication Date
JPS58124197A true JPS58124197A (en) 1983-07-23

Family

ID=11655252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57007051A Pending JPS58124197A (en) 1981-07-17 1982-01-19 Heat-accumulating material

Country Status (1)

Country Link
JP (1) JPS58124197A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100524140B1 (en) * 2002-06-20 2005-10-26 한국생산기술연구원 Low Temperature PCM for Cold Storage System
JP2022138874A (en) * 2021-03-11 2022-09-26 東邦瓦斯株式会社 Latent heat storage material composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100524140B1 (en) * 2002-06-20 2005-10-26 한국생산기술연구원 Low Temperature PCM for Cold Storage System
JP2022138874A (en) * 2021-03-11 2022-09-26 東邦瓦斯株式会社 Latent heat storage material composition

Similar Documents

Publication Publication Date Title
JP2529974B2 (en) Reversible Phase Change Composition of Hydrated Calcium Bromide
JPS58124197A (en) Heat-accumulating material
JPS6317313B2 (en)
JPS6251314B2 (en)
Chen et al. Formation and stability of amorphous alloys of Au-Ge-Si
JPS59168085A (en) Heat regenerating material
FI70724B (en) HYDRERADE MG12 ELLER MG (NO3) 2 / MGC12 REVERSIBLE FASOMVANDLINGSKOMPOSITIONER
JPS617378A (en) Thermal energy storage material
JPS6367513B2 (en)
JPS617379A (en) Production of thermal energy storage element
JPS59109578A (en) Heat storage material
SU808517A1 (en) Heat-accumulating composition
JPS6251311B2 (en)
JPS604580A (en) Thermal energy storage material
SU834088A1 (en) Heat-accumulating material
SU983134A1 (en) Zinc nitrate crystallohydrate based heat accumulating composition
DE102006039343A1 (en) Heat storage material based on a hydrated salt is stabilized with silica and/or pyrogenic alumina
JPS58141280A (en) Thermal energy storage material
JPS645634B2 (en)
JPS58142969A (en) Heat accumulative material
JPS6015665B2 (en) heat storage material
JPS63137982A (en) Heat storage material composition
JPS5828993A (en) Heat accumulating material
JPS6251315B2 (en)
JPS58141281A (en) Thermal energy storage material