JPS6251057B2 - - Google Patents

Info

Publication number
JPS6251057B2
JPS6251057B2 JP55170167A JP17016780A JPS6251057B2 JP S6251057 B2 JPS6251057 B2 JP S6251057B2 JP 55170167 A JP55170167 A JP 55170167A JP 17016780 A JP17016780 A JP 17016780A JP S6251057 B2 JPS6251057 B2 JP S6251057B2
Authority
JP
Japan
Prior art keywords
phase
zero
voltage
sin
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55170167A
Other languages
Japanese (ja)
Other versions
JPS5795133A (en
Inventor
Ryuzo Nakazawa
Koichi Endo
Shoji Okada
Tadahiro Aida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP17016780A priority Critical patent/JPS5795133A/en
Publication of JPS5795133A publication Critical patent/JPS5795133A/en
Publication of JPS6251057B2 publication Critical patent/JPS6251057B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、非接地系配電線の地絡相検出装置に
関するものである。 従来非接地系の配電線には、各種の保護継電器
が設置されているが、動作速度が遅いため、配電
線の活線作業時に発生する人身事故に対しては、
何らの効果もなかつた。 本発明は、この点に鑑みてなされたもので、簡
単に実現可能でかつ高速性のある地絡相検出装置
を提供するものである。まず地絡相検出装置の説
明にはいる前に基本となる地絡現象とそのベクト
ル関係について説明する。 第1図は、よく知られた非接地系配電線一線地
絡時の等価回路図で、図中1は、系統相電圧E/
√3、2は故障点抵抗Rg3は3相一活対地静電
容量3C4は制限抵抗である。制限抵抗4の抵抗
値をr/3、系統の角周波数をωとすれば、2の
故障点抵抗Bgにかかる電圧Vgと、3の対地静電
容量3Cにかかる電圧V0は次の様な関係になる。 これをベクトルで図示したものが第2図であ
る。これは故障点抵抗Rgの変化に対してP点の
軌跡がベクトル
The present invention relates to a ground fault phase detection device for ungrounded power distribution lines. Conventionally, various types of protective relays have been installed on ungrounded distribution lines, but their operating speed is slow, so they are
It had no effect. The present invention has been made in view of this point, and it is an object of the present invention to provide a ground fault phase detection device that is easily realizable and has high speed. First, before going into the explanation of the ground fault phase detection device, the basic ground fault phenomenon and its vector relationship will be explained. Figure 1 is an equivalent circuit diagram of a well-known one-line ground fault in an ungrounded distribution line, and 1 in the figure indicates the system phase voltage E/
√3, 2 is the fault point resistance Rg3 is the 3-phase active ground capacitance 3C4 is the limiting resistance. If the resistance value of limiting resistor 4 is r/3 and the angular frequency of the system is ω, then the voltage Vg applied to fault point resistance Bg in 2 and the voltage V0 applied to ground capacitance 3C in 3 are as follows. Become a relationship. FIG. 2 illustrates this using vectors. This means that the trajectory of point P is a vector with respect to the change in resistance Rg at the fault point.

【式】を弦とし、この弦を (π−θ)の角度で見る円周上を描く事を示して
いる。今制限抵抗(線路漏れ抵抗を含む)r/3
を無視できるほど大きな値(r→∞)と考えると
上記(1)、(2)式よりθ=π/2となるため、第2図にお いてP点の軌跡はOAを直径とする半円上を描く
事になる。すなわち零相電圧V0=OPは相電圧
[Formula] is a string, and this string is shown to be drawn on the circumference at an angle of (π-θ). Now limiting resistance (including line leakage resistance) r/3
Considering that is a negligibly large value (r → ∞), θ = π/2 from equations (1) and (2) above, so the locus of point P in Figure 2 is on a semicircle with diameter OA. I will be drawing. In other words, zero-sequence voltage V 0 = OP is phase voltage

【式】を直径とする半円となる。 また零相電圧V0は、 この式において上記の様に制限抵抗(漏れ抵抗
を含む)r/3を無限大と考えると ここで故障点抵抗Rg→∞とすればV0=0Vすな
わち第2図でO点となり、Rg→0とすれば
It becomes a semicircle whose diameter is [formula]. Also, the zero-sequence voltage V 0 is In this equation, if we consider the limiting resistance (including leakage resistance) r/3 to be infinite as shown above, Here, if the fault point resistance Rg → ∞, V 0 = 0V, that is, point O in Figure 2, and if Rg → 0, then

【式】すなわちA点に一致する。 以上の関係を3相について図示したものが第3
図であり各相とも同じ関係になる。 従つて非接地系配電線の一線地絡事故時の故障
相電圧Vgと零相電圧V0との関係は、故障相電圧
Vgを規準に考えれば零相電圧V0は、故障相電圧
Vgと同相からπ/2遅れ位相までの間に存在してい る。 次に制限抵抗を含む漏れ抵抗r/3を無限大と考え ず有限な値とすれば、前述の式(1)、(2)よりベクト
ル関係は第2図の通りとなるが、さらに詳しく書
けば、第4図の通りとなる。すなわち円周OPA
は、相電圧
[Formula] That is, it corresponds to point A. The third diagram illustrates the above relationship for three phases.
The relationship is the same for each phase. Therefore, the relationship between the fault phase voltage Vg and the zero-sequence voltage V 0 at the time of a one-line ground fault on an ungrounded distribution line is
Considering Vg as the standard, the zero-sequence voltage V 0 is the fault phase voltage
It exists between the in-phase with Vg and the phase delayed by π/2. Next, if we assume that the leakage resistance r/3 including the limiting resistance is not infinite but a finite value, the vector relationship will be as shown in Figure 2 from equations (1) and (2) above, but we can write it in more detail. For example, it will be as shown in Figure 4. i.e. circumferential OPA
is the phase voltage

【式】より(π/2−θ)だけ進み位 相に円の直径を持つ円の一部であることがわか
る。従つてこの場合のV0の位相は故障電圧と同
相からθ遅れ位相までの間に存在している事にな
る。 以上の事からも明らかな様にθ=tan-1rωCが
θ〜π/2の任意の値をとり、故障点抵抗Rgを0〜 ∞まで考慮するとすれば、零相電圧V0の存在範
囲は第3図の如く、相電圧を直径とする半円上又
はその内部(斜線部分)に存在することになる。 以上述べて来た地絡現象とベクトル関係から最
終的に第3図が導かれ、いかなる地絡故障を考え
ても零相電圧V0は故障相電圧を基準として同相
から遅れ位相π/2までの間に存在することが判明し た。この事を利用して、地絡相検出装置を作ろう
とするものであるが、上記の様に基準電圧を相電
圧にとつていたのでは完全地絡故障時相電圧は、
完全に零となつてしまい基準電圧としては好まし
くない為、線間電圧を基準とすれば故障相の検出
が容易である。 例えばA相地絡故障の場合には、零相電圧V0
は線間電圧VABBCCAに対して なる相差角をもつ。ここで(AB)はVAB
の位相角ABとV0の位相角との相差角を表
わす。 条件(5)を書きなおすと次式(6)となる。 さて、式(6)即ち相差角の正弦を算出すれば、式
(6)の第1、第2式の正負から故障相を判別するこ
とができる。 ここで、零相電圧、及び線間電圧のサンプリン
グ値を用いて式(6)と等価な判別を行えることを説
明する。 零相電圧及び線間電圧の位相は固定されている
わけでなく実際には系統角周数ωでもつて回転し
ているのである。従つて零相電圧V0及び線間電
圧VK(K=AB、BC、CA)は次式で表現され
る。 ここで、VOM、VKMはV0、VKの波高値であ
る。 V0、VKのサンプリング間隔を△tとすれば、
t=t0及びt=t0−△tのサンプリング値は次の
ようになる。 更に函数fK(V0、VK)を次式のように定義
する。 fK(V0、VK)=VK(t0)・V0(t0−△t)−VK(t0−△t)・V0(t0) ……(9) 式(8)、(9)によりfK(V0、VK)は次のように
変形される。 fK(V0、VK)=VKMsin(ωt0+)・VOMsin(ωt0−ω・△t+) −VKMsin(ωt0−ω・△t+)・VOMsin(ωt0) =VKMOMsin(ωt0+){sin(ωt0)cos(ω・△t) −cos(ωt0)sin(ω・△t)−VKMOMsin(ωt0) {sin(ωt0+)cos(ω・△t)−cos(ωt0+)sin(ω・△t)} =VOMKM{−sin(ωt0+)cos(ωt0) +sin(ωt0)cos(ωt0+)}sin(ω・△t) =VOMKMsin(ω・△t)sin(ωt0−ωt0−) =VOMKMsin(ω・△t)sin(−) ……(10) 線間電圧VKとしてVABを選ぶと、式(10)は次の
ように書き直せる。 fAB(V0、VAB)=VOM・VABMsin(ω・△t)sin(AB) ……(11) 式(11)を式(6)と第1式と比較すると、VOM、VAB
は正であり、sin(ω・△t)は、サンプリング
間隔ω・△tが180゜以内なら正であるから、両
式の正負は一致する。 従つて、時刻t0−△t、t0における零相電圧及
び線間電圧のサンプリング値V0(t0−△t)、V0
(t)、VK(t0−△t)、VK(t0)を式(9)に代入し
てその正負を判別すれば、式(6)と同等の判別を行
つたことになる。 すなわち、 fAB(V0、VAB)=VAB(t0)・V0(t0−△t)−VAB(t0−△t)・V0(t0)<0 fBC(V0、VBC)=VBC(t0)・V0(t0−△t)−VBC(t0−△t)・V0(t0)≧0 (12) fCA(V0、VCA)=VCA(t0)・V0(t0−△t)−VCA(t0−△t)・V0(t0)〓0 を判別することは、式(6)の判別と同等である。 同様にして、B相、C相の地絡も検出できる。 即ち、地絡相でない他の2相の線間電圧と零相
電圧との相差角の正弦は正又は零となり、地絡相
及び遅れ相間の線間電圧と零相電圧との相差角の
正弦は負となる。 以上をまとめると、 fAB(V0、VAB)<0かつfBC(V0、VBC)≧
0でA相地絡 fBC(V0、VBC)<0かつfCA(V0、VCA)≧
0でB相地絡 fCA(V0、VCA)<0かつfAB(V0、VAB)≧
0でC相地絡と判別できる。この発明は、この原
理に基づくものであるが、配電線の場合は、判定
に際して他の考えるべき要件がある。 配電系統を考えた場合、負荷の状態は3相バラ
ンスしておらず、常時ある程度の零相電圧が発生
している。この零相電圧による誤判定を防ぐ為に
零相電圧があるレベルを越えたら地絡事故とする
零相過電圧検出を地絡相の判定条件に追加した方
が動作判別がより確実となる。 さて、この零相電圧の大きさの算出であるが、
零相電圧を V0=VOMsin(ωt+) とおき、t=t0−△t t=t0 t=t0+△tにお
けるサンプリング値を V0(t0−△t)=VOMsin(ωt0−ω・△t+
) V0(t0)=VOMsin(ωt0) V0(t0+△t)=VOMsin(ωt0+ω・△t+
) とすると、 V0(t0−△t)・V0(t0+△t)=V OM・{sin2(ωt0)−sin2(ω・△t)} ={V0(t0)}−VOM ・sin2(ω・△t) となる。故に、 V OM=1/sin(ω・△t){(V0(t0))2−V0(t0−△t)・V0(t0+△t)} として、時刻t0−△t、t0、t0+△tのサンプリ
ング値から零相電圧のピーク値の2乗の値が算出
できる。そこで g(V0)=1/sin(ω・△t)・√{00)}00−△)・00+△) とおくと、 g(V0)≧c1又は{g(V0)}≧(c12 で、地絡事故の有無が検出できる。ここでc1は定
数で系統健全時に発生する零相電圧のピーク値よ
り大きい値とする。特に配電系統は、負荷が3相
平衡している事は少なく常時不平衡状態にあつて
零相電圧が出ている。この為位相関係だけで判定
するとこの不平衡負荷による零相電圧によつて誤
判定をする可能性がある為、ある一定値以上の零
相電圧が発生しているという条件g(V0)≧c1
必要である。 又、配電線では特に供給障害を少なくする為微
地絡(例えば木の葉の瞬時的な接触)では、事故
としない場合が多い。この為にも上記条件は必要
である。 以上の様にこの発明をデイジタル式継電器に適
用する場合は、判定式として g(V0)=1/sin(ω・△t)√{00)}00−△)・00+△) (13) fAB(V0、VAB)=VAB(t0)・V0(t0−△t)−VAB(t0−△t)・V0(t0) (14) fBC(V0、VBC)=VBC(t0)・V0(t0−△t)−VBC(t0−△t)・V0(t0) (15) fCA(V0、VCA)=VCA(t0)・V0(t−△t)−VCA(t0−△t)・V0(t0) (16) を使用し g(V0)≧c1又は{g(V0)}≧(c12及びfB
(V0、VBC)≧0fAB(V0、VAB)<0でA相地絡 g(V0)≧c1又は{g(V0)}≧(c12及びfB
(V0、VBC)<0fCA(V0、VCA)≧0でB相地絡 g(V0)≧c1又は{g(V0)}≧(c12及びfC
(V0、VCA)<0fAB(V0・VAB)≧0でC相地絡 を検出する事により故障地絡相を高速度に検出す
ることができる。ここでω=2πf(fは系統周
波数)であり△tはサンプリング間隔時間であ
る。この為、演算処理装置の能力が向上すれば△
tを小さくする事により、検出速度はいくらでも
早くできる。 以上の発明による地絡相検出装置の構成例とし
て、デジタル処理装置を使用した場合の一実施例
を第5図に示す。第5図において51はアナログ
デイジタル変換部で主としてフイルター51、サ
ンプルホールド回路52及びアナログデイジタル
変換器53で構成されており、ここで電圧変成器
によつて検出された線間(又は相)電圧及び零相
電圧は、フイルター51によつて余分の周波数成
分が除去されサンプルホールド回路52によつて
ある一定時間間隔(△t)で標本化され、アナロ
グデイジタル変換器53によつてデジタル量に変
換されれる。デジタル量に変換された電圧情報は
演算処理6のデータ・メモリ61に格納される。
演算処理装置63は、データメモリ61のデー
タ・エリアに格納された電圧データをもとに、プ
ログラム・メモリ62に記憶されている判定手順
にもとずいて演算処理を実施する。そして系統に
事故があれば、出力部7よりしや断器のしや断指
令もしくは事故発生を知らせる警報・表示信号等
が出力される。 上述のように、この発明は、第3図、第4図の
電圧ベクトル位相に着目し、零相電圧と線間電圧
の位相差の正弦の正負および零相電圧が所定値以
上であることを条件に故障地絡相を高速度に判別
できる効果を奏するものである。 この発明はまた、デイジタルリレーに容易に適
用できるものである。即ち零相電圧と線間電圧の
サンプリング値に基づいて、式(13)〜(16)を
演算することによつて故障相を高速度に特定する
ことができる。
From [Formula], it can be seen that it is a part of a circle that has the diameter of a circle in phase advanced by (π/2-θ). Therefore, the phase of V 0 in this case exists between the in-phase with the fault voltage and the θ-lag phase. As is clear from the above, if θ = tan -1 rωC takes any value between θ and π/2 and the fault point resistance Rg is considered from 0 to ∞, then the existence range of the zero-sequence voltage V 0 is As shown in FIG. 3, it exists on or inside a semicircle (shaded area) having a diameter equal to the phase voltage. Figure 3 is finally derived from the ground fault phenomenon and vector relationship described above, and no matter what kind of ground fault is considered, the zero-sequence voltage V 0 will range from the in-phase to the delayed phase π/2 with the fault phase voltage as the reference. It was found that there is a between. Taking advantage of this fact, we are trying to create a ground fault phase detection device, but if the reference voltage is taken as the phase voltage as described above, the phase voltage at the time of a complete ground fault will be:
Since it becomes completely zero and is not desirable as a reference voltage, it is easy to detect a faulty phase if the line voltage is used as a reference. For example, in the case of an A-phase ground fault, the zero-sequence voltage V 0
is for line voltage V AB V BC V CA It has a phase difference angle of Here ( 0AB ) is V AB
represents the phase difference angle between the phase angle AB of and the phase angle 0 of V 0 . Rewriting condition (5) results in the following equation (6). Now, if we calculate formula (6), that is, the sine of the phase difference angle, we can get the formula
The faulty phase can be determined from the positive and negative signs of the first and second equations (6). Here, it will be explained that a determination equivalent to Equation (6) can be made using the sampling values of the zero-sequence voltage and the line voltage. The phases of the zero-sequence voltage and line voltage are not fixed, but actually rotate with the system angular frequency ω. Therefore, the zero-phase voltage V 0 and the line voltage V K (K=AB, BC, CA) are expressed by the following equations. Here, V OM and V KM are the peak values of V 0 and V K. If the sampling interval of V 0 and V K is △t, then
The sampling values of t=t 0 and t=t 0 −Δt are as follows. Furthermore, the function f K (V 0 , V K ) is defined as shown below. f K (V 0 , V K )=V K (t 0 )・V 0 (t 0 −△t)−V K (t 0 −△t)・V 0 (t 0 )……(9) Equation ( 8) and (9), f K (V 0 , V K ) is transformed as follows. f K (V 0 , V K ) = V KM sin (ωt 0 +)・V OM sin (ωt 0 −ω・△t+ 0 ) −V KM sin (ωt 0 −ω・△t+)・V OM sin ( ωt 0 + 0 ) =V KM V OM sin(ωt 0 +) {sin(ωt 0 + 0 ) cos(ω・△t) −cos(ωt 0 + 0 ) sin(ω・△t)−V KM V OM sin (ωt 0 + 0 ) {sin (ωt 0 +) cos (ω・△t) − cos (ωt 0 +) sin (ω・△t)} =V OM V KM {−sin (ωt 0 +) cos (ωt 0 + 0 ) + sin (ωt 0 + 0 ) cos (ωt 0 +)} sin (ω・△t) = V OM V KM sin (ω・△t) sin (ωt 0 + 0 −ωt 0 − ) =V OM V KM sin (ω・△t) sin ( 0 −) ...(10) If V AB is chosen as the line voltage V K , equation (10) can be rewritten as follows. f AB (V 0 , V AB )=V OM・V ABM sin (ω・△t) sin ( 0AB ) ……(11) Comparing equation (11) with equation (6) and the first equation, V OM , V AB
Since M is positive and sin(ω·Δt) is positive if the sampling interval ω·Δt is within 180°, the positive and negative values of both equations match. Therefore, the sampling values of the zero-sequence voltage and line voltage at time t 0 -△t, t 0 are V 0 (t 0 -△t), V 0
(t), V K (t 0 −△t), and V K (t 0 ) into equation (9) and determine whether it is positive or negative, the same judgment as equation (6) has been made. . That is, f AB (V 0 , V AB )=V AB (t 0 )・V 0 (t 0 −△t)−V AB (t 0 −△t)・V 0 (t 0 )<0 f BC ( V 0 , V BC )=V BC (t 0 )・V 0 (t 0 −△t)−V BC (t 0 −△t)・V 0 (t 0 )≧0 (12) f CA (V 0 , V CA )=V CA (t 0 )・V 0 (t 0 −△t)−V CA (t 0 −△t)・V 0 (t 0 )=0 can be determined using equation (6). This is equivalent to the determination of Similarly, ground faults in the B and C phases can also be detected. In other words, the sine of the phase difference angle between the line voltage and the zero-sequence voltage of the other two phases that are not the grounded phase is positive or zero, and the sine of the phase difference angle between the line-to-line voltage and the zero-sequence voltage between the grounded phase and the delayed phase is positive or zero. is negative. To summarize the above, f AB (V 0 , V AB )<0 and f BC (V 0 , V BC )≧
A phase ground fault at 0 f BC (V 0 , V BC ) < 0 and f CA (V 0 , V CA ) ≧
B phase ground fault at 0 f CA (V 0 , V CA ) < 0 and f AB (V 0 , V AB ) ≧
If it is 0, it can be determined that there is a C-phase ground fault. This invention is based on this principle, but in the case of power distribution lines, there are other requirements to consider when making a determination. When considering a power distribution system, the load condition is not balanced among the three phases, and a certain amount of zero-sequence voltage is always generated. In order to prevent erroneous determination due to this zero-sequence voltage, operation determination becomes more reliable by adding zero-sequence overvoltage detection, which indicates a ground fault when the zero-sequence voltage exceeds a certain level, to the ground fault phase judgment conditions. Now, regarding the calculation of the magnitude of this zero-sequence voltage,
Let the zero-sequence voltage be V 0 =V OM sin(ωt+ 0 ), and the sampling value at t=t 0 −△t t=t 0 t=t 0 +△t is V 0 (t 0 −△t)=V OM sin(ωt 0 −ω・△t+
0 ) V 0 (t 0 )=V OM sin (ωt 0 + 0 ) V 0 (t 0 +△t)=V OM sin (ωt 0 +ω・△t+
0 ), then V 0 (t 0 −△t)・V 0 (t 0 +△t)=V 2 OM・{sin 2 (ωt 0 + 0 )−sin 2 (ω・△t)} = { V 0 (t 0 )} 2 −V OM 2・sin 2 (ω・△t). Therefore, as V 2 OM = 1/sin 2 (ω・△t) {(V 0 (t 0 )) 2 −V 0 (t 0 −△t)・V 0 (t 0 +△t)}, the time The square value of the peak value of the zero-phase voltage can be calculated from the sampling values of t 0 -Δt, t 0 , and t 0 +Δt. Therefore, if we set g(V 0 )=1/sin(ω・△t)・√{ 0 ( 0 )} 20 ( 0 −△)・0 ( 0 +△), then g(V 0 )≧c 1 or {g(V 0 )} 2 ≧ (c 1 ) 2 , the presence or absence of a ground fault can be detected. Here, c 1 is a constant and has a value larger than the peak value of the zero-sequence voltage that occurs when the system is healthy. In particular, in a power distribution system, the load is rarely balanced among the three phases, and is always in an unbalanced state, resulting in zero-sequence voltage. For this reason, if a judgment is made only based on the phase relationship, there is a possibility of making a false judgment due to the zero-sequence voltage due to this unbalanced load, so the condition that the zero-sequence voltage is greater than a certain value is generated g (V 0 ) ≧ c 1 is necessary. Furthermore, in order to reduce supply disturbances, especially in distribution lines, slight ground faults (for example, instantaneous contact with leaves) are often not treated as accidents. For this reason as well, the above conditions are necessary. As described above, when this invention is applied to a digital relay, the determination formula is g (V 0 ) = 1/sin (ω・△t)√{ 0 ( 0 )} 20 ( 0 −△)・0 ( 0 +△) (13) f AB (V 0 , V AB )=V AB (t 0 )・V 0 (t 0 −△t)−V AB (t 0 −△t)・V 0 (t 0 ) (14) f BC (V 0 , V BC )=V BC (t 0 )・V 0 (t 0 −△t)−V BC (t 0 −△t)・V 0 (t 0 ) (15 ) f CA (V 0 , V CA )=V CA (t 0 )・V 0 (t−△t)−V CA (t 0 −△t)・V 0 (t 0 ) (16) Using g (V 0 )≧c 1 or {g(V 0 )} 2 ≧(c 1 ) 2 and f B
C (V 0 , V BC )≧0f AB (V 0 , V AB )<0 and A phase ground fault g(V 0 )≧c 1 or {g(V 0 )} 2 ≧(c 1 ) 2 and f B
C (V 0 , V BC )<0f CA (V 0 , V CA )≧0 and B phase ground fault g(V 0 )≧c 1 or {g(V 0 )} 2 ≧(c 1 ) 2 and f C
By detecting a C-phase ground fault when A (V 0 , V CA )<0f AB (V 0 ·V AB )≧0, a faulty ground fault phase can be detected at high speed. Here, ω=2πf (f is the system frequency) and Δt is the sampling interval time. For this reason, if the ability of arithmetic processing units improves, △
By reducing t, the detection speed can be increased as much as possible. As an example of the configuration of the ground fault phase detection device according to the above invention, an embodiment in which a digital processing device is used is shown in FIG. In FIG. 5, reference numeral 51 denotes an analog-to-digital converter, which mainly consists of a filter 51, a sample-and-hold circuit 52, and an analog-to-digital converter 53, and converts the line (or phase) voltage detected by the voltage transformer and Extra frequency components are removed from the zero-sequence voltage by a filter 51, sampled at a certain time interval (Δt) by a sample-and-hold circuit 52, and converted into a digital quantity by an analog-to-digital converter 53. It can be done. The voltage information converted into a digital quantity is stored in the data memory 61 of the arithmetic processing unit 6.
The arithmetic processing unit 63 performs arithmetic processing based on the voltage data stored in the data area of the data memory 61 and based on the determination procedure stored in the program memory 62 . If there is an accident in the system, the output section 7 outputs a command to disconnect the shingle breaker or an alarm/display signal to notify the occurrence of the accident. As described above, the present invention focuses on the voltage vector phases in FIGS. 3 and 4, and determines whether the sine of the phase difference between the zero-sequence voltage and the line voltage and the zero-sequence voltage are greater than a predetermined value. This has the effect of being able to quickly identify a faulty ground-fault phase under certain conditions. The invention is also easily applicable to digital relays. That is, by calculating equations (13) to (16) based on the sampled values of the zero-sequence voltage and line voltage, the faulty phase can be identified at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、非接地系配電線地絡時の等価回路
図、第2図は、A相地絡時の零相電圧のベクトル
図、第3図は第2図を3相について図示したベク
トル図、第4図は、もれ抵抗を考慮したベクトル
図、第5図は、この発明に係る地絡相検出装置の
1構成例である。 図において、5は入力電気量を導出するアナロ
グデイジタル変換部、6は演算処理部である。
Figure 1 is an equivalent circuit diagram when a ground fault occurs in an ungrounded distribution line, Figure 2 is a vector diagram of zero-sequence voltage when a phase A ground fault occurs, and Figure 3 is a vector diagram of Figure 2 for three phases. FIG. 4 is a vector diagram taking leakage resistance into consideration, and FIG. 5 is an example of the configuration of a ground fault phase detection device according to the present invention. In the figure, 5 is an analog-to-digital converter for deriving the input electrical quantity, and 6 is an arithmetic processing section.

Claims (1)

【特許請求の範囲】 1 3相交流系統の第1相と第2相との間の第1
の線間電圧、上記系統の第2相と第3相との間の
第2の線間電圧および上記系統の零相電圧を導出
し、上記第1の線間電圧と上記零相電圧との位相
差の正弦が負で、上記第2の線間電圧と上記零相
電圧との位相差の正弦が正または零で、且つ上記
零相電圧が所定値以上であるとき上記第1相の地
絡故障であると判別することを特徴とする地絡相
検出装置。 2 所定の時間間隔△tをもつて、3相交流系統
の第1相Aと第2相Bとの間の第1の線間電圧V
AB、上記系統の第2相Bと第3の相Cとの間の第
2の線間電圧VBCおよび上記系統の零相電圧V0
をサンプリングして導出したサンプリング値V0
(t−Δt)、V0(t)、VAB(t−△t)、VAB
(t)、VBC(t−△t)、VBC(t)に基づい
て、 fBC(V0、VBC) =VBC(t)・V0(t−△t)−VBC(t−△
t)・V0(t)≧0 fAB(V0、VAB) =VAB(t)・V0(t−△t)−VAB(t−Δ
t)・V0(t)<0 の関係が成立し且つ零相電圧が所定値以上である
とき上記第1相の地絡故障であると判別すること
を特徴とする地絡相検出装置。
[Claims] 1. The first phase between the first phase and the second phase of a three-phase AC system.
, the second line voltage between the second and third phases of the system, and the zero-sequence voltage of the system, and calculate the difference between the first line voltage and the zero-sequence voltage. When the sine of the phase difference is negative, the sine of the phase difference between the second line voltage and the zero-sequence voltage is positive or zero, and the zero-sequence voltage is greater than or equal to a predetermined value, A ground fault phase detection device characterized by determining that there is a fault. 2 With a predetermined time interval Δt, the first line voltage V between the first phase A and the second phase B of the three-phase AC system
AB , the second line voltage V BC between the second phase B and the third phase C of the system, and the zero-sequence voltage V 0 of the system
The sampling value derived by sampling V 0
(t-Δt), V 0 (t), V AB (t-Δt), V AB
(t), V BC (t-△t), and V BC (t), f BC (V 0 , V BC ) = V BC (t)・V 0 (t-△t) − V BC ( t-△
t)・V 0 (t)≧0 f AB (V 0 , V AB ) =V AB (t)・V 0 (t−△t)−V AB (t−Δ
t)·V 0 (t)<0 and when the zero-sequence voltage is equal to or higher than a predetermined value, it is determined that there is a ground fault in the first phase.
JP17016780A 1980-12-02 1980-12-02 Ground-fault phase detector Granted JPS5795133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17016780A JPS5795133A (en) 1980-12-02 1980-12-02 Ground-fault phase detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17016780A JPS5795133A (en) 1980-12-02 1980-12-02 Ground-fault phase detector

Publications (2)

Publication Number Publication Date
JPS5795133A JPS5795133A (en) 1982-06-12
JPS6251057B2 true JPS6251057B2 (en) 1987-10-28

Family

ID=15899919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17016780A Granted JPS5795133A (en) 1980-12-02 1980-12-02 Ground-fault phase detector

Country Status (1)

Country Link
JP (1) JPS5795133A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473249A (en) * 1977-11-24 1979-06-12 Omron Tateisi Electronics Co Ground fault phase detecting circuit
JPS54113044A (en) * 1978-02-22 1979-09-04 Kansai Electric Power Co Inc:The Ground faulted phase detecting relay

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473249A (en) * 1977-11-24 1979-06-12 Omron Tateisi Electronics Co Ground fault phase detecting circuit
JPS54113044A (en) * 1978-02-22 1979-09-04 Kansai Electric Power Co Inc:The Ground faulted phase detecting relay

Also Published As

Publication number Publication date
JPS5795133A (en) 1982-06-12

Similar Documents

Publication Publication Date Title
CN109742727A (en) A kind of judgment method of low pressure 400V leakage current
CN109507516A (en) Earth-fault detecting method, system and storage medium based on steady state fault amount
CN107683418B (en) Leakage current detection device
CN109633357B (en) Method and device for monitoring grounding insulation of multiple buses in three buses
JPS6251057B2 (en)
CN105655982B (en) Output current of frequency converter detection circuit and its detection method
JP2957187B2 (en) Secondary circuit disconnection detector for instrument transformer
JP2538758Y2 (en) Vector change detector
JP2923572B2 (en) Change width detector
JP2723286B2 (en) Ground fault detector
JPS5843402Y2 (en) Hogokeiden Sochi
CN108736435A (en) A kind of Fault Locating Method, device, positioning device and storage medium
CN218727918U (en) Broken wire detection device
JP2600682B2 (en) Ground fault protection relay
JP2607483B2 (en) Ground fault directional relay
JP2000341851A (en) Ground directional relay
SU888255A1 (en) Device for determining damaged feeder at single-phase short-circuiting
JPH0552124B2 (en)
JPH0320965B2 (en)
JPS6169328A (en) Ground-fault protective relay
JPS6248454B2 (en)
JPH03270633A (en) Ground relay device
JPS6259526B2 (en)
JPS60156219A (en) Method of protecting and detecting ground fault of generator
JPS5858889B2 (en) Three-phase distribution line disconnection detection device