JPS6250777B2 - - Google Patents

Info

Publication number
JPS6250777B2
JPS6250777B2 JP53098257A JP9825778A JPS6250777B2 JP S6250777 B2 JPS6250777 B2 JP S6250777B2 JP 53098257 A JP53098257 A JP 53098257A JP 9825778 A JP9825778 A JP 9825778A JP S6250777 B2 JPS6250777 B2 JP S6250777B2
Authority
JP
Japan
Prior art keywords
resin
moisture
monomer
ion exchange
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53098257A
Other languages
Japanese (ja)
Other versions
JPS5526412A (en
Inventor
Toshikazu Kawai
Yoichi Kumagai
Shoji Inoe
Hiroshi Inaba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP9825778A priority Critical patent/JPS5526412A/en
Publication of JPS5526412A publication Critical patent/JPS5526412A/en
Publication of JPS6250777B2 publication Critical patent/JPS6250777B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は感湿素子に関し、より詳しくは一対の
電極間をイオン交換能を有する単量体と疎水性単
量体との共重合体の皮膜で被覆した感湿素子に関
する。 建築用窓ガラス、航空機用、或いは自動車用窓
ガラスに防曇効果を賦与せしめるために、加熱用
ヒーターに電流を通じて該ガラスの温度を上昇さ
せ、ガラス素面上に凝集若しくは結露する水分を
蒸発させることが行なわれている。特に自動車リ
アーガラスに於いては、ガラス表面の水滴あるい
は湿分の存否を検知して、自動的に回路をオン・
オフするための感湿素子を組み込んだ自動水滴除
去装置が最近装備されるようになつた。 かかる感湿素子に関して、一対の電極間のガラ
ス表面付近のナトリウムイオンを導電体として利
用する方法が行なわれている。しかし該方法はガ
ラス表面を濡れた布などで拭いて清掃する際、誤
つて電極部を拭いてしまつた場合、ガラス表面の
ナトリウムイオンが同時に拭き取られてしまうた
めに、ガラス内部のナトリウムイオンが表面に拡
散、溶出して来るまで、その感湿機能を一時的に
失うという欠点があり、又直流電源を用いた場合
ナトリウムイオンが負極に局在するために、交流
電源を用いる必要があるという欠点を有してい
た。これらの欠点を改良するために、電極間を、
吸湿性樹脂に導電粒子を含有させた膜で被覆する
方法(特開昭50−38236号)、また電解性官能基を
有する吸湿性樹脂で被覆する方法(特開昭50−
75479号)等が考えられてきた。しかしこれら吸
湿性樹脂を被覆した感湿素子においては、被覆樹
脂層が大気中の水分を常時含有しているため、吸
湿性樹脂内の導電粒子或いは電解性官能基が解離
し、晴化時における電極間抵抗値が小さくなる。
その結果曇化時の電極間抵抗値との差が少なくな
り、加熱用ヒーターのスイツチを精度よく自動的
にオン・オフとする事が極めて難かしいこと、ま
た、曇化時から晴化時に変わる時の水分の脱離が
遅くなるためにオフ時の応答が遅く、加熱用ヒー
ターの導電時間が必要以上に長くなり、バツテリ
ー或いは電極の寿命を短かくし、被覆材料の経時
劣化を早めること、更に吸湿性樹脂であるがため
に自動車の車内で発生する煙草の煙やプラスチツ
クス内装材から揮散する可塑剤等により容易に汚
染され、耐久性に欠けるというような幾つかの欠
点を有していることが明らかになつた。 本発明者らはこれらの欠点を克服するために鋭
意研究した結果、イオン交換能を有し、しかも適
度な疎水性を有する樹脂が感湿素子皮膜として極
めて優れている事実を見い出し、本発明に到達し
たものである。即ち本発明は基材上に設けた一対
の電極間を、イオン交換能を有する単量体と疎水
性単量体との共重合体であつてイオン交換能を有
する単量体のモル比が1〜20モル%である皮膜で
被覆したことを特徴とする感湿素子である。本発
明の感湿素子が従来のものに比べて特に優れてい
る点は、 (1) 感湿素子としての抵抗特性が極めて優れてい
ること (2) 応答速度が極めて大きいこと (3) 耐汚染性に優れていること などである。ここでいう抵抗特性が優れている
事、あるいは応答速度が極めて大きいという事を
より具体的に説明すると、例えば疎水性単量体と
して塩化ビニル89.3モル%とイオン交換能を有す
る単量体としてアクリル酸10.7モル%よりなる共
重合体を用い電極間抵抗を結露していない状態
(以下A状態と記述する)及び結露しはじめた状
態(以下B状態と記述する)で測定すると、それ
ぞれ無限大と0.05MΩを示すのに対し、例えばポ
リヒドロキシエチルメタクリレートを主成分とす
る吸湿性樹脂にピロメリツト酸などの架橋剤を加
えて硬化させた吸湿性樹脂膜を用いてA状態及び
B状態で同様の試験を行なうと、それぞれ0.05M
Ω及び0.03MΩを示す。従つて本発明における疎
水性単量体とイオン交換基を有する単量体からな
る共重合体の方が結露していないA状態に於ける
電極間抵抗と結露しはじめたB状態に於ける電極
間抵抗との差が大きく感湿素子として極めて優れ
た抵抗特性を有し、加熱用ヒーターのオン・オフ
設定を容易にするものである事が判る。又、B状
態からA状態にもどした時、吸湿性樹脂は水分の
脱着が遅いために電極間抵抗の応答が遅いが、本
発明の疎水性樹脂は直ちに無限大の抵抗を示す事
実が観察された。このことは本発明の疎水性樹脂
膜は加熱用ヒーターのオフ時の応答速度が特に大
きいこと示す事が判る。 上記の如き著効を達成するための被覆用樹脂は
疎水性単量体とイオン交換能を有する単量体を適
当な割合で含有する共重合体であり、疎水性単量
体として塩化ビニル、スチレン、酢酸ビニル、エ
チレン、プロピレン、アクリロニトリル、メタク
リレート、ビニルエーテル、ハロゲン化ビニリデ
ンなど、またイオン交換能を有する単量体として
アクリル酸、メタクリル酸、マレイン酸、イタコ
ン酸などを用いることができる。これらの二元或
いは多元共重合体が被覆材として有効であるが、
共重合体の疎水性を維持し得る程度に限定する事
が望ましい。何故ならばイオン交換基を有する樹
脂はそれ自身疎水性とは言え難く、従つてイオン
交換基の数が増せば必然的に親水性樹脂が有して
いると同様の欠点が現われて来る。またイオン交
換基を有するポリマーは、スポンジ状となるため
多量の水分や溶剤をポリマー塊の中に含有するよ
うになり、重合終了後、脱水、洗浄、乾燥する時
に取扱いが著しく困難となる。 これらの共重合体を溶媒に溶解した溶液を図面
に示したセンサー機能テスト用ガラス板上の電極
部に塗布し、室温22±3℃、湿度70±10%の部屋
で電極を焼きつけていないガラス面に8±1℃の
冷水を流し、A状態およびB状態の電極間抵抗を
調べた(以下このような試験をシヤワーテストと
称する)。なお図中の1は抵抗測定器であり、a
は0.5mm、bは30cmとした。その結果、80〜99モ
ル%、好ましくは80〜95モル%の疎水性単量体
と、1〜20モル%、好ましくは5〜20モル%のイ
オン交換基を有する単量体との共重合体が感湿素
子として有効であり、イオン交換基を有する単量
体の含有量が1モル%以下ではB状態に於ける電
極間抵抗が大きくなり、一方イオン交換基を有す
る単量体の含有量が20モル%以上ではA状態に於
ける電極間抵抗が小さくなる結果、いずれの場合
も加熱用ヒーターのスイツチのオン・オフ設定が
困難になる事が判明した。 電極部に被覆する際、該樹脂を溶解するために
用いる溶媒は、共重合体を溶解し得るものであれ
ば良く、例えばシクロヘキサノン、メチルセロソ
ルブ、テトラヒドロフラン、アセトン、ニトロベ
ンゼンなどが使用できる。 このような樹脂溶液を電極部に被覆する際、樹
脂膜の厚みが大きすぎると応答が遅くなると共に
結露状態に於ける電極間抵抗が増大するため好ま
しくなく、膜厚は3μ以下にする事が好ましい。
しかも電極表面を樹脂で被覆せず、電極間にのみ
樹脂膜を形成させる場合には、これに限定される
ものではない。 以下本発明を実施例によつて具体的に説明する
が、これによつて本発明が制限されるものではな
い。 実施例 1 500ml或いは1000mlのステンレススチール製反
応器或いはガラス製反応器で、疎水性単量体とイ
オン交換基を有する単量体の組合せとして、塩化
ビニルとアクリル酸アクリロニトリルとメタクリ
ル酸、スチレンとイタコン酸、或いはスチレンと
メタクリル酸とを、ラジカル開始剤存在下に懸濁
共重合或いは溶液共重合し、乾燥後表−1で示さ
れる組成の樹脂を得た。該樹脂をそれぞれの良溶
媒(シクロヘキサノン、テトラヒドロフラン、ア
セトンなど)に溶解し1〜5%の溶液を試料液と
した。得られた試料液を膜厚1〜2μになる様に
塗布した感湿素子(試料1〜4)についてシヤワ
ーテストした結果を表−1に示す。 比較例 吸湿性樹脂であるポリヒドロキシエチルメタク
リレートをメチルセロソルブに溶解し、ポリヒド
ロキシエチルメタクリレート100部に対し架橋剤
ピロメリツト酸15部を添加した溶液をセンサー機
能テスト用硝子板上に電極部に塗布し、80℃で30
分熱処理したものを比較試料とした。 この比較試料についてシヤワーテストを行な
い、その結果も表−1に併記する。
The present invention relates to a humidity sensing element, and more particularly to a humidity sensing element in which a pair of electrodes is coated with a film of a copolymer of a monomer having ion exchange ability and a hydrophobic monomer. In order to impart an anti-fog effect to architectural window glass, aircraft, or automobile window glass, current is passed through a heating heater to raise the temperature of the glass and evaporate moisture that aggregates or condenses on the glass surface. is being carried out. Particularly in the case of automobile rear windows, the presence or absence of water droplets or moisture on the glass surface is detected and the circuit is automatically turned on and off.
Automatic water drop removal devices have recently become available that incorporate moisture-sensitive elements to turn them off. Regarding such moisture-sensitive elements, a method has been used in which sodium ions near the glass surface between a pair of electrodes are used as a conductor. However, with this method, when cleaning the glass surface by wiping it with a wet cloth, if you accidentally wipe the electrode part, the sodium ions on the glass surface will be wiped off at the same time. It has the disadvantage that it temporarily loses its moisture-sensing function until it diffuses and elutes to the surface, and when using a DC power source, the sodium ions are localized at the negative electrode, so it is necessary to use an AC power source. It had drawbacks. In order to improve these drawbacks, between the electrodes,
A method of coating a hygroscopic resin with a film containing conductive particles (Japanese Patent Laid-Open No. 50-38236), and a method of coating with a hygroscopic resin having an electrolytic functional group (Japanese Patent Laid-Open No. 50-38236)
75479) etc. have been considered. However, in moisture-sensitive elements coated with these hygroscopic resins, the coating resin layer always contains atmospheric moisture, so the conductive particles or electrolytic functional groups in the hygroscopic resin dissociate, causing The interelectrode resistance value becomes smaller.
As a result, the difference between the interelectrode resistance value during cloudy weather becomes smaller, making it extremely difficult to automatically turn on and off the heating heater accurately, and the difference between cloudy weather and clear weather. Due to the slow desorption of water during operation, the response when turned off is slow, the conduction time of the heating heater becomes longer than necessary, shortening the life of the battery or electrode, and accelerating the deterioration of the coating material over time. Since it is a hygroscopic resin, it is easily contaminated by cigarette smoke generated inside automobiles and plasticizers volatilized from plastic interior materials, and has several drawbacks such as lack of durability. It became clear. As a result of intensive research to overcome these drawbacks, the present inventors discovered that a resin having ion exchange ability and moderate hydrophobicity is extremely excellent as a moisture-sensitive element coating, and the present invention has been made based on this finding. It has been reached. That is, in the present invention, a copolymer of a monomer having ion exchange ability and a hydrophobic monomer is formed between a pair of electrodes provided on a base material, and the molar ratio of the monomer having ion exchange ability is This is a moisture-sensitive element characterized by being coated with a film having a moisture content of 1 to 20 mol%. The particular advantages of the humidity sensing element of the present invention compared to conventional ones are: (1) Extremely excellent resistance characteristics as a humidity sensing element (2) Extremely high response speed (3) Pollution resistance This includes being superior in sex. To explain in more detail the excellent resistance characteristics or extremely high response speed mentioned here, for example, 89.3 mol% of vinyl chloride is used as a hydrophobic monomer, and acrylic is used as a monomer with ion exchange ability. Using a copolymer containing 10.7 mol% acid, the interelectrode resistance was measured in a non-condensing state (hereinafter referred to as A state) and in a state where dew condensation had begun (hereinafter referred to as B state), and found that it was infinite. 0.05 MΩ, for example, a similar test in state A and state B using a hygroscopic resin film made by adding a crosslinking agent such as pyromellitic acid to a hygroscopic resin mainly composed of polyhydroxyethyl methacrylate and curing it. 0.05M each
Ω and 0.03MΩ are shown. Therefore, the copolymer composed of a hydrophobic monomer and a monomer having an ion exchange group in the present invention has a higher interelectrode resistance in state A where no dew condensation occurs and in state B where dew condensation has started. It can be seen that it has extremely excellent resistance characteristics as a moisture-sensitive element, with a large difference in resistance between the two, and that it facilitates the on/off setting of the heating heater. Furthermore, when returning from state B to state A, it was observed that while hygroscopic resins have a slow response in interelectrode resistance due to slow desorption of moisture, the hydrophobic resin of the present invention immediately shows infinite resistance. Ta. This shows that the hydrophobic resin film of the present invention has a particularly high response speed when the heater is turned off. The coating resin for achieving the above-mentioned remarkable effects is a copolymer containing a hydrophobic monomer and a monomer having ion exchange ability in an appropriate ratio, and the hydrophobic monomer is vinyl chloride, Styrene, vinyl acetate, ethylene, propylene, acrylonitrile, methacrylate, vinyl ether, vinylidene halide, etc., and monomers having ion exchange ability such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, etc. can be used. These binary or multicomponent copolymers are effective as coating materials, but
It is desirable to limit the amount to an extent that maintains the hydrophobicity of the copolymer. This is because resins having ion-exchange groups cannot be said to be hydrophobic per se, and therefore, as the number of ion-exchange groups increases, the same drawbacks as those of hydrophilic resins will inevitably appear. Furthermore, since polymers having ion exchange groups become spongy, they contain a large amount of water and solvent in the polymer mass, making handling extremely difficult during dehydration, washing, and drying after completion of polymerization. A solution of these copolymers dissolved in a solvent was applied to the electrodes on a glass plate for sensor function testing as shown in the drawing, and the electrodes were placed in a room with a room temperature of 22 ± 3°C and a humidity of 70 ± 10% on the glass without baking the electrodes. Cold water at 8±1° C. was poured over the surface, and the interelectrode resistance in state A and state B was examined (hereinafter, such a test will be referred to as a shower test). Note that 1 in the figure is a resistance measuring device, and a
was 0.5 mm, and b was 30 cm. As a result, a copolymerization of 80 to 99 mol%, preferably 80 to 95 mol% of a hydrophobic monomer and 1 to 20 mol%, preferably 5 to 20 mol% of a monomer having an ion exchange group is obtained. The combination is effective as a moisture-sensitive element, and if the content of the monomer having an ion exchange group is 1 mol% or less, the interelectrode resistance in the B state increases; It has been found that when the amount is 20 mol % or more, the resistance between the electrodes in state A becomes small, making it difficult to turn on and off the heater switch in any case. When coating the electrode part, the solvent used to dissolve the resin may be any solvent as long as it can dissolve the copolymer, such as cyclohexanone, methyl cellosolve, tetrahydrofuran, acetone, and nitrobenzene. When coating the electrode with such a resin solution, if the thickness of the resin film is too large, the response will be slow and the resistance between the electrodes will increase in condensation, which is not preferable, so the film thickness should be 3μ or less. preferable.
Moreover, in the case where the electrode surface is not coated with resin and a resin film is formed only between the electrodes, the present invention is not limited to this. EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited thereto. Example 1 In a 500 ml or 1000 ml stainless steel reactor or glass reactor, the combinations of hydrophobic monomers and monomers with ion exchange groups include vinyl chloride, acrylic acid, acrylonitrile, methacrylic acid, styrene and itacon. Acid or styrene and methacrylic acid were subjected to suspension copolymerization or solution copolymerization in the presence of a radical initiator, and after drying, a resin having the composition shown in Table 1 was obtained. The resin was dissolved in each good solvent (cyclohexanone, tetrahydrofuran, acetone, etc.) and a 1-5% solution was used as a sample solution. Table 1 shows the results of a shower test performed on the moisture sensitive elements (Samples 1 to 4) coated with the obtained sample liquid to a film thickness of 1 to 2 μm. Comparative Example A solution of polyhydroxyethyl methacrylate, a hygroscopic resin, dissolved in methyl cellosolve, and 15 parts of crosslinking agent pyromellitic acid added to 100 parts of polyhydroxyethyl methacrylate, was applied to the electrodes on a glass plate for sensor function testing. , 30 at 80℃
A comparative sample was prepared by heat treatment. A shower test was conducted on this comparative sample, and the results are also listed in Table 1.

【表】 実施例 2 500ml或いは1000mlのステンレススチール製反
応器で、アクリル酸と塩化ビニル(或いは更に酢
酸ビニルを加えて)とを、ラジカル開始剤存在下
に懸濁共重合し、脱水、乾燥後表−2で示される
組成の樹脂を得た。該樹脂を、それぞれシクロヘ
キサノンに溶解して1〜5%の溶液とし、膜厚1
〜2μになる様に塗布した感湿素子につきシヤワ
ーテストを行つた。その結果を表2に示す。
[Table] Example 2 In a 500ml or 1000ml stainless steel reactor, acrylic acid and vinyl chloride (or with the addition of vinyl acetate) were suspension copolymerized in the presence of a radical initiator, dehydrated, and dried. A resin having the composition shown in Table 2 was obtained. Each of the resins was dissolved in cyclohexanone to make a 1-5% solution, and the film thickness was 1.
A shower test was conducted on the moisture sensitive element coated to a thickness of ~2μ. The results are shown in Table 2.

【表】【table】

【表】 実施例 3 試料8の共重合体組成のものについて、自動車
車内で予想される汚染に対する抵抗性を調べるた
めに、自動車内にセンサー機能テスト用ガラスを
設置し、各種の汚染処理を行ない、電極間の抵抗
変化を調べた結果を表−4に示す。また比較例で
ある吸湿性樹脂について同様の耐汚染性テストを
行つた結果を表−5に示す。
[Table] Example 3 In order to investigate the resistance of the copolymer composition of Sample 8 to contamination expected inside an automobile, glass for sensor function testing was installed inside the automobile, and various contamination treatments were performed. Table 4 shows the results of examining the resistance change between the electrodes. Further, Table 5 shows the results of a similar stain resistance test performed on a hygroscopic resin as a comparative example.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図面はシヤワーテストに使用するセンサー機能
テスト用ガラスを示す説明図であり、図中1は抵
抗測定器、2はガラスを示す。
The drawing is an explanatory diagram showing a sensor function test glass used in a shower test, in which 1 indicates a resistance measuring device and 2 indicates the glass.

Claims (1)

【特許請求の範囲】[Claims] 1 基材上に設けた一対の電極間を、イオン交換
能を有する単量体と疎水性単量体との共重合体で
あつてイオン交換能を有する単量体のモル比が1
〜20モル%である皮膜で被覆したことを特徴とす
る感湿素子。
1 A copolymer of a monomer having ion exchange ability and a hydrophobic monomer, which has a molar ratio of the monomer having ion exchange ability of 1
A moisture-sensitive element characterized by being coated with a film containing ~20 mol%.
JP9825778A 1978-08-14 1978-08-14 Humidity sensitive element Granted JPS5526412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9825778A JPS5526412A (en) 1978-08-14 1978-08-14 Humidity sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9825778A JPS5526412A (en) 1978-08-14 1978-08-14 Humidity sensitive element

Publications (2)

Publication Number Publication Date
JPS5526412A JPS5526412A (en) 1980-02-25
JPS6250777B2 true JPS6250777B2 (en) 1987-10-27

Family

ID=14214895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9825778A Granted JPS5526412A (en) 1978-08-14 1978-08-14 Humidity sensitive element

Country Status (1)

Country Link
JP (1) JPS5526412A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5796246A (en) * 1980-12-08 1982-06-15 Hitachi Ltd Humidity-sensitive substance, preparation thereof and humidity-sensitive element

Also Published As

Publication number Publication date
JPS5526412A (en) 1980-02-25

Similar Documents

Publication Publication Date Title
KR100999048B1 (en) Method for preparing anion-exchange composite membrane containing styrene-based and vinylbenzene-based copolymer
US3559456A (en) Sensor for measuring humidity
JPS6215824B2 (en)
JPS5940042B2 (en) Semipermeable membrane and its manufacturing method
JPS6250777B2 (en)
JPS58176538A (en) Humidity-sensitive resistor element
JPS5899743A (en) Humidity sensitive element and manufacture thereof
JPS6319018B2 (en)
JPH0311426B2 (en)
JPS6154176B2 (en)
JPS6212470B2 (en)
JPS58213245A (en) Humidity sensitive material used for sensor
JPS58171657A (en) Moisture sensitive resistor
JPS60200152A (en) Humidity-sensitive element
KR950001483B1 (en) Organic high molecule humidity sensor
JPH0658337B2 (en) Moisture-sensitive element and manufacturing method thereof
JPS6161626B2 (en)
JPS6052756A (en) Resistance type humidity sensor
JPH0244388B2 (en) KANSHITSUTEIKOTAI
JPS59114450A (en) Humidity sensitive resistor
JPS6082951A (en) Moisture sensitive resistor
JPS62247239A (en) Moisture sensor
JPH08159998A (en) Humidity sensing element
JPS5853743A (en) Electric resistance type humidity sensor
JPS58223051A (en) Moisture sensitive element