JPS6250731B2 - - Google Patents

Info

Publication number
JPS6250731B2
JPS6250731B2 JP56161543A JP16154381A JPS6250731B2 JP S6250731 B2 JPS6250731 B2 JP S6250731B2 JP 56161543 A JP56161543 A JP 56161543A JP 16154381 A JP16154381 A JP 16154381A JP S6250731 B2 JPS6250731 B2 JP S6250731B2
Authority
JP
Japan
Prior art keywords
water
control
temperature
control valve
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56161543A
Other languages
Japanese (ja)
Other versions
JPS5862452A (en
Inventor
Yoshio Yamamoto
Yukio Nagaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56161543A priority Critical patent/JPS5862452A/en
Publication of JPS5862452A publication Critical patent/JPS5862452A/en
Publication of JPS6250731B2 publication Critical patent/JPS6250731B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/085Regulating fuel supply conjointly with another medium, e.g. boiler water using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/20Membrane valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/22Fuel valves cooperating with magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/24Valve details

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

【発明の詳細な説明】 本発明はガスや石油、電気をエネルギー源とす
る瞬間式給湯機に関するもので、給湯経路の端末
で蛇口が開かれ給水されたことを検知して機器の
運転を始めると共に、出湯温度の安定化を行う加
熱制御装置である。
[Detailed Description of the Invention] The present invention relates to an instantaneous water heater that uses gas, oil, or electricity as an energy source, and starts operating the device when it detects that a faucet is opened and water is supplied at the end of the hot water supply route. It is also a heating control device that stabilizes the temperature of hot water.

従来の瞬間式給湯機で出湯温度の安定化を図る
ためにガスなどの燃焼入力を制御する機器があつ
たが入力が最大の場合でもこれを上回る給水が行
われると目標温度にまで加熱することが出来ない
問題があつた。特に水温が低い冬期にこのような
場合が多かつた。又、給水水量を検知して機器の
自動発停運転を行うことは通常行われているが、
従来の水制御器では設定した最高通水可能水量に
よつて検知できる水量のレベルが変化する問題が
あつた。入力を比例制御する場合には、最低入力
の場合に高温が得られる低水量で通水を検知し、
かつ、最高入力でも低温が得られる高水量を流し
得ることが必要である。第1図は従来の給湯機で
使用されていた水制御器で、水は入口1から制御
孔2を通つて一次室3に入る。ここから調節弁4
を通つて出口5から図示していないが熱交換器に
接続されている。一次室3はダイヤフラム6によ
つて二次室7と区画されており、ダイヤフラム6
にはスプリング8が一次室3側へ押圧するように
作用している。ダイヤフラム6には制御弁9が取
付けられ、前述の制御孔2の開度を自動調節して
いる。10は二次室7と調節弁4の下流とを結ぶ
連通孔である。又、ダイヤフラム6の移動はピン
11によつて外部へ取り出されスイツチ12を切
換えている。この例に於ける水圧と水量に関する
特性例を第2図に示した。同図の第2象限には通
水量とダイヤフラム6に加わる圧力差の関係を示
している。調節弁4の開度によつて水量と圧力差
の関係は同図イ,ロ,ハのように変化している。
ここでダイヤフラム6の圧力差が増加すればスプ
リング8の力に打勝つて制御孔2を閉じる方向に
移動している。衆知のように制御孔2と制御弁9
の間隙が極度に小さくなると、この部分での水圧
損失が急増するので、この部分の極めて微少な変
位で入口水圧の変動分を吸収することが出来るこ
とになつて、水量は水圧に関係なくほぼ一定値を
保つ状態になる。そして、この水量一定の状態に
なるのは、ダイヤフラム6に作用する圧力差とス
プリング8の力でほぼ決められるので、調節弁4
で水量と圧力差の関係を変化させることによつ
て、安定化した状態の水量値を任意に選択するこ
とが可能になる。これが第2図の第1象限で示し
たA曲線に添つて水量が増加し、やがて、Q1′、
Q2′、Q3′の各々水量で安定する理由である。とこ
ろが、ダイヤフラム6の移動量でスイツチ12を
切換えているので、切換点まで移動するための圧
力差をΔρs′とすると、スイツチ12が作動する
ための最低水量は、調節弁開度がイで到達水量
Q1′の時にはQ′s1であり、開度ロならQ′s2とな
り、開度ハならQ′s3となる。スイツチ12が作動
する最低水量(以下、点火水量と称す)をQ′s3
レベルに設定すると到達水量はQ3′しか得られ
ず、逆に、到達水量がQ1′まで得られるようにす
ると点火水量はQ′s1まで増加してしまう。このこ
とは既に述べたように入力を制御して湯温安定化
を図る場合には、蛇口を絞つて低水量にした時に
は火が消えてしまつたり、低水量で燃焼できるよ
うに設計すると蛇口を全開しても水量が少くなつ
て常に入力を絞つた状態になるという不都合を生
じることになる。
Conventional instantaneous hot water heaters have devices that control combustion input such as gas in order to stabilize the hot water temperature, but even when the input is at its maximum, if water is supplied that exceeds this, the water will be heated to the target temperature. I had a problem where I couldn't do it. This was especially common in the winter when the water temperature was low. In addition, it is common practice to automatically start and stop equipment by detecting the amount of water supplied.
Conventional water controllers have a problem in that the level of the amount of water that can be detected changes depending on the maximum amount of water that can be passed. When proportionally controlling the input, water flow is detected at a low water volume that provides a high temperature at the lowest input.
In addition, it is necessary to be able to flow a high amount of water to obtain a low temperature even at the highest input. FIG. 1 shows a water controller used in a conventional water heater, in which water enters a primary chamber 3 from an inlet 1 through a control hole 2. From here, control valve 4
The outlet 5 is connected to a heat exchanger (not shown) through the outlet 5. The primary chamber 3 is separated from the secondary chamber 7 by a diaphragm 6.
A spring 8 acts to press the primary chamber 3 side. A control valve 9 is attached to the diaphragm 6 and automatically adjusts the opening degree of the control hole 2 described above. 10 is a communication hole connecting the secondary chamber 7 and the downstream side of the control valve 4. Further, the movement of the diaphragm 6 is taken out to the outside by a pin 11 and a switch 12 is operated. An example of characteristics regarding water pressure and water volume in this example is shown in FIG. The second quadrant of the figure shows the relationship between the water flow rate and the pressure difference applied to the diaphragm 6. Depending on the opening degree of the control valve 4, the relationship between the amount of water and the pressure difference changes as shown in A, B, and C in the figure.
If the pressure difference across the diaphragm 6 increases, it overcomes the force of the spring 8 and moves in the direction of closing the control hole 2. As common knowledge, control hole 2 and control valve 9
When the gap becomes extremely small, the water pressure loss in this area increases rapidly, so it becomes possible to absorb fluctuations in inlet water pressure with extremely small displacements in this area, and the amount of water is almost constant regardless of the water pressure. It will maintain a constant value. The fact that the amount of water remains constant is almost determined by the pressure difference acting on the diaphragm 6 and the force of the spring 8, so the control valve 4
By changing the relationship between water volume and pressure difference, it becomes possible to arbitrarily select a water volume value in a stabilized state. This causes the amount of water to increase along the A curve shown in the first quadrant of Figure 2, and eventually Q 1 ',
This is the reason why it is stable at each water amount of Q 2 ′ and Q 3 ′. However, since the switch 12 is switched by the amount of movement of the diaphragm 6, if the pressure difference required to move to the switching point is Δρ s ', then the minimum amount of water for the switch 12 to operate is determined by the amount of opening of the control valve. Amount of water reached
When the opening is Q1 ', it is Q' s1 , when the opening is RO, it is Q' s2 , and when the opening is Ha, it is Q' s3 . If the minimum amount of water at which the switch 12 operates (hereinafter referred to as ignition water amount) is set to the level of Q' s3 , the amount of water that can be reached is only Q3 ', and conversely, if the amount of water that can be reached is set to Q1 ', The amount of ignition water increases to Q′ s1 . As mentioned above, when trying to stabilize the temperature of hot water by controlling the input, the fire may go out when the faucet is turned down to reduce the amount of water, and if the faucet is designed to burn at a low amount of water, the faucet may Even if it is fully opened, the amount of water decreases, causing the inconvenience that the input is always restricted.

このような点火水量の変動を防ぐために第3図
のような従来例がある。ここで、右半分はピン1
1とスイツチ12が無いが他は第1図と同様であ
る。出口5から出た水は、開口13から検知室1
4を通つて接続孔15から熱交換器に入る。開口
13と検知室14の中央にはリードスイツチ16
を内蔵した検知案内筒17が設けられ、その外周
には永久磁石18が上下動可能な状態ではめられ
ている。19は永久磁石18を開口13の方向に
押圧したバネである。この例では、水流によつて
永久磁石18が上方への力を受け、バネ19に打
勝つと上昇してリードスイツチ16をオン状態に
する。この時の水量値は、バネ19と磁石外径、
検知室内径などの要素で決められるから、調節弁
4の開度には無関係で第1図の例のような問題は
ない。ところが、開口13や永久磁石18の部分
での圧力損があるので、入口水圧と通過水量の関
係に着目すると、第2図の第1象限に示した破線
Bのように水量が増加しやがてQ1′、Q2′、Q3′で
各々安定する。すなわち、到達水量に至り水量が
安定化する時の入口水圧値が上昇することになつ
て、ガバナとしての効果が少くなつてしまう。
In order to prevent such fluctuations in the amount of ignition water, there is a conventional example as shown in FIG. Here, the right half is pin 1
1 and switch 12 are omitted, but the rest is the same as in FIG. The water coming out from the outlet 5 flows through the opening 13 into the detection chamber 1.
4 and enters the heat exchanger through the connection hole 15. A reed switch 16 is located in the center of the opening 13 and the detection chamber 14.
A detection guide cylinder 17 containing a detection guide cylinder 17 is provided, and a permanent magnet 18 is fitted on the outer periphery of the cylinder so as to be movable up and down. 19 is a spring that presses the permanent magnet 18 in the direction of the opening 13. In this example, the permanent magnet 18 receives an upward force from the water flow, and when it overcomes the spring 19, it rises and turns the reed switch 16 on. The water amount value at this time is the spring 19 and the magnet outer diameter,
Since it is determined by factors such as the inner diameter of the detection chamber, it is unrelated to the opening degree of the control valve 4, and there is no problem like the example shown in FIG. However, since there is a pressure loss at the opening 13 and the permanent magnet 18, if we focus on the relationship between the inlet water pressure and the amount of water passing through, we can see that the amount of water increases as shown by the broken line B in the first quadrant of FIG. It becomes stable at 1 ′, Q 2 ′, and Q 3 ′. That is, the inlet water pressure value when the water amount reaches the final water amount and stabilizes increases, reducing the effectiveness of the governor.

尚、冒頭で述べた入力を上回る給水が行われた
時の出湯温度低下を防止する機能を有する水制御
器は従来例を見ない。
It should be noted that there is no conventional water controller that has the function of preventing a drop in the outlet temperature when water is supplied in excess of the input mentioned at the beginning.

本発明は、以上の従来例に鑑みて、ガスなどの
燃焼入力の比例制御を行う給湯機に於て、入力を
上回る給水が行われることがないよう給水量の自
動制御を行うと共に、機器の始動停止を行う点火
水量を前記給水量制御が行われた場合でも安定化
させ、更に、ガバナとしての水量安定化動作を出
来る丈、低水圧段階で行えるようにすることを目
的としている。
In view of the above-mentioned conventional examples, the present invention automatically controls the water supply amount so that the water supply does not exceed the input in a water heater that performs proportional control of the combustion input of gas, etc., and also controls the equipment. The purpose is to stabilize the amount of ignition water for starting and stopping even when the water supply amount control is performed, and further to perform the water amount stabilizing operation as a governor at a low water pressure stage as long as possible.

すなわち、制御ダイヤフラムで一次室と二次室
に区画し、一次室に開口した制御孔に制御ダイヤ
フラムと連動する制御弁を対応させ、一次室の下
流で水流によつて移動する磁石とこの磁石変位を
検出するスイツチと、一次室と二次室を連通する
第一連通路及び磁石下流側と二次室を連通する第
二連通路と、どちらか一方の連通路に設けられた
調節弁をコントローラ、駆動機構によつて開度調
節する水制御器、並びに、水制御器の下流側に設
けた熱交換器及び加熱装置によつて構成した加熱
制御装置である。水流の力によつて磁石を変位せ
しめ、これをスイツチによつて検出して機器を始
動・停止すると共に、この磁石を移動させる為に
消費した水圧を調節弁によつて分圧して制御ダイ
ヤフラムに作用させ、分圧比によつて安定化する
到達水量を任意に変化せしめるもので、調節弁を
コントローラの信号に基いて作動する駆動機構に
よつて開度調節して、入力に見合う給水量に常に
合わすことによつて目標温度を維持している。
又、ダイヤフラムに作用せしめる圧力差は磁石移
動の為に必要な水圧降下分を利用することによつ
て通水系の通路圧損を極力最少限にしている。
In other words, a control diaphragm is used to divide the primary chamber and secondary chamber, a control hole opened in the primary chamber is connected to a control valve that is linked to the control diaphragm, and a magnet that moves by the water flow downstream of the primary chamber and the displacement of this magnet are connected to each other. A controller controls a switch that detects a switch, a first communication passage that communicates the primary chamber and the secondary chamber, a second communication passage that communicates the downstream side of the magnet and the secondary chamber, and a control valve provided in one of the communication passages. , a water controller whose opening is adjusted by a drive mechanism, and a heat exchanger and a heating device provided downstream of the water controller. The force of the water flow displaces the magnet, which is detected by a switch to start and stop the equipment.The water pressure consumed to move the magnet is divided into parts by a control valve and sent to the control diaphragm. This system allows the amount of water to be supplied, stabilized by the partial pressure ratio, to be changed arbitrarily.The opening of the control valve is adjusted by a drive mechanism that operates based on signals from the controller, and the amount of water supplied is always adjusted to match the input. By adjusting the temperature, the target temperature is maintained.
In addition, the pressure drop acting on the diaphragm is minimized as much as possible by utilizing the drop in water pressure required for magnet movement, thereby minimizing pressure loss in the passageway of the water flow system.

以上のような構成と作用によつて前述の目的を
果すものであるが、以下、実施例を示した図に基
いて詳しく説明する。
The above-mentioned object is achieved by the above-described structure and operation, and will be explained in detail below based on the drawings showing the embodiments.

第4図は本発明の加熱制御装置をガス給湯機に
応用した実施例を示す構成図である。ここで、水
制御器は100であつて、給水路101から水は
入口102に入り、制御孔103から一次室10
4に至る。次に、開口105から検知室106を
通つて出口107から接続管108へ流出する。
一方、一次室104の上側は制御ダイヤフラム1
09で二次室110とは区画されており、二次室
110のスプリング111で制御ダイヤフラム1
09は常に一次室104側へ押圧付勢されてい
る。一次室104と二次室110とを結ぶ第一連
通路112には調節弁113が設けられていて駆
動機構114で回されて開口度が変えられる。次
に、開口105と検知室106の中央部にはスイ
ツチ115を内蔵した検知案内筒116が設けら
れており、その外周には磁石117が上下動自在
にはめられている。磁石117には開口105の
方向へ押圧するバネ118が作用しており、更
に、磁石117の下流側の検知室106と二次室
110とは第二連通路119によつて結ばれてい
る。又、制御孔103と対応した制御弁120が
ダイヤフラム109と連結されている。
FIG. 4 is a configuration diagram showing an embodiment in which the heating control device of the present invention is applied to a gas water heater. Here, the water controller is 100, and water enters the inlet 102 from the water supply channel 101 and enters the primary chamber 10 from the control hole 103.
4. Next, it flows out from the opening 105 through the detection chamber 106 and from the outlet 107 into the connecting pipe 108 .
On the other hand, the control diaphragm 1 is located above the primary chamber 104.
The control diaphragm 1 is separated from the secondary chamber 110 by the spring 111 of the secondary chamber 110.
09 is always pressed toward the primary chamber 104 side. A control valve 113 is provided in a first continuous passage 112 connecting the primary chamber 104 and the secondary chamber 110, and is rotated by a drive mechanism 114 to change the degree of opening. Next, a detection guide tube 116 having a built-in switch 115 is provided in the center of the opening 105 and the detection chamber 106, and a magnet 117 is fitted on the outer periphery of the tube so as to be movable up and down. A spring 118 that presses the magnet 117 in the direction of the opening 105 acts, and furthermore, the detection chamber 106 and the secondary chamber 110 on the downstream side of the magnet 117 are connected by a second communication path 119. Further, a control valve 120 corresponding to the control hole 103 is connected to the diaphragm 109.

以上が水制御器100としての構成であるが、
水は接続管108から熱交換器200を通る間に
加熱されて給湯路201から図示しない蛇口に供
給される。
The above is the configuration of the water controller 100, but
The water is heated while passing through the heat exchanger 200 from the connecting pipe 108 and is supplied from the hot water supply path 201 to a faucet (not shown).

又、300はバーナ装置で、ガス路301から
入つたガスは第一電磁弁302と第二電磁弁30
3とガス制御弁304を通つてバーナ装置300
に供給される。一方、第一電磁弁302の下流か
ら分岐したパイロツト管路305を通じてパイロ
ツトバーナ306にもガスは供給される。
Further, 300 is a burner device, and gas entering from a gas path 301 is passed through a first solenoid valve 302 and a second solenoid valve 30.
3 and the burner device 300 through the gas control valve 304.
supplied to On the other hand, gas is also supplied to the pilot burner 306 through a pilot pipe line 305 branched from the downstream side of the first electromagnetic valve 302.

最後に、400は前述の駆動機構114やガス
路の弁類を制御する信号を発つするコントローラ
であり、給湯路201の途中に設けた温度検知器
201と目標湯温を設定する温度設定器402を
含んでおり、これらの信号及び水制御器100の
スイツチ115の信号を入力としている。
Finally, 400 is a controller that issues signals to control the aforementioned drive mechanism 114 and valves in the gas path, and includes a temperature sensor 201 provided in the middle of the hot water supply path 201 and a temperature setting device 402 that sets the target hot water temperature. These signals and the signal from the switch 115 of the water controller 100 are input.

さて、本発明の加熱制御装置の動作・作用につ
いて次に述べる。
Now, the operation and effect of the heating control device of the present invention will be described below.

給湯路201の端末で蛇口が開かれると通水が
始まり、水制御器100の開口105を通る上向
きの水流は磁石117を上方へ持ち上げる力を発
生する。そして、その力がバネ118の荷重を上
回ると磁石117は浮上し磁石117の磁束がス
イツチ115に影響を及ぼす位置になればスイツ
チ115はオン状態となる。このスイツチ信号は
コントローラ400に送られて先ず第一電磁弁3
02を開く。ガスはパイロツトバーナ306に送
られ図示しない点火器も同時に始動してパイロツ
トバーナ306は点火する。この点火は図示して
いない炎検知器によつて検出され、次に第二電磁
弁303が開かれバーナ装置300にもガスが送
られ、パイロツトバーナ306から火移りして燃
焼が始まる。水は熱交換器200で加熱され、そ
の温度は温度検知器401で検出される。温度設
定器402で定めた目標温度よりも高ければコン
トローラ400はガス制御弁304へ信号を送
り、目標温度と一致するようにガス燃焼量の制御
を行う。こうして、入口水温や通水量に関係なく
出湯温度を目標通りに維持するものである。しか
し、バーナでの最高燃焼量はバーナ数や給排気能
力及び燃焼室容積などからおのずと限界がある。
今、16号相当の出力の機器ならば、水量が10/
分の時は水温を40℃だけ上昇する能力である。従
つて、入口水温が10℃では出湯温度は50℃が最高
となり、たとえ、温度設定器402で70℃に設定
しても70℃は得られない。この場合は水量を6.7
/分まで絞らなければ70℃にはならないことに
なる。本発明は、このように通水量を絞ることに
よつて常に目標温度に一致させるものである。で
は、水制御器100の動作について次に詳述す
る。
When the faucet is opened at the end of the hot water supply path 201, water begins to flow, and the upward flow of water through the opening 105 of the water controller 100 generates a force that lifts the magnet 117 upward. When the force exceeds the load of the spring 118, the magnet 117 floats, and when the magnetic flux of the magnet 117 reaches a position where it affects the switch 115, the switch 115 is turned on. This switch signal is sent to the controller 400 and first the first solenoid valve 3
Open 02. The gas is sent to the pilot burner 306, and an igniter (not shown) is also started at the same time, causing the pilot burner 306 to ignite. This ignition is detected by a flame detector (not shown), and then the second electromagnetic valve 303 is opened and gas is also sent to the burner device 300, whereupon the flame transfers from the pilot burner 306 and combustion begins. Water is heated by heat exchanger 200, and its temperature is detected by temperature detector 401. If the temperature is higher than the target temperature determined by the temperature setting device 402, the controller 400 sends a signal to the gas control valve 304, and controls the amount of gas burnt to match the target temperature. In this way, the outlet hot water temperature is maintained at the target level regardless of the inlet water temperature or the water flow rate. However, there is a limit to the maximum amount of combustion in a burner due to the number of burners, supply/exhaust capacity, combustion chamber volume, etc.
Now, if the device has an output equivalent to No. 16, the water volume will be 10/
Minute time is the ability to raise the water temperature by 40℃. Therefore, when the inlet water temperature is 10°C, the maximum outlet temperature is 50°C, and even if the temperature setting device 402 is set to 70°C, 70°C cannot be obtained. In this case, the water amount is 6.7
The temperature will not reach 70℃ unless the temperature is reduced to /min. According to the present invention, by reducing the amount of water flowing in this way, the temperature can always be made to match the target temperature. Next, the operation of the water controller 100 will be described in detail.

従来例のところでも述べたようにガバナとして
水量が水圧に関係なく安定化した時の水量値は、
通水量と制御ダイヤフラム109に作用する圧力
差の関係とスプリング111でほぼ決められる。
水は一次室104から出て開口105と検知室1
06及び磁石117の間を通過する時に設計によ
つて一義的に定まる圧力降下を生じる。この特性
は第5図の第2象限に示したヘ曲線である。低水
量側では開口105に磁石117が接つしている
ので圧力降下の増加傾向が大きく、やがて離れ始
めると増加傾向がにぶくなり、検知室106は下
流側に面積が拡大しているので水量増加があつて
も固定された絞り弁のようには圧力降下は増大し
ない。磁石117の下流側と二次室110は第二
連通孔119で結ばれているので第5図第2象限
で示した差圧は磁石117部分を通過する圧力降
下と同じで、これが制御ダイヤフラム109に作
用することになる。今、調節弁113が全閉状態
ならば一次室104の圧力は二次室に影響しない
ので第5図のヘ曲線で示す水量−差圧特性がその
まま制御ダイヤフラム109に作用してガバナ効
果が発揮された状態で水量はQ3となる。又、ス
イツチ115がオンする点火水量はQsである。
次に、調節弁113を半開すると、磁石部分を通
過する時の水量と圧力降下の関係はヘ曲線のまま
であるが一次室104の圧力が二次室へ影響する
結果、同一通水量でも制御ダイヤフラム109に
作用する差圧は減少してホ曲線のようになり、安
定状態での水量はQ2に増加する。調節弁113
を更に開くとダイヤフラムにはニ曲線が作用して
水量はQ1に増加する。このように調節弁113
の開度によつて水量変化は任意に行えるのである
が、二ケの連通孔は通水抵抗が高いので通水量の
大部分は磁石117部分を流れるので、いつもヘ
曲線のような圧力降下を生じ、その力で磁石11
7を浮上させる結果、点火水量の変化はない。
As mentioned in the conventional example, when the water volume is stabilized as a governor regardless of water pressure, the water volume value is
It is almost determined by the relationship between the water flow rate and the pressure difference acting on the control diaphragm 109 and the spring 111.
Water exits from the primary chamber 104 and enters the opening 105 and detection chamber 1.
06 and magnet 117, a pressure drop occurs that is uniquely determined by the design. This characteristic is a curve shown in the second quadrant of FIG. On the low water flow side, since the magnet 117 is in contact with the opening 105, there is a large tendency for the pressure drop to increase, and as the magnets 117 begin to separate, the increasing tendency slows down, and since the area of the detection chamber 106 is expanding toward the downstream side, the water flow increases. The pressure drop does not increase as much as with a fixed throttle valve. Since the downstream side of the magnet 117 and the secondary chamber 110 are connected by the second communication hole 119, the differential pressure shown in the second quadrant of FIG. It will affect. Now, if the control valve 113 is fully closed, the pressure in the primary chamber 104 does not affect the secondary chamber, so the water flow-differential pressure characteristic shown by the curve F in FIG. 5 acts directly on the control diaphragm 109, exerting the governor effect. In this state, the amount of water is Q 3 . Further, the amount of ignition water at which the switch 115 is turned on is Qs .
Next, when the control valve 113 is half-opened, the relationship between the amount of water passing through the magnet portion and the pressure drop remains as a curved line, but as a result of the pressure in the primary chamber 104 affecting the secondary chamber, even the same amount of water can be controlled. The differential pressure acting on the diaphragm 109 decreases and becomes like curve E, and the amount of water in the steady state increases to Q2 . Control valve 113
When the diaphragm is opened further, the two curves act on the diaphragm and the water volume increases to Q 1 . In this way, the control valve 113
The amount of water can be changed arbitrarily by changing the opening of the hole, but since the two communicating holes have high resistance to water flow, most of the water flows through the magnet 117, so there is always a pressure drop like a curve. generated, and the force causes the magnet 11 to
As a result of levitating 7, there is no change in the amount of ignition water.

コントローラ400では目標温度よりも湯温が
低く、かつ、ガス入力が最高の場合には駆動機構
114を動かして水量を低減させることによつて
目標温度に一致するよう制御している。
When the water temperature is lower than the target temperature and the gas input is at its highest, the controller 400 operates the drive mechanism 114 to reduce the amount of water, thereby controlling the temperature to match the target temperature.

通水量の範囲は、夏期にシヤワー適温で大量の
湯を使用する場合を考えれば、最大水量が多い程
適している(例えば、16号で水温25℃、湯温40℃
とすれば約27/分)。一方、冬期に風呂浴槽へ
のさし湯を考えると高温が得られる水量にするべ
きである(例えば、16号で水温5℃、湯温80℃と
すれば約5.3/分)。このように機器の最大能力
を発揮しつつ各種の用途を考えた通水量に設定す
べきである。ところで、水圧は地域、時刻によつ
ても異るが低水圧の状態も多くあるので、出来る
丈、通水抵抗を少く設計して最大水量が得られる
ようにするのが望まれる。従来例の第3図では、
調節弁4を全開にしても、調節弁4を挿入するた
めに水回路の曲り部分が存在してこの部分の抵抗
が高くなるばかりでなく、磁石部分18での圧力
降下が加わつて第2図のB曲線のように高水量を
得るには高水圧を必要とする特性になる。この
点、本発明では、調節弁113が主通水路中に存
在せず回路が単純化でき、磁石117部分のみの
圧力損だけになるから第5図のように低水圧側で
高水量を得ることが出来る。
Regarding the range of water flow rate, considering the case where a large amount of hot water is used at the appropriate temperature for showering in summer, the higher the maximum water flow is, the more suitable it is (for example, No. 16 with water temperature of 25℃ and hot water temperature of 40℃).
(approximately 27/min). On the other hand, when considering how to pour hot water into a bathtub in winter, the amount of water should be set to provide a high temperature (for example, if the water temperature is 5°C and the water temperature is 80°C in No. 16, the flow rate will be approximately 5.3/min). In this way, the water flow rate should be set in consideration of various uses while maximizing the capacity of the equipment. By the way, the water pressure varies depending on the region and time of day, but there are many situations where the water pressure is low, so it is desirable to design the pipe with a minimum length and water flow resistance so that the maximum amount of water can be obtained. In Fig. 3 of the conventional example,
Even if the control valve 4 is fully opened, there is a bend in the water circuit to insert the control valve 4, which not only increases the resistance at this part, but also increases the pressure drop at the magnet part 18, as shown in Fig. 2. As shown in curve B, the characteristics require high water pressure to obtain a high amount of water. In this respect, in the present invention, the control valve 113 is not present in the main water passage, which simplifies the circuit, and there is only a pressure loss in the magnet 117 portion, so a high water volume is obtained on the low water pressure side as shown in FIG. I can do it.

第4図の実施例でスイツチ115はリードスイ
ツチを図示したが、磁気に感応するホール素子や
磁気抵抗素子を用いたスイツチでも良い。又、駆
動機構114はモータサーボやステツプモータな
どが適している。更に、加熱装置としてガス燃焼
機の他に石油・電気の給湯機への展開も容易であ
る。
Although the switch 115 in the embodiment shown in FIG. 4 is a reed switch, it may be a switch using a Hall element or a magnetoresistive element sensitive to magnetism. Further, a motor servo, a step motor, or the like is suitable for the drive mechanism 114. Furthermore, in addition to gas combustion machines, the heating device can also be easily applied to petroleum or electric water heaters.

以上説明したように、本発明は、制御ダイヤフ
ラムで区画した一次室及び二次室と、一次室へ開
口した水が流入する制御孔と対応した制御弁を制
御ダイヤフラムと連動させ、一次室の下流に水流
で移動する磁石とこの磁石変位を検出するスイツ
チと、一次室と二次室を連通する第一連通路及び
磁石の下流側と二次室を連通する第二連通路と、
どちらか一方の連通路に設けられコントローラの
信号で作動する駆動機構でその開度が調節される
調節弁とを有する水制御器、並びに、熱交換器と
加熱装置とから構成された加熱制御装置であるか
ら、コントローラの信号で水量値を任意に設定で
きて湯温制御が任意に行えることはもちろん、水
量値を変化させても機器の発停を行う点火水量は
不変である。更に、調節弁を主通水路中に設けて
いないので通路圧損が低く低水圧でも多量の通水
が可能となる。調節弁は磁石下流側の圧力と一次
室の圧力との差を分圧して二次室へ作用させるも
のであるからどちらの連通路に設けても良いが、
弁を開く方向で水量が増加する位置と、水量が減
少する位置がある。前者は第一連通路に設けた場
合であり、後者は第二連通路である。水量を低下
させる時に、後者の第二連通路に設ける方法では
調節弁を全開とし磁石部分での圧力降下と制御ダ
イヤフラムに作用する差圧とをほぼ等しくするに
は第一連通路に比べて調節弁の抵抗を大幅に低く
なるよう設計する必要がある。ゴミなどの異物づ
まりを考えると第一連通路の径を細くするにも限
界があるのでおのずと調節弁を大きくしなければ
ならない。もし、全開状態でも一次室側の圧力の
影響が強くて磁石部での圧力降下より制御ダイヤ
フラムの差圧が少い状態であるとするなら、同一
最低水量を得るには磁石部での圧力降下をより多
くなるように見込んだ設計をしなければならな
い。第5図で言えば、Q3まで低下させるには、
磁石部の圧力降下曲線をヘ曲線よりも下側を通る
特性にしておくことになる。このことは、全体の
通路圧損の増大をもたらす結果となる。一方、調
節弁を第一連通路側に設けた場合は、全閉状態で
最少水量が定まるので前述のような問題はない。
従つ調節弁を設けるならば第一連通路側が有利で
ある。
As explained above, the present invention has a primary chamber and a secondary chamber divided by a control diaphragm, and a control valve corresponding to a control hole opened to the primary chamber through which water flows in conjunction with the control diaphragm. a magnet that moves with the water flow, a switch that detects the displacement of the magnet, a first communication passage that communicates the primary chamber and the secondary chamber, and a second communication passage that communicates the downstream side of the magnet and the secondary chamber;
A water controller having a control valve provided in either communication path and whose opening degree is adjusted by a drive mechanism operated by a signal from a controller, and a heating control device comprising a heat exchanger and a heating device. Therefore, the water volume value can be arbitrarily set using a signal from the controller, and the hot water temperature can be controlled arbitrarily, and even if the water volume value is changed, the ignition water volume for starting and stopping the equipment remains unchanged. Furthermore, since no regulating valve is provided in the main water passage, passage pressure loss is low and a large amount of water can be passed even at low water pressure. The control valve divides the difference between the pressure on the downstream side of the magnet and the pressure in the primary chamber and applies it to the secondary chamber, so it can be installed in either communication path.
In the direction in which the valve opens, there is a position where the amount of water increases and a position where the amount of water decreases. The former is the case where it is provided in the first communicating passage, and the latter is the case where it is provided in the second communicating passage. When reducing the amount of water, the latter method of installing the control valve in the second communication passage opens the control valve fully, and in order to make the pressure drop at the magnet part and the differential pressure acting on the control diaphragm almost equal, the control valve is adjusted compared to the first communication passage. The valve must be designed to have significantly lower resistance. Considering the possibility of clogging with foreign matter such as dust, there is a limit to reducing the diameter of the first passageway, so naturally the control valve must be made larger. If the influence of the pressure on the primary chamber side is strong even in the fully open state, and the differential pressure across the control diaphragm is smaller than the pressure drop at the magnet, then in order to obtain the same minimum water flow, the pressure drop at the magnet must be designed to increase the number of In Figure 5, to reduce Q to 3 ,
The pressure drop curve of the magnet section is made to have a characteristic that it passes below the F curve. This results in an increase in overall passage pressure drop. On the other hand, if the control valve is provided on the first passageway side, the minimum amount of water is determined in the fully closed state, so there is no problem as described above.
Therefore, if a control valve is provided, it is advantageous to use the first communication passage side.

コントローラでは温度検出器と温度設定器を設
けることによつて、水量値を目標温度に合うよう
自動調節することが容易で、この結果、四季を通
じて設定した湯が得られる便利で安全な給湯機を
得ることができる。
By installing a temperature detector and a temperature setting device in the controller, it is easy to automatically adjust the water flow value to match the target temperature, resulting in a convenient and safe water heater that can provide hot water at the set temperature throughout the year. Obtainable.

この他に、調節弁を主通水路に設けず、連通路
側から関接制御を行う方法なので弁口径の小径化
が可能で、全体機器の小型化が図れる。又、小径
化は同時に操作トルクの低減を意味しており、駆
動機構のパワー低減が可能であると同時に、コン
トローラ側の駆動回路、電源回路の少容量化も図
れる。従つて、小型化と同時に価格低減にも寄与
することが出来る。又、第1図のようにダイヤフ
ラムの動作をピンで外部へ導く部分が検知案内筒
のような静止した部分に代るので、単に点火水量
が安定するのみでなく、水洩れに対する信頼性の
向上も図ることが出来る。
In addition, since the control valve is not provided in the main water passage, and the control is performed from the communication passage side, the valve diameter can be reduced, and the overall equipment can be made smaller. Further, a smaller diameter also means a reduction in operating torque, which makes it possible to reduce the power of the drive mechanism and, at the same time, to reduce the capacity of the drive circuit and power supply circuit on the controller side. Therefore, it is possible to contribute to miniaturization and cost reduction at the same time. In addition, as shown in Figure 1, the part that guides the movement of the diaphragm to the outside using a pin is replaced by a stationary part such as a detection guide tube, which not only stabilizes the amount of ignition water but also improves reliability against water leaks. It is also possible to aim for

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図は従来の加熱制御装置に用いら
れている水制御器の断面図、第2図はこれら従来
例に於ける特性図、第4図は、本発明をガス給湯
機に適用した場合の加熱制御装置の一実施例を示
す構成図、第5図は、この実施例に於ける水制御
器の特性図である。 109……制御ダイヤフラム、104……一次
室、110……二次室、103……制御孔、12
0……制御弁、117……磁石、115……スイ
ツチ、112……第一連通路、119……第2連
通路、400……コントローラ、114……駆動
機構、113……調節弁、100……水制御器、
200……熱交換器、300……加熱装置、40
1……温度検知器、402……温度設定器。
Figures 1 and 3 are cross-sectional views of water controllers used in conventional heating control devices, Figure 2 is a characteristic diagram of these conventional examples, and Figure 4 is a diagram showing the present invention applied to a gas water heater. FIG. 5, which is a configuration diagram showing one embodiment of the heating control device when applied, is a characteristic diagram of the water controller in this embodiment. 109...Control diaphragm, 104...Primary chamber, 110...Secondary chamber, 103...Control hole, 12
0... Control valve, 117... Magnet, 115... Switch, 112... First communicating passage, 119... Second communicating passage, 400... Controller, 114... Drive mechanism, 113... Control valve, 100 ...Water controller,
200... Heat exchanger, 300... Heating device, 40
1...Temperature detector, 402...Temperature setting device.

Claims (1)

【特許請求の範囲】 1 制御ダイヤフラムと制御ダイヤフラムで区画
された一次室及び二次室と、一次室へ開口した制
御孔と、制御孔と対応し制御ダイヤフラムと連動
する制御弁と、一次室の下流側で水流によつて移
動する磁石と、磁石変位を検出するスイツチと、
一次室と二次室を連通する第一連通路と、前記磁
石位置の下流側と二次室を連通する第二連通路
と、どちらか一方の連通路に設けられコントロー
ラによつて作動する駆動機構で動かされる調節弁
とを有する水制御器並びに、水制御器の下流に接
続された熱交換器と、熱交換器を加熱する加熱装
置とから構成され、スイツチの出力で通水状態を
検知して加熱装置を運転すると共に、調節弁開度
をコントローラで変化して水量を可変することに
よつて湯水温度の制御を行う加熱制御装置。 2 調節弁が第一連通路に設けられた特許請求の
範囲第1項記載の加熱制御装置。 3 コントローラは、熱交換器の下流で湯水温度
を検知する温度検出器と、目標温度を定める温度
設定器を含み、両者の信号に応じて駆動機構へ駆
動信号を送る特許請求の範囲第1項記載の加熱制
御装置。
[Scope of Claims] 1. A control diaphragm, a primary chamber and a secondary chamber partitioned by the control diaphragm, a control hole opening into the primary chamber, a control valve corresponding to the control hole and interlocking with the control diaphragm, and a control valve of the primary chamber. A magnet that moves with the water flow on the downstream side, a switch that detects the displacement of the magnet,
A first communication passage communicating the primary chamber and the secondary chamber, a second communication passage communicating the downstream side of the magnet position and the secondary chamber, and a drive provided in either communication passage and operated by a controller. It consists of a water controller with a control valve operated by a mechanism, a heat exchanger connected downstream of the water controller, and a heating device that heats the heat exchanger, and the water flow state is detected by the output of the switch. A heating control device that controls the temperature of hot water by operating the heating device and changing the amount of water by changing the opening degree of the control valve using a controller. 2. The heating control device according to claim 1, wherein the control valve is provided in the first continuous passage. 3. The controller includes a temperature detector that detects the temperature of hot water downstream of the heat exchanger and a temperature setting device that determines the target temperature, and sends a drive signal to the drive mechanism in accordance with the signals from both of them.Claim 1 The heating control device described.
JP56161543A 1981-10-08 1981-10-08 Heating operation controlling apparatus Granted JPS5862452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56161543A JPS5862452A (en) 1981-10-08 1981-10-08 Heating operation controlling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56161543A JPS5862452A (en) 1981-10-08 1981-10-08 Heating operation controlling apparatus

Publications (2)

Publication Number Publication Date
JPS5862452A JPS5862452A (en) 1983-04-13
JPS6250731B2 true JPS6250731B2 (en) 1987-10-27

Family

ID=15737096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56161543A Granted JPS5862452A (en) 1981-10-08 1981-10-08 Heating operation controlling apparatus

Country Status (1)

Country Link
JP (1) JPS5862452A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153060A (en) * 1983-02-22 1984-08-31 Matsushita Electric Ind Co Ltd Hot water feeder
JPS6026237A (en) * 1983-07-21 1985-02-09 Matsushita Electric Ind Co Ltd Hot-water supply device

Also Published As

Publication number Publication date
JPS5862452A (en) 1983-04-13

Similar Documents

Publication Publication Date Title
KR0180270B1 (en) Solenoid valve device
JPS6250731B2 (en)
JPS6336528B2 (en)
JPS6327620B2 (en)
JPS6154130B2 (en)
KR100408760B1 (en) Water heater
JPS6311685B2 (en)
JPS6250730B2 (en)
JPS5836224B2 (en) flow proportional control valve
JPS6010229B2 (en) fluid control device
JPS5822052Y2 (en) instant gas water heater
JP3539046B2 (en) Gas water heater of bypass mixing type and water temperature sensitive type constant flow valve for bypass mixing used therein
JPH0361203B2 (en)
JPS6121345B2 (en)
JPH0429233Y2 (en)
GB1585695A (en) Gas-fired continuous-flow water heater
JPS6314366B2 (en)
JPS6114773Y2 (en)
JP3590254B2 (en) Hydraulic valve
JPH0345004Y2 (en)
JPS587892B2 (en) Combustion amount control device
JPS5834713B2 (en) flow proportional control valve
JPS6131237Y2 (en)
JPH0128302B2 (en)
JP2827685B2 (en) Hot water mixing equipment