JPS6010229B2 - fluid control device - Google Patents

fluid control device

Info

Publication number
JPS6010229B2
JPS6010229B2 JP51099917A JP9991776A JPS6010229B2 JP S6010229 B2 JPS6010229 B2 JP S6010229B2 JP 51099917 A JP51099917 A JP 51099917A JP 9991776 A JP9991776 A JP 9991776A JP S6010229 B2 JPS6010229 B2 JP S6010229B2
Authority
JP
Japan
Prior art keywords
valve
flow rate
valve body
valve seat
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51099917A
Other languages
Japanese (ja)
Other versions
JPS5324632A (en
Inventor
滋 白井
隆 棚橋
正次 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP51099917A priority Critical patent/JPS6010229B2/en
Publication of JPS5324632A publication Critical patent/JPS5324632A/en
Publication of JPS6010229B2 publication Critical patent/JPS6010229B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Lift Valve (AREA)
  • Magnetically Actuated Valves (AREA)
  • Feeding And Controlling Fuel (AREA)

Description

【発明の詳細な説明】 本発明は弁の開度により流体の流量を制御する流体制御
装檀に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluid control device that controls the flow rate of fluid by the opening degree of a valve.

最近ガス等の流体流量を制御する流量比例制御弁が開発
されているが、例えばこの比例制御弁を応用してガスバ
ーナへのガス供V給量を制御する場合においては、ガス
バーナの特性からガス流量がある流量以下になると不完
全燃焼やバックファイヤー等が発生するためこの流量以
下に絞ることのない構成の弁が要求された。
Recently, a flow rate proportional control valve has been developed to control the flow rate of fluid such as gas. For example, when applying this proportional control valve to control the amount of gas supplied to a gas burner, it is necessary to control the gas flow rate based on the characteristics of the gas burner. If the flow rate falls below a certain level, incomplete combustion, backfire, etc. will occur, so a valve with a configuration that will not restrict the flow rate below this level was required.

このため比例弁と並列にバーナが不完全燃焼しない限界
の最小ガス流量(以下最小流量と呼ぶ)を流すバイパス
を設けてこの流量以下には絞らない方法、あるいは比例
弁を駆動する信号が最小流量になる値になった時に弁を
急激に閉止させてガスを遮断するもの等々が考えられて
いたが、これ等の方法にはコスト、寸法的なバラッキ、
信頼性等種々の問題があった(後で説明する)。
For this reason, there is a method in which a bypass is installed in parallel with the proportional valve to flow the minimum gas flow rate (hereinafter referred to as the minimum flow rate) that does not cause incomplete combustion in the burner, and the flow rate is not reduced below this flow rate, or the signal that drives the proportional valve is set to the minimum flow rate. Attempts have been made to shut off the gas by abruptly closing the valve when the value reaches .
There were various problems such as reliability (explained later).

本発明ではこれ等の問題を解決した工業価値の高い弁装
置を提供するものである。
The present invention provides a valve device with high industrial value that solves these problems.

以下、本発明を図に従って説明してゆく。The present invention will be explained below with reference to the drawings.

本発明の説明においては電磁コイルに流れる電流に応じ
て発生する電磁力と板バネ力のつり合いにより弁の関度
を制御する電磁式比例制御弁を使用し、応用例として、
ガス瞬間湯沸器の温度制御を、上記比例弁と電子制御回
路を有用したもので説明してゆく。まず、第1図〜第4
図は従来例でその構成と問題点を説明する。
In the explanation of the present invention, an electromagnetic proportional control valve that controls the valve function by balancing the electromagnetic force generated in accordance with the current flowing through the electromagnetic coil and the leaf spring force will be used, and as an application example,
Temperature control of a gas instantaneous water heater will be explained using the proportional valve and electronic control circuit described above. First, Figures 1 to 4
The figure shows a conventional example and its configuration and problems will be explained.

第1図においては、比例弁1にバイパス2を設け入口3
からバーナ4へ供給するガス量を比例弁1により制御し
て、比例弁1が閉止した時においてもバイパス2により
最少流量は常に流している。またガス閉止は比例弁1と
直列に接続された電磁弁5により行なうものである。第
2図はこの特性図を示す。横軸は比例弁コイル電流1、
縦軸はガス流量Qである。図でA部は比例帯であり、比
例弁1が制御動作をしている時である。しかし電流1が
減少してB点に至ると、比例弁1は閉止してしうが電磁
弁5は開いているため、ガスはバイパス2から流れ、こ
のバイパス2で制御される流量で変化しなくなる。電流
1がさらに低下してC点に達すると電磁弁5が閉じる様
に制御回路を構成しておくことによりガスを閉止する。
また前記電磁弁5を開ける点は、C点からDまで回路構
成により自由に行なえる。この方法を使用するには比例
弁以外に電磁弁がもう一つ必要で高価になり、またガス
通路抵抗も大きくなるという問題点がある。
In Fig. 1, the proportional valve 1 is provided with a bypass 2 and an inlet 3.
The amount of gas supplied from the burner 4 to the burner 4 is controlled by the proportional valve 1, and even when the proportional valve 1 is closed, the minimum flow rate is always supplied by the bypass 2. Further, gas closure is performed by a solenoid valve 5 connected in series with the proportional valve 1. FIG. 2 shows this characteristic diagram. The horizontal axis is the proportional valve coil current 1,
The vertical axis is the gas flow rate Q. In the figure, part A is the proportional band, which is when the proportional valve 1 is performing a control operation. However, when current 1 decreases and reaches point B, proportional valve 1 closes but solenoid valve 5 remains open, so gas flows from bypass 2 and changes with the flow rate controlled by bypass 2. It disappears. The gas is closed by configuring the control circuit so that when the current 1 further decreases and reaches point C, the solenoid valve 5 closes.
Further, the point at which the electromagnetic valve 5 is opened can be freely set from point C to point D depending on the circuit configuration. Using this method requires another electromagnetic valve in addition to the proportional valve, which is expensive, and there are also problems in that the gas passage resistance increases.

第3図は他の例でガス入口6から流入したガスが比例弁
7を通りガスバーナ8へ送られる。
FIG. 3 shows another example in which gas flowing in from a gas inlet 6 passes through a proportional valve 7 and is sent to a gas burner 8.

この場合第4図に示すように比例弁コイル電流が減少し
て来てガス流量が最少流量Eになる電流値Fの時急激に
電流が零になる様に回路構成されている。この方法によ
るとガス流量QがE点に達したことを電流1で検出して
いるため、弁の特性のバラッキやガス種類変換等により
E点がずれてしまい、精度の高い制御は出来なかった(
第4図Q,,Q2を参照)。
In this case, as shown in FIG. 4, the circuit is constructed so that when the proportional valve coil current decreases and the gas flow reaches a current value F at which the gas flow becomes the minimum flow E, the current suddenly becomes zero. According to this method, since the current 1 is used to detect when the gas flow rate Q has reached point E, the E point may shift due to variations in valve characteristics or gas type conversion, making highly accurate control impossible. (
(See Figure 4 Q, , Q2).

このため時にはバーナが不完全燃焼をする危険性もあっ
た。次に本発明に先だって考えた例を第5図以下に示す
This sometimes posed the risk of incomplete combustion in the burner. Next, an example considered prior to the present invention is shown in FIG. 5 and subsequent figures.

第5図は本発明に先だって考えた例の一状態図である。FIG. 5 is a state diagram of an example considered prior to the present invention.

電磁コイル9の発生する電磁力に応じて比例的に上下動
するプランジャ10の一端にゴム製の弁11が遊着され
ている。弁11は弁座13に対向するように配置されて
いるコイル9に電流を通じていない時は、板ぱね12に
より弁座13に押圧されている。弁座13の内側には電
磁ソレノィド14で上下に駆動される弁体規制部材15
と、それに符属する流体シール18、コイルスプリング
16、規制位魔調節リング17が設けられている。次に
この動作について説明する。
A rubber valve 11 is loosely attached to one end of a plunger 10 that moves up and down proportionally in response to electromagnetic force generated by an electromagnetic coil 9. The valve 11 is pressed against the valve seat 13 by a plate spring 12 when no current is passed through the coil 9 arranged to face the valve seat 13. Inside the valve seat 13 is a valve body regulating member 15 that is driven up and down by an electromagnetic solenoid 14.
A fluid seal 18, a coil spring 16, and a regulating adjustment ring 17 are provided. Next, this operation will be explained.

第5図はコイル9と電磁ソレノィド14に通電していな
い状態を示し弁11は弁座13に密着しガスを遮断して
いる状態である。
FIG. 5 shows a state in which the coil 9 and the electromagnetic solenoid 14 are not energized, and the valve 11 is in close contact with the valve seat 13 to cut off gas.

次に電磁ソレノィド14に通電した状態を第6図に示す
Next, FIG. 6 shows a state in which the electromagnetic solenoid 14 is energized.

この状態ではガスバーナ(図示せず)の特性から決まる
最4・流量を流すに必要な分だけ弁11が弁座13より
特上げられる。この特上げられる量はあらかじめ規制位
置調節リング17により設定されている。次にコイル9
の電流をしだいに増加してゆくと、プランジャ10は電
磁力により上方へ引上げられてゆき、弁11は弁体規制
部材15より特上げられ、弁11と弁座13との開度に
応じてガス流量を比例的に制御する。
In this state, the valve 11 is raised from the valve seat 13 by the amount necessary to flow the maximum flow rate determined by the characteristics of the gas burner (not shown). This special increase amount is set in advance by the regulation position adjustment ring 17. Next, coil 9
As the current is gradually increased, the plunger 10 is pulled upward by the electromagnetic force, and the valve 11 is raised above the valve body regulating member 15, and the valve 11 is moved upward according to the opening degree of the valve 11 and the valve seat 13. Proportional control of gas flow rate.

(第7図)ところが以上説明した本発明に先だって考え
た例、第5図〜第7図の構成の流体制御装置は、最小一
定流量を得るために弁11と弁座13との間の隙間を適
切かつ確実に得なければならず、弁座13の直径が比較
的大であることから、弁体規制部材15の作動停止位置
を精密に調節する必要があり、実使用上規制位置調節リ
ング17による調節に時間を要したり、調節リング17
のわずかな調節ズレによって、最4・流量値のバラッキ
が大きくなるなどの問題があった。
(Fig. 7) However, in the example considered prior to the present invention described above, the fluid control device having the configuration shown in Figs. must be obtained appropriately and reliably, and since the diameter of the valve seat 13 is relatively large, it is necessary to precisely adjust the stop position of the valve body regulating member 15. Adjustment using the adjustment ring 17 may take time.
There were problems such as a slight adjustment deviation in the flow rate resulting in large variations in the flow rate value.

本発明は従来の問題および、本発明に先だって考えた例
の問題を解消するもので、流体流入口と流出口の間に、
弁座と、電気入力に略比例した変位をするとともに前記
弁座を開閉する弁体と、前記弁体の駆動規制を行ととも
に、電気的手段で動く弁体規制部材とを備え、前記弁体
規制部材の前記弁体への当援部に副弁座を形成し、この
副弁座の内部を、前記流体流出口に導適すると共に、登
り弁座と弁座との間、もしくは副弁座に制限された最小
一定流量の流体を流す流量規制通路を設けたものである
The present invention overcomes the problems of the prior art and the problems of the examples considered prior to the present invention, in that between the fluid inlet and the outlet,
The valve body includes a valve seat, a valve body that opens and closes the valve seat while being displaced approximately in proportion to electrical input, and a valve body regulating member that regulates drive of the valve body and moves by electrical means. A sub-valve seat is formed in the part of the regulating member that supports the valve body, and the inside of the sub-valve seat is guided to the fluid outflow port, and the inside of the sub-valve seat is formed between the ascending valve seat and the valve seat, or between the sub-valve seat. A flow rate regulating passage is provided to allow a minimum constant flow rate of fluid to flow.

この構成によって前記弁体規制部村が規制位置に設定さ
れた状態で前記弁体がこの弁体規制部材に当接しない間
は流体の流量を連続的に制御し、前記弁体がこの弁体規
制部材に当接した時は制限された最4・一定流量を流し
、前記弁体規制部材が解除位置に設定された状態で前記
弁体が前記弁座を閉じた場合は流体を閉止するように作
用する。第8図に本発明の一実施例を示す。
With this configuration, the flow rate of fluid is continuously controlled while the valve body is not in contact with the valve body regulating member when the valve body regulating member is set at the regulating position, and the valve body When in contact with the regulating member, a limited maximum or constant flow rate is allowed to flow, and when the valve element closes the valve seat with the valve element regulating member set to the release position, the fluid is closed. It acts on FIG. 8 shows an embodiment of the present invention.

第8図において、弁体規制部材15は弁11が当援する
部分に副弁座151を形成し、その内部および側面にガ
ス導通路152を設けるとともに弁座13の内側に流量
規制通路19を設けたものである。
In FIG. 8, the valve body regulating member 15 has an auxiliary valve seat 151 formed in a portion supported by the valve 11, a gas guide passage 152 provided inside and on the side thereof, and a flow rate regulation passage 19 provided inside the valve seat 13. It was established.

なお第5図〜第7図と同一部村には同一番を付している
。上記構成においてコイル9と電磁ソレノィド14に通
電していない時は、弁11は弁座13に密着し流体を遮
断した状態、次に電磁ソレノイド14に通電すると副弁
座151を有する弁体規制部材15が、コイルスプリン
グ16および板ばね12の力に打ち勝って弁11に当接
したまま持ち上げ、流体は弁座13と富山弁座151と
の間に設けた流量規制通路19に制限された最小一定流
量が流れる状態になるように作用し、規制位置調節リン
グ17の調節は、大まかであっても最小流量を一定小径
の流量規制通路19で得ているので、最小一定流量を確
実に精度よく得ることができるという効果がある。
The same numbers are attached to some villages that are the same as those in Figures 5 to 7. In the above configuration, when the coil 9 and the electromagnetic solenoid 14 are not energized, the valve 11 is in close contact with the valve seat 13 to block fluid, and when the electromagnetic solenoid 14 is energized next, the valve body regulating member having the sub-valve seat 151 15 overcomes the force of the coil spring 16 and the leaf spring 12 and lifts up while in contact with the valve 11, and the fluid is restricted to a minimum constant flow rate passage 19 provided between the valve seat 13 and the Toyama valve seat 151. The adjustment of the regulation position adjustment ring 17 allows the minimum flow rate to be obtained in the small-diameter flow regulation passage 19, so that the minimum constant flow rate can be accurately obtained. It has the effect of being able to

なお流量規制通路19は劉弁座151の側壁に設けても
同様の効果が得られる。次にコイル9の電流をしだいに
増加してゆくと、プランジャ1川ま電磁力により上方へ
引き上げられてゆき、弁11は富。弁座151より特上
げられ、弁11と副弁座151との関度に応じてガス流
量を比例的に制御する(第8図)。コイル9の電流をし
だいに減少する場合は増加の場合と同様に弁11が弁体
規制部村15に当援するまでの間はコイル9の電流に比
例してガス流量を制御し、弁11が弁体規制部材16(
副弁座151)に当接すると、その時のコイル9の電流
以下にコイル9の電流を減少させても弁11は動かず決
まった最小流量は流れ続ける。
Note that the same effect can be obtained even if the flow rate regulating passage 19 is provided on the side wall of the Liu valve seat 151. Next, when the current in the coil 9 is gradually increased, the plunger 1 is pulled upward by the electromagnetic force, and the valve 11 becomes full. It is raised above the valve seat 151 and proportionally controls the gas flow rate according to the relationship between the valve 11 and the sub-valve seat 151 (FIG. 8). When the current in the coil 9 is gradually decreased, the gas flow rate is controlled in proportion to the current in the coil 9, and the gas flow rate is controlled in proportion to the current in the coil 9. is the valve body regulating member 16 (
When it comes into contact with the sub-valve seat 151), even if the current in the coil 9 is reduced below the current in the coil 9, the valve 11 will not move and the predetermined minimum flow rate will continue to flow.

そして制御回路(図示せず)よりの信号で電磁ソレノイ
ド14の電流が遮断された時、弁体規制部村15がコイ
ルスプリング16により下方へ下がり弁11は瞬時に閉
じる。このコイル9の電流と電磁ソレノイドのon−0
8のタイミングはバーナおよび機器に応じて制御回路に
より自由に設定できる。
When the electric current of the electromagnetic solenoid 14 is cut off by a signal from a control circuit (not shown), the valve body regulating section 15 is moved downward by the coil spring 16, and the valve 11 is instantly closed. The current of this coil 9 and the on-0 of the electromagnetic solenoid
The timing of 8 can be freely set by the control circuit depending on the burner and equipment.

例えばガス閉止状態(第5図)からガスを流す場合に、
いきなり弁が全開するようコイル9に電流を流し、同時
に電磁ソレノィド14にも通電することがある。第9図
は本発明実施例におけるコイル9の電流1とガス流量Q
の特性を示す。図でG部は比例域で第8図の状態であり
比例制御をしている時、肌ま最小流量城で弁11が副弁
座151に当俵している状態にある時、Jは閉止域で弁
11が弁座13に当接している状態にある時、Kは弁1
1が全開でバーナの全館力で燃焼している時である。L
の点は制御回路により電磁ソレノィド14をoffする
点で同時にコイル9の電流もoHする。第10図はガス
瞬間傷沸器に本発明を応用したシステム図で、給水口1
01から流入した水は熱交換器102で熱交換され蛇口
103から湯になって出て行く、一方ガスは入口104
から流入しガスコツク105を通り比例弁106からバ
ーナ107へ供聯合される。
For example, when flowing gas from a gas closed state (Figure 5),
A current may be applied to the coil 9 so that the valve is suddenly fully opened, and at the same time, the electromagnetic solenoid 14 may also be energized. Figure 9 shows the current 1 of the coil 9 and the gas flow rate Q in the embodiment of the present invention.
shows the characteristics of In the figure, part G is in the proportional region and is in the state shown in Figure 8. When proportional control is being performed, when the valve 11 is in contact with the sub-valve seat 151 at the minimum flow rate, J is closed. When the valve 11 is in contact with the valve seat 13 in the area, K is the valve 1
1 is when the burner is fully open and burning with the full power of the burner. L
At this point, the control circuit turns off the electromagnetic solenoid 14, and at the same time, the current in the coil 9 is also turned OFF. Figure 10 is a system diagram in which the present invention is applied to a gas instant boiler.
Water flowing in from 01 undergoes heat exchange in a heat exchanger 102 and exits as hot water from a faucet 103, while gas flows through an inlet 104.
It flows through the gas tank 105 and is coupled to the burner 107 from the proportional valve 106.

108はパイロットバーナを示す。108 indicates a pilot burner.

ここで、給湯出口に温度検知器109(本例では負性感
温抵抗素子を使用した、以下サーミスタと呼ぶ)が設け
られており、ここで湯温を検出して信号を制御回路11
0へ送る。
Here, a temperature sensor 109 (using a negative temperature-sensitive resistance element in this example, hereinafter referred to as a thermistor) is provided at the hot water supply outlet, which detects the hot water temperature and sends a signal to the control circuit 11.
Send to 0.

制御回路110内で設定温度と比較増幅して電流信号を
比例弁106へ送る。今給濠蛇口から給湯している時に
給湯量を増加すればサーミスタ109の温度が低下する
ため比例弁106の電流が増加してガス量を増加し、そ
の温度の低下を防ぎ、また給湯量が減少すればガスを絞
り温度上昇を防ぐ。この特性を第11図に示す。
The current signal is compared and amplified with the set temperature in the control circuit 110 and sent to the proportional valve 106. If you increase the amount of hot water when hot water is currently being supplied from the faucet, the temperature of the thermistor 109 will drop, so the current of the proportional valve 106 will increase, increasing the amount of gas, preventing the temperature from dropping, and increasing the amount of hot water being supplied. If it decreases, the gas is throttled to prevent temperature rise. This characteristic is shown in FIG.

機軸は蛇口103からの給湯流量Qw、縦藤は給湯温度
Tを示す。曲線Nは制御しない濠沸器の特性で、給湯量
を増加すればその温度は低下する。そこで制御すれば設
定温度Toで流量に関係なく一定温度となる。しかし給
湯量Qwが0点以上になれば濠織器の能力が一杯になる
ためN線上に乗る。またP部は負荷のガス要求量が第9
図に示すM点のガス流量以下になった時L,Rの線上を
比例弁がオン、オフ動作している状態を示す。また設定
温度Toは制御回路の設定により自由に変更できる。以
上のように本発明の流体制御装置によれば次の効果が得
られる。
The axis indicates the flow rate Qw of hot water from the faucet 103, and the vertical axis indicates the temperature T of the hot water supply. Curve N is the characteristic of an uncontrolled moat boiler, and as the amount of hot water supplied increases, its temperature decreases. If the temperature is controlled accordingly, the temperature will be constant at the set temperature To regardless of the flow rate. However, when the hot water supply amount Qw reaches 0 points or more, the capacity of the moat loom is full and the water is on the N line. In addition, in the P section, the load gas requirement is 9th.
This figure shows a state in which the proportional valve operates on and off on the lines L and R when the gas flow rate is below the point M shown in the figure. Further, the set temperature To can be freely changed by setting the control circuit. As described above, the fluid control device of the present invention provides the following effects.

m 電気入力に略比例した変位をする弁体と、前記弁体
の駆動規制を行うとともに、電気的手段で動く弁体規制
部材を設け、弁体規制部村の弁体への当俵部に副弁座を
形成し、副弁座と弁座との間もしくは勘弁座に流量規制
通路を設けた構成としているので、1個の弁(流量制御
装置)にて、外部からの電気信号だけで流体の比例制御
城と、一定した比例制御下限流量域と、閉止状態とを簡
単に、しかも確実に得ることができる効果がある。
m. A valve body whose displacement is approximately proportional to the electric input, and a valve body regulation member that regulates the drive of the valve body and moves by electrical means are provided, and the valve body regulation member of the valve body is provided with a Since the configuration has a sub-valve seat and a flow regulating passage between the sub-valve seat and the valve seat or on the valve seat, one valve (flow control device) can be used with only an external electrical signal. This has the effect of easily and reliably obtaining proportional control of the fluid, a constant proportional control lower limit flow range, and a closed state.

【2} ガス燃焼器の燃焼量制御用などに応用すれば、
すぐれた効果を期待できるものである。
[2] If applied to control the combustion amount of gas combustors,
Excellent effects can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の流体制御手段の一例を示す構成図、第2
図はその流量制御特性図、第3図は従来の他の流体制御
手段の構成図、第4図はその流量制御特性図、第5図は
本発明に先だって考えた例における流体制御装贋の断面
図、第6図、第7図は同動作説明図、第8図は本発明の
−実施例における流体制御装置の断面図、第9図はその
流量制御特性図へ第10図はガス湯沸器のバーナ出力制
御用に応用した場合の図、第11図はその湯温特性図で
ある。 11…・・・弁体、13・・・・・・弁座、14・・・
・・・電磁ソレノィド、15・・・・・・弁体規制部材
、19・・・・・・流量規制通路、151・・・・・・
副弁座。 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図 第10図 第11図
FIG. 1 is a configuration diagram showing an example of a conventional fluid control means, and FIG.
Figure 3 is a diagram of its flow rate control characteristics, Figure 3 is a configuration diagram of another conventional fluid control means, Figure 4 is its flow rate control characteristic diagram, and Figure 5 is a diagram of a fluid control device in an example considered prior to the present invention. 6 and 7 are explanatory diagrams of the same operation, FIG. 8 is a sectional view of a fluid control device in an embodiment of the present invention, FIG. 9 is a flow rate control characteristic diagram thereof, and FIG. 10 is a gas hot water FIG. 11 is a diagram showing the hot water temperature characteristics when applied to the burner output control of a boiler. 11... Valve body, 13... Valve seat, 14...
...Electromagnetic solenoid, 15...Valve body regulation member, 19...Flow rate regulation passage, 151...
Deputy Benza. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11

Claims (1)

【特許請求の範囲】 1 流体流入口と流出口の間に、弁座と、電気入力に略
比例した変位をするとともに前記弁座を開閉する弁体と
、前記弁体の駆動規制を行うとともに、電気的手段で動
く弁体規制部材とを備え、前記弁体規制部材の前記弁体
への当接部に副弁座を形成し、この副弁座の内部を、前
記流体流出口に導通すると共に、副弁座と弁座との間も
しくは副弁座に制限された最小一定流量の流体を流す流
量規制通路を設け、前記弁体規制部材が規制位置に設定
された状態で、前記弁体がこの弁体規制部材に当接しな
い間は流体の流量を連続的に制御し、前記弁体がこの弁
体規制部材に当接した時は制限された最小一定流量を流
し、前記弁体規制部材が解除位置に設定された状態で前
記弁体が前記弁座を閉じた場合は流体を閉止する構成と
した流体制御装置。 2 弁体規制部材を電磁ソレノイドにより駆動するよう
にした特許請求の範囲第1項記載の流体制御装置。 3 弁体規制部材の規制位置を調節出来るよう構成した
特許請求の範囲第1項記載の流体制御装置。
[Scope of Claims] 1. Between a fluid inlet and an outlet, there is provided a valve seat, a valve element that opens and closes the valve seat while being displaced approximately in proportion to electrical input, and controls the driving of the valve element. , a valve body regulating member that moves by electrical means, a sub-valve seat is formed at a portion of the valve body regulating member that contacts the valve body, and the interior of the sub-valve seat is electrically connected to the fluid outlet. At the same time, a flow rate regulation passage is provided between the sub-valve seat and the sub-valve seat or in the sub-valve seat to allow a fluid to flow at a limited minimum constant flow rate, and when the valve body regulation member is set at the regulation position, the valve The flow rate of the fluid is continuously controlled while the body is not in contact with this valve body regulating member, and when the valve body is in contact with this valve body regulating member, a limited minimum constant flow rate is caused to flow, and the fluid flow is controlled continuously. A fluid control device configured to close fluid when the valve body closes the valve seat with the regulating member set at the release position. 2. The fluid control device according to claim 1, wherein the valve body regulating member is driven by an electromagnetic solenoid. 3. The fluid control device according to claim 1, which is configured to be able to adjust the regulating position of the valve body regulating member.
JP51099917A 1976-08-20 1976-08-20 fluid control device Expired JPS6010229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51099917A JPS6010229B2 (en) 1976-08-20 1976-08-20 fluid control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51099917A JPS6010229B2 (en) 1976-08-20 1976-08-20 fluid control device

Publications (2)

Publication Number Publication Date
JPS5324632A JPS5324632A (en) 1978-03-07
JPS6010229B2 true JPS6010229B2 (en) 1985-03-15

Family

ID=14260121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51099917A Expired JPS6010229B2 (en) 1976-08-20 1976-08-20 fluid control device

Country Status (1)

Country Link
JP (1) JPS6010229B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015984Y2 (en) * 1978-10-24 1985-05-18 三菱電機株式会社 Solenoid flow control valve
JPS59208285A (en) * 1983-05-13 1984-11-26 Hitachi Ltd Gas flow rate controlling device
CN112013150A (en) * 2019-05-30 2020-12-01 宁波方太厨具有限公司 Electromagnetic valve and water heater comprising same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869133U (en) * 1971-12-03 1973-09-01
JPS5248037Y2 (en) * 1974-04-24 1977-11-01

Also Published As

Publication number Publication date
JPS5324632A (en) 1978-03-07

Similar Documents

Publication Publication Date Title
US3469590A (en) Modulating control valve
US2118443A (en) Electric valve
US3685732A (en) Thermostatic control device with heat motor operated step open diaphragm valve
JPS6010229B2 (en) fluid control device
US3036778A (en) Pressure regulator for diaphragm gas valves
JPS6131784A (en) Combination faucet device
US3227370A (en) Temperature responsive control device
JPS60249783A (en) Hot water and cold water mixing device
JPS6327620B2 (en)
US3358922A (en) Modulating valve
GB2176275A (en) Apparatus for controlling the temperature of the circulating water in a central heating system
US3528452A (en) Diaphragm operated flow control device
JPH04341675A (en) Hot/cold water combination system
GB1585695A (en) Gas-fired continuous-flow water heater
JPS634096B2 (en)
JPS5836224B2 (en) flow proportional control valve
JPS6029035B2 (en) Control valves that open and close proportionally in response to temperature
US3146945A (en) Thermostatic control for range burners
JPS5834713B2 (en) flow proportional control valve
JPS6250731B2 (en)
US2263817A (en) Temperature control system
JPS6311685B2 (en)
JPH04228988A (en) Hot and cold water mixing device
JPH0345004Y2 (en)
JPH0147708B2 (en)