JPS6250162B2 - - Google Patents

Info

Publication number
JPS6250162B2
JPS6250162B2 JP54002339A JP233979A JPS6250162B2 JP S6250162 B2 JPS6250162 B2 JP S6250162B2 JP 54002339 A JP54002339 A JP 54002339A JP 233979 A JP233979 A JP 233979A JP S6250162 B2 JPS6250162 B2 JP S6250162B2
Authority
JP
Japan
Prior art keywords
liquid
cavitation
microbubbles
gas
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54002339A
Other languages
Japanese (ja)
Other versions
JPS5594605A (en
Inventor
Zenzaburo Yasutomi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKAFU
Original Assignee
OOSAKAFU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKAFU filed Critical OOSAKAFU
Priority to JP233979A priority Critical patent/JPS5594605A/en
Publication of JPS5594605A publication Critical patent/JPS5594605A/en
Publication of JPS6250162B2 publication Critical patent/JPS6250162B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Description

【発明の詳細な説明】 本発明は溶解気体除去方法に関する。[Detailed description of the invention] The present invention relates to a method for removing dissolved gases.

従来、作動油、水、血液、人造血液或はその他
種々の液体には空気その他種々の気体が溶解し、
この溶解気体が存在することにより、各種分野で
は非常に面倒なトラブルを発生していた。例え
ば、機械工業の分野においては、キヤビテーシヨ
ンが発生しやすくなり、油圧機器、水圧機器の寿
命を縮めたり、騒音を発生したり、さらには液体
中に溶解気体が存在すれば圧縮率が増大して、応
答性又は位置決め精度を著しく害していた。ま
た、化業工業の分野においては、液体中に気体が
混入することは、化学反応を利用する場合、好ま
しくないことが多い。また、医学の分野において
は、血液或は人造血液中に気体が溶解すること
は、人命にかかわる問題である。
Conventionally, air and various gases have been dissolved in hydraulic oil, water, blood, artificial blood, and other various liquids.
The presence of this dissolved gas has caused extremely troublesome troubles in various fields. For example, in the field of mechanical engineering, cavitation tends to occur, shortening the life of hydraulic equipment and hydraulic equipment, generating noise, and even increasing the compression ratio if dissolved gas exists in the liquid. , the responsiveness or positioning accuracy was significantly impaired. Furthermore, in the field of chemical industry, it is often undesirable for gases to be mixed into liquids when chemical reactions are utilized. Furthermore, in the medical field, the dissolution of gas in blood or artificial blood is a problem that can be life-threatening.

そこで、従来は液体中の溶解気体を除去すべく
液体を加熱して溶解気体を追出していたが、この
方法では、液体が変質したり劣化する等の欠点が
あつた。
Conventionally, the dissolved gas in the liquid was heated to expel the dissolved gas, but this method had drawbacks such as alteration and deterioration of the liquid.

また、第7図のように撹拌翼aを高速回転させ
れば、その背面に1個づつの大きな容積のキヤビ
テーシヨン塊bが破線のように発生する。この撹
拌翼aに固着して発生する大きなキヤビテーシヨ
ン塊bの表面に触れる液体の溶解気体を、このキ
ヤビテーシヨン塊bに集めて脱気を行なう方法も
知られている。しかし、第7図の方法では、キヤ
ビテーシヨン塊bの全表面積は極めて小さな面積
であつて、これを通して集められる溶解気体の集
合能率は悪いという欠点があつた。かつ、このよ
うなキヤビテーシヨン塊bの負圧の絶対値は余り
大きくならず、しかも圧力変動(脈動)も比較的
小さいために、一層、溶解気体の除去能率が劣悪
であつた。
Further, when the stirring blade a is rotated at high speed as shown in FIG. 7, cavitation lumps b each having a large volume are generated on the back surface thereof as shown by broken lines. A method is also known in which dissolved gas in a liquid that comes into contact with the surface of a large cavitation lump b that adheres to the stirring blade a is collected in the cavitation lump b for degassing. However, the method shown in FIG. 7 has the disadvantage that the total surface area of the cavitation mass b is extremely small, and the efficiency of collecting the dissolved gas through it is poor. Moreover, since the absolute value of the negative pressure of such a cavitation lump b was not very large and the pressure fluctuations (pulsations) were also relatively small, the removal efficiency of dissolved gas was even worse.

また、第8図のようにシリンダc内のピストン
dを伸長させて、シリンダ空室e内を真空とする
ことは広く知られてはいるが、液体と真空部fと
の接触表面gの面積が極めて小さいと共に、圧力
変動(脈動)もないため、溶解気体の除去能率は
劣悪であつた。
Furthermore, although it is widely known that the piston d in the cylinder c is extended to create a vacuum in the cylinder chamber e as shown in FIG. 8, the area of the contact surface g between the liquid and the vacuum part f is Since the pressure was extremely small and there was no pressure fluctuation (pulsation), the removal efficiency of dissolved gas was poor.

本発明は、従来のこのような欠点を解消し、短
時間に多量の溶解気体の確実な除去(脱気)を行
なうことを目的とする。
The present invention aims to eliminate these conventional drawbacks and to reliably remove (deaeration) a large amount of dissolved gas in a short period of time.

以下、図示の実施例に基き本発明を詳説する。 Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

第1図乃至第4図に於て、1はシリンダバレル
であり該シリンダバレル1内を摺動自在にピスト
ン2が嵌合され、ピストンロツド3にて摺動し、
膨縮自在のキヤビテーシヨン室4を形成する。さ
らにシリンダバレル1の底壁5近傍には、多数の
小径オリフイス状の吸入細孔6………が開設さ
れ、この多数の吸入細孔6………を介して吸入管
7が連通連結されている。また該吸入管7には矢
印Aで示す吸入方向のみの流れを許す弁8が介装
されている。
In FIGS. 1 to 4, 1 is a cylinder barrel, and a piston 2 is slidably fitted inside the cylinder barrel 1, and is slid by a piston rod 3.
A cavitation chamber 4 that can be expanded and contracted is formed. Further, in the vicinity of the bottom wall 5 of the cylinder barrel 1, a large number of small-diameter orifice-shaped suction holes 6 are opened, and a suction pipe 7 is connected through these many suction holes 6. There is. Further, the suction pipe 7 is provided with a valve 8 that allows flow only in the suction direction shown by arrow A.

9は、シリンダバレル1の底壁5近傍の上方位
置に開設された吐出孔であり、上方延伸状の吐出
管10がキヤビテーシヨン室4に連通連結されて
いる。この吐出管10の途中部は第4図の如く倒
立U字状に彎曲して気体貯蔵部11が形成され、
この貯蔵部11には気体放出管12が連結されて
いる。さらに、矢印B方向の流れのみを許す弁1
3が吐出管10の途中に介装されており、ピスト
ン2が所定の膨張速度E及び収縮速度Fにて第1
図→第2図→第3図→第4図の如く摺動すれば、
両弁8,13が図示の如く開閉作動して、液体は
吸入孔6からキヤビテーシヨン室4に流入し、吐
出孔9から流出してゆく。
Reference numeral 9 denotes a discharge hole opened at an upper position near the bottom wall 5 of the cylinder barrel 1, and an upwardly extending discharge pipe 10 is connected in communication with the cavitation chamber 4. The middle part of this discharge pipe 10 is bent into an inverted U-shape as shown in FIG. 4 to form a gas storage part 11.
A gas discharge pipe 12 is connected to this storage section 11 . Furthermore, a valve 1 that only allows flow in the direction of arrow B
3 is interposed in the middle of the discharge pipe 10, and the piston 2 moves to the first position at a predetermined expansion speed E and contraction speed F.
If you slide as shown in the diagram → Figure 2 → Figure 3 → Figure 4,
Both valves 8 and 13 open and close as shown, and liquid flows into the cavitation chamber 4 through the suction hole 6 and flows out through the discharge hole 9.

第5図は縦軸にキヤビテーシヨン室4内の上記
噴流箇所の圧力Pをとり、横軸にピストン2のス
トロークSをとつて、その関係を示すものである
が、膨張速度Eを一定とすれば、ストロークの開
始直後の膨張率は大きいために負圧力Pの絶対値
が大きくなり、かつ圧力脈動が発生して、本図の
如き圧力曲線が得られる。なおストローク速度E
をストロークSに応じて増大して、負圧をほぼ一
定とすることも出来る。そして圧力脈動が急激で
あることが本図より明らかである。
Figure 5 shows the relationship between the pressure P at the jet location in the cavitation chamber 4 on the vertical axis and the stroke S of the piston 2 on the horizontal axis.If the expansion speed E is constant, then Since the expansion rate immediately after the start of the stroke is large, the absolute value of the negative pressure P becomes large, and pressure pulsations occur, resulting in a pressure curve as shown in this figure. Note that the stroke speed E
It is also possible to increase the negative pressure according to the stroke S to keep the negative pressure approximately constant. It is clear from this figure that the pressure pulsation is rapid.

しかして、上述の構成に係る装置にて液体中の
溶解気体を除去するには、第1図から第2図に示
す如くピストン2を所定の膨張速度Eにて摺動さ
せ、キヤビテーシヨン室4を膨張させれば、吸入
管7から矢印A方向に流れて来た、気体を溶解し
た液体は、吸入細孔6………より強い乱流混合状
態にて噴流状にキヤビテーシヨン室4内に流入す
る。このとき、キヤビテーシヨン室4の膨張動作
により得られる全体的雰囲気圧力よりも、はるか
に大きい絶対値の局所的脈動負圧部が多数発生す
る(第5図参照)。これによつて液体に溶解して
いる気体を核として無数の極微小気泡からなる初
生キヤビテーシヨンを発生させて第1段階の脱気
を行なう。
In order to remove dissolved gas in the liquid using the device having the above-mentioned configuration, the piston 2 is slid at a predetermined expansion speed E as shown in FIGS. 1 to 2, and the cavitation chamber 4 is opened. When expanded, the gas-dissolved liquid flowing from the suction pipe 7 in the direction of arrow A flows into the cavitation chamber 4 in the form of a jet in a state of stronger turbulent mixing than the suction pores 6. . At this time, many local pulsating negative pressure parts are generated whose absolute value is much larger than the overall atmospheric pressure obtained by the expansion operation of the cavitation chamber 4 (see FIG. 5). As a result, initial cavitation consisting of countless microscopic bubbles is generated using the gas dissolved in the liquid as a core, thereby performing the first stage of deaeration.

第1図又は第2図に於て、吸入細孔6………近
傍から煙の如く描いてあるのが、この無数の極微
小気泡である。さらに詳しく言えば、吸入細孔6
からの噴流内の多数の局所的な負圧部において、
飽和蒸気圧以下となれば溶解気体が核となつて、
極微小気泡が発生する。
In FIG. 1 or 2, it is these countless microscopic bubbles that are drawn like smoke from the vicinity of the suction pore 6. More specifically, the suction pore 6
At a number of local negative pressure sections within the jet from
When the vapor pressure falls below the saturated vapor pressure, the dissolved gas becomes the nucleus,
Microscopic bubbles are generated.

次に、該初生キヤビテーシヨンにて発生した極
微小気泡の表面に接する液体から、溶解気体を吸
収しながら、それよりも大きな微小気泡15……
…に成長させて、第2段階の脱気を行なう。この
とき、核となる極微小の気泡は噴流において激し
く振動するために、その表面部から溶解気体を吸
収しやすく、短秒間で微小気泡15に成長する。
さらに、気泡が小さければ小さい程、単位体積当
りの液との接触面積が大となるから、一層効率的
に溶解気体を吸収して、より短い時間で微小気泡
15に成長し、液体に溶解していた気体は微小気
泡15………として分離され、この多数の微小気
泡15………は第2図の如くキヤビテーシヨン室
4の天井面16に浮上集合してゆき大気泡17を
生ずる。そこで、第3図及び第4図に示す如く、
ピストン2を逆方向に摺動してゆくが、収縮速度
Fを前記膨張速度Eよりも十分に小に設定すれ
ば、この間に、多数の微小気泡15………が浮上
して大気泡17に集合させ得る。さらに収縮速度
Fが小さければキヤビテーシヨン室4内の圧力が
大とならず、いつたん分離した気体が液体中に再
溶解するのを防止出来るのである。そして、第4
図のように大気泡17は吐出孔9を通つて矢印B
方向に流出して、気体貯蔵部11に貯蔵されるか
ら、気体放出管12の弁18を開いて放出すれば
よい。なお気体貯蔵部11を吐出管10の途中部
に取付けられた収納容器体にて形成することも出
来る。
Next, while absorbing dissolved gas from the liquid in contact with the surface of the microscopic bubbles generated in the initial cavitation, larger microbubbles 15...
...and perform the second stage of deaeration. At this time, the microscopic bubbles serving as the nucleus vibrate violently in the jet stream, so they easily absorb dissolved gas from their surface and grow into microbubbles 15 in a short period of time.
Furthermore, the smaller the bubble, the larger the contact area with the liquid per unit volume, so it absorbs dissolved gas more efficiently, grows into microbubbles 15 in a shorter time, and dissolves in the liquid. The gas that had been in the air is separated as microbubbles 15, and these many microbubbles 15 float and gather on the ceiling surface 16 of the cavitation chamber 4, as shown in FIG. 2, to form large bubbles 17. Therefore, as shown in Figures 3 and 4,
As the piston 2 slides in the opposite direction, if the contraction speed F is set to be sufficiently lower than the expansion speed E, during this time many microbubbles 15 float to the surface and become large bubbles 17. Can be assembled. Furthermore, if the contraction speed F is small, the pressure within the cavitation chamber 4 will not increase, and it is possible to prevent the separated gas from redissolving into the liquid. And the fourth
As shown in the figure, the air bubbles 17 pass through the discharge hole 9 by arrow B.
Since the gas flows out in this direction and is stored in the gas storage section 11, the gas can be released by opening the valve 18 of the gas release pipe 12. Note that the gas storage section 11 can also be formed by a storage container body attached to the middle part of the discharge pipe 10.

次に、第6図は他の実施例を示し、比較的長大
な定容積のキヤビテーシヨン室4の一端に吸入細
孔6………を多数開設し、所定の通過圧力損失を
もつて液体が吸入管7から吸入されるようにする
と共に、該吸入細孔6より隔離した位置として、
例えば図のように長手方向他端に開設した吐出孔
19より、液体ポンプ20にて連続的に吐出させ
て、キヤビテーシヨン室4内を負圧雰囲気とす
る。吸入細孔6………から流入する噴流は強い乱
流混合状態であるため局所的な圧力脈動が全域に
生じ、キヤビテーシヨン室4の全体的雰囲気圧力
よりも、はるかに大きい絶対値の局所的脈動負圧
部を発生し得る。そこで飽和蒸気圧以下となれ
ば、溶解気体が核となつて分離され、無数の極微
小気泡からなる初生キヤビテーシヨンを生じ、こ
の過程で第1段階の脱気が行なわれる。(第6図
では、吸入細孔6から煙の如く描かれた部位が相
当する。)しかも、このときの初生キヤビテーシ
ヨンは連続的に発生している。
Next, FIG. 6 shows another embodiment, in which a large number of suction holes 6 are opened at one end of the cavitation chamber 4 having a relatively long constant volume, and liquid is sucked in with a predetermined passage pressure loss. As well as being inhaled from the pipe 7, the position is isolated from the suction pore 6,
For example, as shown in the figure, a liquid pump 20 continuously discharges liquid from a discharge hole 19 opened at the other end in the longitudinal direction to create a negative pressure atmosphere in the cavitation chamber 4. Since the jet flow flowing from the suction pores 6 is in a state of strong turbulent mixing, local pressure pulsations occur over the entire area, and the local pulsations have a much larger absolute value than the overall atmospheric pressure of the cavitation chamber 4. Negative pressure can be generated. When the vapor pressure falls below the saturated vapor pressure, the dissolved gas becomes a nucleus and is separated, producing initial cavitation consisting of countless microscopic bubbles, and in this process, the first stage of deaeration is performed. (In FIG. 6, this corresponds to the area drawn like smoke from the suction pore 6.) Moreover, the initial cavitation at this time occurs continuously.

その後、初生キヤビテーシヨンの極微小気泡
は、絶対値の大きい負圧とその脈動の故に、急激
に表面から溶解気体を吸収して成長し、微小気泡
15………になる。これが第2段階の脱気であ
る。
Thereafter, due to the negative pressure having a large absolute value and its pulsation, the microscopic bubbles of the initial cavitation rapidly absorb dissolved gas from the surface and grow, becoming microbubbles 15. This is the second stage of degassing.

そして、長大なキヤビテーシヨン室4内を吐出
孔19側に移動するにつれて、微小気泡15……
…はしだいに浮上してキヤビテーシヨン室4の天
井面16に集合し、大気泡17となる。そこで、
天井面16に開設された気体吐出孔21より気体
ポンプ22にて外部に該気体を除去すればよい。
なお、吐出孔19はキヤビテーシヨン室4の低位
置とするのが好ましい。
Then, as they move inside the long cavitation chamber 4 toward the discharge hole 19 side, the micro bubbles 15...
... The particles gradually rise to the surface and collect on the ceiling surface 16 of the cavitation chamber 4, forming large air bubbles 17. Therefore,
The gas may be removed to the outside through a gas discharge hole 21 provided in the ceiling surface 16 using a gas pump 22 .
Note that the discharge hole 19 is preferably located at a lower position in the cavitation chamber 4.

なお、本発明は上述の実施例以外にも変更自由
なことは勿論である。液体としては作動油、水、
薬品液、化学反応液、血液、人造血液、その他い
ずれでも自由であり、気体としても種々のガス、
空気、その他いずれでも自由である。それら液
体・気体の種類によつて飽和蒸気圧・気泡分離圧
が変化するために、負圧雰囲気の負圧値及び局部
的負圧部の負圧値も、それに対応して増減すれば
よい。即ち、液体・気体の種類に対応して、吸入
細孔6………の断面積と個数を増減し、かつキヤ
ビテーシヨン室4の膨張速度E又は液体ポンプ2
0の吐出量を増減すればよい。また、シリンダバ
レル1を縦型としたり、第6図に示したキヤビテ
ーシヨン室4を縦型とし、吸入細孔6を長手途中
部に設け、気体吐出孔21を上端部に、及び吐出
口19を下端部に設ける等の装置を用いるも自由
である。
It goes without saying that the present invention can be modified in addition to the embodiments described above. Liquids include hydraulic oil, water,
It can be used as any chemical liquid, chemical reaction liquid, blood, artificial blood, etc. It can also be used as a gas, such as various gases,
Air or anything else is free. Since the saturated vapor pressure and bubble separation pressure change depending on the type of liquid and gas, the negative pressure value of the negative pressure atmosphere and the negative pressure value of the local negative pressure section may also be increased or decreased accordingly. That is, the cross-sectional area and number of the suction pores 6 are increased or decreased depending on the type of liquid or gas, and the expansion speed E of the cavitation chamber 4 or the liquid pump 2 is adjusted.
What is necessary is to increase or decrease the discharge amount of 0. Alternatively, the cylinder barrel 1 may be of a vertical type, or the cavitation chamber 4 shown in FIG. It is also possible to use a device such as one provided at the lower end.

本発明に於ける上述の第1図乃至第4図の実施
例では、大きい負圧が容易に得られ、装置全体が
簡素であり、キヤビテーシヨン室4の膨張速度
E、及び吸入細孔6………の個数・形状・断面積
の決定は、キヤビテーシヨン14が最も発生しや
すいように、液体と溶解気体の種類等に対応して
変化させれば、高効率に溶解気体を分離できる。
しかも、吸入孔6からは噴流として激しく乱れて
キヤビテーシヨン室4内に流入されて初生キヤビ
テーシヨンが発生しやすく、かつ極微小気泡及び
微小気泡15は脈動していると共に、単位容積に
対し非常に大きい接触表面積を有するために、短
秒間で高効率に気体を分離出来る。しかも吸入孔
6………の個数を増大して極微小気泡を十分に小
型のものとすれば一層単位容積当りの表面積を増
大しかつ脈動も大きく出来る。さらに、第5図の
ように噴流部では激しい圧力脈動によつて全体の
負圧力よりもはるかに大きい絶対値の負圧が局部
的に発生し、気体の分離が促進されるのである。
In the embodiment of the present invention shown in FIGS. 1 to 4 described above, a large negative pressure can be easily obtained, the entire device is simple, and the expansion rate E of the cavitation chamber 4 and the suction pore 6... If the number, shape, and cross-sectional area of ... are changed in accordance with the type of liquid and dissolved gas so that cavitation 14 is most likely to occur, dissolved gas can be separated with high efficiency.
Moreover, from the suction hole 6, a violently turbulent jet flow flows into the cavitation chamber 4, which tends to cause initial cavitation, and the minute bubbles and micro bubbles 15 are pulsating and have a very large contact with a unit volume. Because it has a large surface area, it can separate gases with high efficiency in a short period of time. Moreover, if the number of suction holes 6 is increased to make the microbubbles sufficiently small, the surface area per unit volume can be further increased and the pulsation can be increased. Furthermore, as shown in FIG. 5, intense pressure pulsations in the jet section generate local negative pressure with an absolute value much larger than the overall negative pressure, promoting gas separation.

また第6図に於て説明した実施例では、最適の
キヤビテーシヨン状態を定常的に保つて、連続的
に高能率に溶解気体が除去出来る。なお、ポンプ
20を低所に設置することによりポンプ20自体
がキヤビテーシヨンを発生するのを防止できる。
Further, in the embodiment described in FIG. 6, dissolved gas can be removed continuously and with high efficiency by constantly maintaining an optimum cavitation state. Incidentally, by installing the pump 20 at a low location, it is possible to prevent the pump 20 itself from generating cavitation.

以上詳述した如く本発明の溶解気体除去方法は
構成され、第1段階の脱気の初生キヤビテーシヨ
ンは無数の極微小気泡からなると共にこれが激し
く振動する圧力変動(負圧)を有し、強い乱流混
合噴出状態にあり、液体との接触表面積の合計は
非常に大なるため、その後の微小気泡15・大気
泡17への成長速度は非常に大きく、第7図や第
8図に示した従来の溶解気体除去方法に比較して
数百倍の高能率の脱気が達成出来た。
As detailed above, the dissolved gas removal method of the present invention is structured, and the initial cavitation of the first stage of degassing is made up of countless microscopic bubbles and has pressure fluctuations (negative pressure) that vibrate violently, resulting in strong turbulence. Since the flow is in a mixed jetting state and the total surface area in contact with the liquid is very large, the subsequent growth rate into microbubbles 15 and large bubbles 17 is very high, which is different from the conventional method shown in Figures 7 and 8. Compared to the previous dissolved gas removal method, we were able to achieve deaeration efficiency several hundred times higher.

即ち、本発明では、(イ)キヤビテーシヨンの気泡
が極微小であればあるほど、全体の合計表面積が
大きく、溶解気体の吸収速度が大である点、(ロ)負
圧の絶対値が大きければ大きい程、かつ脈動する
程、溶解気体の分離速度が大きい点、(ハ)噴流状で
あつて強い乱流混合状態であれば溶解気体の分離
速度が大きい点、の3点を巧妙に活用して従来の
方法よりも飛躍的に優れた高能率の脱気が実現出
来たものである。
That is, in the present invention, (a) the smaller the cavitation bubbles, the larger the total surface area and the faster the absorption rate of dissolved gas, and (b) the larger the absolute value of the negative pressure, the larger the absolute value of the negative pressure. We cleverly utilize the following three points: (3) The larger the flow rate and the more pulsating, the higher the separation speed of the dissolved gas. (c) If the jet is in the form of a jet and is in a strongly turbulent mixing state, the separation speed of the dissolved gas is higher. With this method, we were able to achieve highly efficient degassing that was dramatically superior to conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は第1の発明の一実施例を順
次説明するための作動工程図、第5図は圧力曲線
図、第6図は第2の発明の一実施例を示す作動状
態図、第7図は従来の撹拌式脱気方法を示す要部
平面図、第8図は従来のシリンダ式の真空発生方
法を示す要部断面正面図である。 4……キヤビテーシヨン室、6……吸入細孔、
9……吐出孔、13……弁、15……微小気泡、
16……天井面、17……大気泡、20……液体
ポンプ、21……気体吐出孔、22……気体ポン
プ。
Figures 1 to 4 are operation process diagrams for sequentially explaining an embodiment of the first invention, Figure 5 is a pressure curve diagram, and Figure 6 is an operating state showing an embodiment of the second invention. 7 is a plan view of a main part showing a conventional stirring type degassing method, and FIG. 8 is a sectional front view of a main part showing a conventional cylinder type vacuum generation method. 4... cavitation chamber, 6... suction pore,
9... Discharge hole, 13... Valve, 15... Micro bubble,
16...Ceiling surface, 17...Air bubble, 20...Liquid pump, 21...Gas discharge hole, 22...Gas pump.

Claims (1)

【特許請求の範囲】 1 多数の吸入細孔を開設したキヤビテーシヨン
室を所定の膨張速度にて膨張させて、該吸入細孔
より強い乱流混合状態にて液体を噴流状に吸入
し、上記膨張動作により得られる該キヤビテーシ
ヨン室の全体的雰囲気圧力よりも、かるかに大き
い絶対値の局所的脈動負圧部を多数発生させ、上
記液体に溶解している気体を核として無数の極微
小気泡からなる初生キヤビテーシヨンを発生させ
て第1段階の脱気を行ない、次に、該初生キヤビ
テーシヨンにて発生した上記極微小気泡の表面に
接する液体から、溶解気体を吸収しながら、より
大きな微小気泡に成長させて第2段階の脱気を行
ない、該微小気泡を、キヤビテーシヨン室の上方
に浮上集合させて、大気泡を形成し、その後、該
キヤビテーシヨン室を収縮させて、弁を有する吐
出孔から、該大気泡を排出するようにしたことを
特徴とする溶解気体除去方法。 2 定容積のキヤビテーシヨン室の吐出孔から液
体ポンプにより液体を連続的に吐出させつつ、該
吐出孔から隔離して位置する多数の吸入細孔よ
り、強い乱流混合状態にて液体を噴流状に吸入
し、上記吐出により得られる該キヤビテーシヨン
室の全体的雰囲気圧力よりも、はるかに大きい絶
対値の局所的脈動負圧部を多数発生させ、上記液
体に溶解している気体を核として無数の極微小気
泡からなる初生キヤビテーシヨンを発生させて第
1段階の脱気を行ない、次に、該初生キヤビテー
シヨンにて発生した上記極微小気泡の表面に接す
る液体から、溶解気体を吸収しながら、より大き
な微小気泡に成長させて第2段階の脱気を行な
い、該微小気泡を、キヤビテーシヨン室の天井面
に浮上集合させて、大気泡を形成し、該天井面に
開設された気体吐出孔より気体ポンプにて外部に
除去するようにしたことを特徴とする溶解気体除
去方法。
[Scope of Claims] 1. A cavitation chamber having a large number of suction pores is expanded at a predetermined expansion speed, and liquid is sucked in a jet form through the suction pores in a state of strong turbulent mixing. The operation generates many local pulsating negative pressure parts whose absolute value is much larger than the overall atmospheric pressure of the cavitation chamber, and the gas dissolved in the liquid is used as a nucleus to form countless microscopic bubbles. The first stage of degassing is performed by generating initial cavitation, and then the microbubbles generated in the initial cavitation grow into larger microbubbles while absorbing dissolved gas from the liquid in contact with the surface of the microbubbles. The microbubbles are floated and collected above the cavitation chamber to form large air bubbles, and then the cavitation chamber is contracted and the microbubbles are discharged from the discharge hole having a valve. A method for removing dissolved gas characterized by discharging air bubbles. 2 While a liquid pump continuously discharges liquid from the discharge hole of a constant volume cavitation chamber, the liquid is jetted in a state of strong turbulent mixing from a large number of suction pores located separately from the discharge hole. It generates a large number of local pulsating negative pressure parts whose absolute value is much larger than the overall atmospheric pressure of the cavitation chamber obtained by the inhalation and exhalation, and the gas dissolved in the liquid is used as the core to generate countless microscopic particles. The first stage of deaeration is performed by generating initial cavitation consisting of small air bubbles, and then, while absorbing dissolved gas from the liquid in contact with the surface of the microscopic bubbles generated in the initial cavitation, larger microbubbles are generated. The microbubbles are grown into bubbles and then degassed in the second stage, and the microbubbles are floated and aggregated on the ceiling of the cavitation chamber to form large bubbles, which are then sent to the gas pump through the gas discharge hole provided in the ceiling. A method for removing dissolved gas, characterized in that the dissolved gas is removed to the outside.
JP233979A 1979-01-12 1979-01-12 Removing method for dissolved gas Granted JPS5594605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP233979A JPS5594605A (en) 1979-01-12 1979-01-12 Removing method for dissolved gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP233979A JPS5594605A (en) 1979-01-12 1979-01-12 Removing method for dissolved gas

Publications (2)

Publication Number Publication Date
JPS5594605A JPS5594605A (en) 1980-07-18
JPS6250162B2 true JPS6250162B2 (en) 1987-10-23

Family

ID=11526536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP233979A Granted JPS5594605A (en) 1979-01-12 1979-01-12 Removing method for dissolved gas

Country Status (1)

Country Link
JP (1) JPS5594605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102943640A (en) * 2012-10-29 2013-02-27 山东大学 Defoaming device and defoaming method for removing foam of drilling fluid by means of linkage of negative pressure and thermal radiation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898020A (en) * 1987-12-23 1990-02-06 E. I. Du Pont De Nemours And Company Method and apparatus for detecting and eliminating entrapped gas bubbles in a thick film coating
US5753126A (en) * 1995-06-29 1998-05-19 Sandia Corporation System for increasing corona inception voltage of insulating oils

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102943640A (en) * 2012-10-29 2013-02-27 山东大学 Defoaming device and defoaming method for removing foam of drilling fluid by means of linkage of negative pressure and thermal radiation

Also Published As

Publication number Publication date
JPS5594605A (en) 1980-07-18

Similar Documents

Publication Publication Date Title
EP1736217A1 (en) Deaeration device and ultrasonic cleaning device using the same
JP2009136864A (en) Microbubble generator
CN107459156B (en) Micro-nano bubble generating device and water flow purifying system
US4290791A (en) Gas-liquid separator
WO1992003220A1 (en) Aeration apparatus with draft tube
JP2018175878A (en) Liquid-gas separator
US2717774A (en) Nozzle cleaning backflow apparatus
RU2113635C1 (en) Method of operation of liquid-gas ejector
JPS6250162B2 (en)
JPH038323Y2 (en)
US2084682A (en) Apparatus for incorporating to a stream of fluid under pressure other fluid or powdered bodies
CN211513513U (en) Integrated ultrasonic emulsion removing device
CN209130512U (en) A kind of foamed aluminium two-phase gas release silencer
JP2002200402A (en) Gas-liquid separator and gas-liquid separating apparatus provided therewith
RU55632U1 (en) LIQUID DEGASING DEVICE
JP2005169286A (en) Air bubble generating device
CN209974356U (en) Dissolved air water large bubble eliminating device
JP2003230824A (en) Apparatus and method for fine bubble generation
CN205145871U (en) Online demister
US5364784A (en) Method for delivering oxygen to a cell culture medium
SU1404100A1 (en) Apparatus for processing gas
CN109607655A (en) A kind of multi-functional gas and oil hybrid separation device
US2138248A (en) Apparatus for compressing air
CN217868184U (en) Chimney-like water-gas separation device
RU1837930C (en) Hydrodynamic pipe