JPS62500466A - Cold energy storage device - Google Patents

Cold energy storage device

Info

Publication number
JPS62500466A
JPS62500466A JP60504479A JP50447985A JPS62500466A JP S62500466 A JPS62500466 A JP S62500466A JP 60504479 A JP60504479 A JP 60504479A JP 50447985 A JP50447985 A JP 50447985A JP S62500466 A JPS62500466 A JP S62500466A
Authority
JP
Japan
Prior art keywords
evaporator
exchanger
heat
storage
heating medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60504479A
Other languages
Japanese (ja)
Inventor
パトリ,ジヤン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPS62500466A publication Critical patent/JPS62500466A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/08Producing ice by immersing freezing chambers, cylindrical bodies or plates into water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G7/00Cleaning by vibration or pressure waves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 冷熱エネルギー貯溜器 本発明は冷熱エネルギーの貯溜器に関するもので必る。[Detailed description of the invention] cold energy storage The present invention relates to a storage device for cold energy.

水又は塩の水化物の共融体の゛融解−品枯″潜熱を取出すことによる冷熱の貯溜 の可能でおることは公知でおる。こり件に関しては第2490800号の番号を 以て公開されているフランス特許第8006130号を参照することが出来る。Storage of cold heat by extracting the latent heat of ``melting-depletion'' of the eutectic of water or salt hydrate It is publicly known that this is possible. Regarding this matter, please refer to number 2490800. Reference may be made to French Patent No. 8006130, published previously.

他方塩の水化物の共融液は0°Cから一70’Cの温度範囲に於て市販されてい る。他方゛融解−品枯″潜熱を利用することによって冷熱エネルギーを貯溜する ことを可能にする各種のシステムが可能である。上記のシステムの中で特に開放 型又は閉鎖型のアイスパケット、上記の特許に開示されているタイプの蓄積型交 換器、アイスマシン等を挙げることが出来る。On the other hand, eutectic solutions of salt hydrates are commercially available at temperatures ranging from 0°C to -70°C. Ru. On the other hand, cold energy is stored by utilizing the latent heat of ``melting and depletion.'' Various systems are possible that allow this. Particularly open among the above systems molded or closed ice packets, storage type exchanges of the type disclosed in the above patents; Examples include ice exchangers, ice machines, etc.

本発明は冷熱エネルギーを貯溜する為の新しい装置を提供することを目的とする もので公知の装置に関する多くの長所、特に下記の点をその特徴とする。The present invention aims to provide a new device for storing cold energy. It is characterized by a number of advantages regarding the known device, in particular the following points:

−貯溜密度が改善されている 一投資コストが安い 一総合効率が高い 一実施が簡単でおる。-Improved storage density - Low investment cost -High overall efficiency It is easy to implement.

本発明に基く構想は交換器−蒸発装置を用いて連続的に冷却することにより氷又 は共晶体を作りかつかかる氷又はれている潜熱又は共晶又は氷の結晶を作り出す 交換器−蒸発装置、上記の交換器−蒸発装置の2次回路の表面に生きる共晶体又 は氷結晶を取除く為の装置、しかもこの場合結機械的に又は自然に連行され、更 に交換器−蒸発装置の2次回路の表面から生きた結晶を受取る貯蔵ハウジングか ら成り、しかも品枯潜熱による冷熱エネルギーの貯溜はハウジングの中の上記の 結晶の蓄積の結果得られるものである。The concept according to the invention is to use an exchanger-evaporator to continuously cool the ice or creates a eutectic and produces such ice or latent heat or eutectic or ice crystals Exchanger-evaporator, eutectic or is a device for removing ice crystals, in which case the ice crystals are entrained mechanically or naturally, and exchanger - storage housing that receives live crystals from the surface of the secondary circuit of the evaporator Moreover, the storage of cold energy due to the latent heat of deterioration is caused by the above-mentioned inside the housing. It is obtained as a result of the accumulation of crystals.

本発明によれば交換器−蒸発装置の1次回路は冷熱発生装置に接続され、しかも その蒸発装置は本発明による装置の交換器蒸発装着により置き換えられる。使用 される冷媒(フレオン、アンモニラ、等〉は意図される用法又は用途によって決 まる。2次回路全体を共流する熱の媒体は水は塩の水化物の共融体の何れかであ り、上記の液が液相であるか又は固相であるかの別なく“′熱媒″又は゛′蓄熱 体″と呼ばれる。According to the invention, the primary circuit of the exchanger-evaporator is connected to the cold heat generator, and The evaporator is replaced by an exchanger evaporator installation of the device according to the invention. use The refrigerant used (freon, ammonia, etc.) is determined by the intended use or application. circle. The heat medium that co-flows throughout the secondary circuit is water, which is either a salt hydrate eutectic. Regardless of whether the above liquid is in a liquid phase or a solid phase, called “body”.

本発明の目的である装置の機能が多様な面を備えていることは次の点て評価され る: 1− 装置は2次回路を 流れる熱媒体を公知の方法で冷却することを可能にし かつ、冷熱エネルギーを消費する機器への補強を意図される: 2− 装置は交換器−蒸発装置2次回路の表面上でその表面温度が水又は塩の水 化物の共融体の品枯温度以下になる時に熱媒体を品枯せしめることにより熱媒体 を蓄熱体に変換し、 3− 装置は交換器−蒸発装置2次回路の表面上に形成される氷又は共晶体の分 離又は熱媒体の過融解を可能にし、4−装置は交換器−蒸発装置表面から予め分 離された又は過融解により生ぜしめられた結晶の形での貯蔵ハウジングに冷熱エ ネルギーを貯溜し、かつ 5− 装置は予め貯溜された冷熱エネルギーをその温度が蓄熱体の温度よりもそ の時には高い熱媒体と蓄熱体との間の直接の交換により熱媒に戻す。The fact that the device, which is the object of the present invention, has various functions is evaluated based on the following points. Ru: 1- The device makes it possible to cool the heat medium flowing through the secondary circuit in a known manner. In addition, it is intended to reinforce equipment that consumes cooling energy: 2- The device has a surface temperature of water or salt water on the surface of the exchanger-evaporator secondary circuit. By depleting the heat medium when the temperature drops below the depletion temperature of the eutectic of the compound, into a heat storage body, 3- The device is designed to prevent ice or eutectic fractions forming on the surface of the exchanger-evaporator secondary circuit. 4- The device is pre-separated from the exchanger-evaporator surface. Cold energy is applied to the storage housing in the form of separated or supermelted crystals. Store energy and 5- The device uses pre-stored cold energy until its temperature is lower than the temperature of the heat storage body. When the temperature is high, the heat is returned to the heat carrier by direct exchange between the heat carrier and the heat storage body.

本発明の特徴によれば交換器−蒸発装置の表面からの氷又は共晶体の分離手段は 振動、特に交換器−蒸発装置の有効容積に超音波流を作用せしめる超音波発振装 置による振動伝達システムの形を備えることが望ましい。According to a feature of the invention, the means for separating ice or eutectic from the surface of the exchanger-evaporator is Vibration, especially an ultrasonic oscillator that causes an ultrasonic flow to act on the effective volume of an exchanger-evaporator. It is desirable to provide some form of vibration transmission system based on the location.

本発明の利点の持つ他の特徴は、発明を制限する意図を持たざる各種の実施例を 示す添μm4の図面を参照することにより、以下の記載から明らかとなる。図面 に於ては:図1は本発明に暴く装置の全般的な作動原理を図解する模式図で必り 、 図2は蒸発装置が冷熱エネルギーの為の貯蔵ハウジングの中に一体化されている 本発明による装置の第1の実施例を図示する模式図で必り 図3は図2の装置に用いられた交換器−蒸発装置の代りの実施例を示すスケール を拡大された部分図を示す、図4および5は本発明による装置に用いられている 、この場合には貯蔵ハウジングから分離されている交換器−蒸発装置の縦断面お よび横断面でおる図6および7は貯蔵ハウジングから分離された交換器−蒸発装 置の別の実施例を示す 図8は図6および7の平面図であり、 図9は交換器−蒸発装置から貯蔵ハウジングに氷又は共晶体を移送する為に用い られるダクトの形状を示す部分図であり、 図10および11はもう一つの実施例a縦断面および@断面を示し 図12は別の型式を示す。Other features of the advantages of the invention include various embodiments which are not intended to limit the invention. It will become clear from the following description by referring to the attached drawing of μm4. drawing In the following: Figure 1 is a schematic diagram illustrating the general operating principle of the device disclosed in the present invention. , Figure 2 shows an evaporator integrated into a storage housing for cold energy. A schematic diagram illustrating a first embodiment of the device according to the invention Figure 3 is a scale showing an alternative embodiment of the exchanger-evaporator used in the apparatus of Figure 2. Figures 4 and 5 show an enlarged partial view of the device used in the device according to the invention. , the longitudinal section of the exchanger-evaporator, which in this case is separated from the storage housing, and 6 and 7 in cross-section and exchanger-evaporation equipment separated from the storage housing. shows another example of FIG. 8 is a plan view of FIGS. 6 and 7; Figure 9 is an exchanger used to transfer ice or eutectic from the evaporator to the storage housing. FIG. Figures 10 and 11 show another embodiment a longitudinal section and @ cross section. Figure 12 shows another type.

先ず最初に作動原理の理解を助ける為の本発明による装置の模式図である図1に 就いて説明を試みる。First of all, please refer to FIG. 1, which is a schematic diagram of the device according to the invention to help understand the operating principle. I sat down and tried to explain.

上記の装置は主として冷凍コンプレッサー10、その中で氷又は共晶体か冷凍の 結果生じゃ蒸発装置12、その中にポンプ16、接続ダク[・20を介して蒸発 装置12に接続された貯蔵バット18、形成された結晶を保持する為の貯蔵バッ トの上部に於て熱媒体を通過せしめるフィルター24を含む熱媒体循環回路14 、並びに蒸発装置の表面に生じた結晶を分離する為の手段22から成る。The above device mainly consists of a refrigeration compressor 10, in which ice or eutectic or refrigeration The result is an evaporator 12, in which a pump 16, and a connecting duct [20] for evaporation. A storage vat 18 connected to the device 12, a storage vat 18 for holding the formed crystals. A heating medium circulation circuit 14 including a filter 24 that allows the heating medium to pass through the upper part of the heating medium. , as well as means 22 for separating the crystals formed on the surface of the evaporator.

蒸発装置12の表面に生じカリ堆積する氷又は共晶体が手段22(その詳細は後 述される)により上記の表面から分離され、かつ熱媒体により自由に又は機械的 に貯蔵バット18に迄連行され、従って品枯潜熱による冷熱エネルギーの貯溜は 上記のバットの中にそれらが蓄積されることにより果されることは評価に値する 。The ice or eutectic that is generated and deposited on the surface of the evaporator 12 is the means 22 (the details of which will be explained later). separated from the above surface by a heat transfer medium or mechanically Therefore, the storage of cold energy due to the latent heat of depletion is carried out to the storage vat 18. What is achieved by accumulating them in the above bat is worthy of evaluation. .

蒸発装置12の1次回路への供給を受け持つ冷熱発生器(コンプレッサー10) は2次冷熱供給の変動が冷熱発生器の冷媒液の蒸発温度を同時に変化せしめる如 くデザインされる。その結果蒸発装置の1次回路の蒸発温度は次の2点の間で変 化する。Cold heat generator (compressor 10) responsible for supplying the primary circuit of the evaporator 12 means that fluctuations in the secondary cold heat supply simultaneously change the evaporation temperature of the refrigerant liquid in the cold heat generator. It is designed very well. As a result, the evaporation temperature in the primary circuit of the evaporator changes between the following two points. become

一最大冷熱供給に相当する最高値 一最低冷熱供給に相当する最低値 1、−貯溜 最後の機器により要求される冷凍能力は冷熱発生器により生ぜしめられる能力よ りも低い。発生器の蒸発温度は上記の発生器により生じる冷凍能力が交換器−蒸 発装置を経て、2次回路に送られる冷凍能力によりバランスする如き値に達する 。かかる条件下では冷熱発生器蒸発温度は2次側での交換器表面温度が2次熱媒 品枯濡度よりも低くなるが如き値を示す。この時に交換器−蒸発器の冷凍が行な われかつその表面に生じた熱媒体結晶の為の分離手段22が起動される。かくの 如く生じかつ蒸発装置の表面から分離された結晶は水又はそれが作り出された共 融体の密度よりも小さい密度を持つ。上記の密度の差異は本発明によればかくの 如く形成されかつ蒸発装置の表面から分離された2次熱媒結晶が図1に示される 如く貯蔵バットの最上位置を自然に占めるが如く有利に利用される請求める冷熱 エネルギーの貯溜が本発明によって果されるのは貯蔵バット18の中に上記の結 晶が継続的に蓄積することによる。- The highest value corresponding to the maximum cold supply The lowest value corresponding to the lowest cold supply 1, -Storage The refrigeration capacity required by the final equipment is greater than the capacity produced by the cold generator. The temperature is also low. The evaporation temperature of the generator is determined by the refrigeration capacity produced by the generator described above. It reaches a value that is balanced by the refrigerating capacity sent to the secondary circuit through the generator. . Under such conditions, the evaporation temperature of the cold heat generator is determined by the exchanger surface temperature on the secondary side. It shows a value that is lower than the drying wetness level. At this time, the exchanger-evaporator is frozen. The separation means 22 for the heating medium crystals formed on the surface thereof is activated. Nuclear The crystals thus formed and separated from the surface of the evaporator are water or the copolymer from which they were created. It has a density smaller than that of the melt. According to the present invention, the above density difference is The secondary heating medium crystals formed as above and separated from the surface of the evaporator are shown in FIG. The cold heat that can be used to advantage naturally occupies the top position of the storage vat. The storage of energy according to the invention is achieved by the above-mentioned results in the storage vat 18. This is due to the continuous accumulation of crystals.

2、−冷熱エネルギーの直接的な形成。2. - Direct formation of cold energy.

端末機器により要求される能力はこの場合冷熱発生器10により生ぜしめられる 能力にほぼ等しい。この時には冷熱発生器蒸発温度は上記の発生器により生ぜし められた冷凍能力が蒸発装置を経て2次側に運ぶことの出来る冷凍能力によりバ ランスするが如き値に達する。2次側の交換器表面温度はこの時には2次熱媒の 顕然の従来の冷却が認められるが如き値となる。The capacity required by the terminal equipment is produced in this case by the cold generator 10. Almost equal to the ability. At this time, the cold heat generator evaporation temperature is generated by the above generator. The stored refrigerating capacity is increased by the refrigerating capacity that can be transported to the secondary side via the evaporator. It reaches a value similar to that of Lance. At this time, the exchanger surface temperature on the secondary side is the same as that of the secondary heat medium. The value is such that obvious conventional cooling is recognized.

3、−解凍 端末機器により要求される冷凍能力が冷熱発生器10により生ぜしめられる能力 よりも高い。かかる条件下では冷熱発生器の温度は最高値に達するがそれにも拘 らず2次熱媒の要求を満すには尚不充分でおる。その結果2次熱媒温度は上昇し かつ装置の貯蔵バット18の中に以前に晶結した蓄熱体の融解温度よりも大巾に 高い値に達する。以前(こ晶結し蓄熱体に接触している液体熱媒は、この時はバ ット18の中にある蓄熱体の交換と融解により必要とされる冷凍能力の補充を実 現する。3, - unzip Ability to generate the refrigerating capacity required by the terminal equipment by the cold generator 10 higher than Under such conditions, the temperature of the cold generator reaches its maximum value; However, it is still insufficient to meet the requirements for a secondary heating medium. As a result, the secondary heating medium temperature increases. and greater than the melting temperature of the heat storage body previously crystallized in the storage vat 18 of the device. reach high values. Previously (the liquid heat transfer medium in contact with the crystallized heat storage Replenishing the required refrigeration capacity by replacing and melting the heat storage element in the tank 18. manifest.

上記に於ては発明による装置に交換器の表面からポスtは共晶体の分離の為の手 段(22、図1)が設けられて(することか示されている。本発明によれば必ら ゆる適切な1@(こ熱又は職域力を用いる装置をこの場合に考えることが出来る 。゛′冷凍−交換器″インターフェースのレベル(こ於て−>kの結晶の融解を 生ぜしめ、その結果交換器の表面から離れるが如き標準の解凍システムを用いる ことが出来る。この分離の為に必要な熱流供給源は各種の性質のものがおり、例 えば均等に配置された電気リードによるか又は冷凍コンプレッサーからの高温カ スを逆に送りこの場合には交換器−蒸発装置に吹き込むことにより界面を再加熱 する方法を用いることが出来る。これらは技術的にはこの技術に熟練した者には 公知でおり、故にここでは詳述を避けることと本発明によればパ交換器−結晶″ を僅かなエネルギー消費により分離するには振動を生せしめる機械システムを利 用するのが有利である。この場合に蒸発装置12の効果的な部分に少なくとも一 つの振動発振器により得られる超音波流を分布せしめるのが好ましい。2次熱媒 体液の中に蒸発装置12を浸漬した状態に於て発振器が高周波振動を生せしめる とこれは液体に伝達されると同時にその中に昇圧と減圧を交互に反復せしめるこ とによりキャビテーション現象を生ぜしめ、かつこれは特にそれが特徴的に生ぜ しめる微小気泡は激しく超音波を伝えることにより蒸発装置の表面壁から氷又は 共晶体を分離せしめる、この超音波の利用により次の利点が得られる; −特に交換器−蒸発装置壁土の冷凍層の付着が殆んど存在せぬことの為に熱交換 効率が最大となる;一対流的な移行効率の増大による交換器−蒸発装置の熱交換 効率の上昇:事実超音波的叫生ぜしめられる微小気泡の振動又は超音波作用は蒸 発装置表面に接触する液体の速度の相対上昇をもたらすことが出来る;−超音波 の出力、周波数および持続時間を変調せしめることにより分離された氷の結晶の 微小結晶構造を変化せしめることの可能性を生せしめる。この変調により貯蔵さ れる結晶の微密度は上昇し、従ってエネルギー密度・も上昇し熱媒/蓄熱体の交 換面はめる解凍能力に対応することが出来る。In the above, the device according to the invention is used for the separation of the eutectic from the surface of the exchanger. A step (22, FIG. 1) is provided (as shown). Appropriate 1@(devices that use heat or occupational power can be considered in this case. . At the level of the ``refrigeration-exchanger'' interface (where the melting of the >k crystals is Use a standard thawing system such that the I can do it. The heat flow sources required for this separation are of various properties, such as For example, by evenly spaced electrical leads or from a refrigeration compressor. In this case, the interface is reheated by blowing the gas back into the exchanger-evaporator. You can use the following method. Technically speaking, these are for those who are skilled in this technology. is known and therefore will not be described in detail here, and according to the invention A mechanical system that generates vibrations can be used to separate the It is advantageous to use In this case at least one part of the effective part of the evaporator 12 is Preferably, the ultrasonic flow obtained by two vibration oscillators is distributed. secondary heating medium The oscillator generates high-frequency vibrations when the evaporator 12 is immersed in body fluid. This is transmitted to the liquid and at the same time causes pressure to rise and fall in it alternately. This causes the cavitation phenomenon, which is particularly characteristic of The microbubbles are removed from the surface wall of the evaporator by transmitting intense ultrasonic waves. The use of ultrasound to separate the eutectic has the following advantages: -Especially the exchanger- heat exchanger due to almost no adhesion of frozen layer on the evaporator wall soil Maximum efficiency; exchanger-evaporator heat exchange due to increased convective transfer efficiency Increased efficiency: In fact, the vibration of microbubbles created by ultrasonic waves or the ultrasonic action Can result in a relative increase in the velocity of the liquid in contact with the generator surface; - Ultrasound of ice crystals separated by modulating the power, frequency and duration of This gives rise to the possibility of changing the microcrystalline structure. This modulation stores The fine density of the crystals formed increases, and therefore the energy density also increases, which increases the exchange rate of the heat medium/heat storage. It can correspond to the thawing ability that fits into the face.

ここに特筆すべきは超音波が連続的に生ぜしめられる場合には交換器−蒸発装置 の有効容積中に含まれる熱媒の過融解の現象を認めることの出来ることである。It should be noted here that when ultrasonic waves are generated continuously, the exchanger-evaporator It is possible to recognize the phenomenon of over-melting of the heating medium contained in the effective volume of the heating medium.

この場合tこは熱媒はこの超音波流を放った後に初めて品結し、かつ熱媒結晶は 交換器−蒸発装置の出口に即ち貯蔵バット18の中に現れる上記の結晶の形成の 為に必要な冷熱エネルギーは過融解冷熱エネルギーから取り出され、カリこの時 (こ(よ熱媒はその品枯温度に戻る。In this case, the heating medium congeals only after emitting this ultrasonic flow, and the heating medium crystals of the above crystal formation appearing at the outlet of the exchanger-evaporator, i.e. in the storage vat 18. The cold energy required for this is extracted from the supermelting cold energy, and at this time (The heat medium returns to its exhaustion temperature.

次に蒸発装置が貯蔵バットの中に一体化されている発明による装置の実施例を示 す図2および3に就いて述べることとする。Next, an embodiment of the device according to the invention is shown, in which the evaporator is integrated in the storage vat. Let us now discuss Figures 2 and 3.

この装置は上記の場合に類似するコンポネントを持つ。This device has components similar to those described above.

実際にはそれはコンプレッサー26、コンデンサー28、減圧弁30、交換器− 蒸発装@32、但しこれは貯蔵バット36の下部に位置し、かつ装置32にはバ ットの中に蒸発装置32の表面から超音波発振器34により分離せしめられた氷 又は共晶体を保存する為の上部グリッド38を備え、加えて2台のポンプ42. 44を持っ給配ネットワークから成る。蒸発装置の全表面に熱媒を分布せしめる 為の穴あきプレート40が設けられている。In reality, it consists of a compressor 26, a condenser 28, a pressure reducing valve 30, and an exchanger. Evaporator unit @ 32, but this is located below the storage vat 36 and the device 32 has a vat. Ice separated from the surface of the evaporator 32 by the ultrasonic oscillator 34 into the or an upper grid 38 for storing the eutectic, plus two pumps 42. It has 44 networks and consists of a distribution network. Distribute the heating medium over the entire surface of the evaporator A perforated plate 40 is provided for this purpose.

限定されぬことを条件とするこの実施例に於ては交換器−蒸発装置32はフィン チューブタイプであり、この場合フィンは垂直に走行するか(図2)又は斜めに 走行する。In this non-limiting embodiment, the exchanger-evaporator 32 is a fin tube type, in which case the fins run vertically (Figure 2) or diagonally. Run.

図3の部分図にはフィンが斜めに走行するチューブ46から成る交換器−蒸発装 置32が示されている。この上記に代る実施例には2つの利点が備わっている。The partial view of FIG. 3 shows an exchanger-evaporator system consisting of a tube 46 with diagonal fins running A location 32 is shown. This alternative embodiment has two advantages.

ニーこの構造により穴必ぎ板40を通過して来る熱交換器の撹乱が増大し、従っ て2次対流交換効率が向上する図3に於ては熱媒体の撹乱は矢印f1により模式 的に示されているニ ーこの構造により穴おき板40により配分される熱媒に伝えられる超音波に対し 斜行フィンの存在によるスクリーンを形成することにより発振器34の超音波の 作用効率を高めることが可能となる。超音波は作用ゾーンに向って反射される( 図3、矢印f2)バット36は断熱処理を施されかつその下部に冷熱利用回路か ら戻る熱媒体を入れる配分チャンバーを持ち、しかも上記の熱媒はポンプ34に より脈動を与えられる。配分チャンバー31の上部は穴あき金属板40により閉 じられることにより次の3つの機能を備える:a) チャンバー31からバット 36の中への熱媒体の流れる流量の配分を均等にすることが出来る、即ち上記の 金属板40に形成された穴又はスロットは熱媒体が板の穴を通過する際にチャン バー31の中の静圧を動圧に変換することにより交換器−蒸発装置32の全表面 への熱媒体への均等配分が可能となる: b) 熱蒸発装置32の対流交換効率を改善する、プレートの穴を通って脈動す る熱媒流は、交換器−蒸発装置に接触せしめられた熱媒の相対速度を高めること により誘起される; C) 超音波出力の均等配分を可能にする。超音波発振器(発振器34)は配分 板上に固定され(図3)かつ各発振器間の距離は金属板の振動自体を促進しかつ 熱媒体への均質な伝播を可能にする如く定められる。This structure increases the disturbance of the heat exchanger passing through the perforated plate 40, and therefore In Fig. 3, disturbance of the heat medium is schematically indicated by arrow f1. 2 shown in - This structure prevents ultrasonic waves transmitted to the heat medium distributed by the perforated plate 40. The ultrasonic waves of the oscillator 34 are reduced by forming a screen due to the presence of diagonal fins. It becomes possible to increase the efficiency of action. The ultrasound waves are reflected towards the zone of action ( Fig. 3, arrow f2) The bat 36 is heat-insulated and has a cooling/heat utilization circuit at its bottom. It has a distribution chamber in which the heating medium returns from the pump 34. Gives more pulsation. The upper part of the distribution chamber 31 is closed by a perforated metal plate 40. It has the following three functions: a) The bat is removed from the chamber 31. The distribution of the flow rate of the heat medium into 36 can be made equal, that is, the above-mentioned The holes or slots formed in the metal plate 40 provide a channel for the heat transfer medium to pass through the holes in the plate. The entire surface of the exchanger-evaporator 32 by converting the static pressure in the bar 31 into dynamic pressure Enables even distribution of heat to the heat medium: b) pulsating through the holes in the plate, improving the convective exchange efficiency of the heat evaporator 32 The heating medium flow increases the relative velocity of the heating medium brought into contact with the exchanger-evaporator. induced by; C) Enables equal distribution of ultrasound power. The ultrasonic oscillator (oscillator 34) is distributed fixed on the plate (Fig. 3), and the distance between each oscillator promotes the vibration of the metal plate itself and It is determined to enable homogeneous heat transfer to the heat medium.

交換器−蒸発装置32は配分チャンバー31上に設けられ、しかも上記の交換器 は上)ホの如くフィンチューブのタイプである。An exchanger-evaporator 32 is provided above the distribution chamber 31 and (Above) It is a fin tube type as shown in (E).

貯蔵バット36はスクリーン38を持ち、かつそのメツシュは蒸発装置32から 分離した結晶の直径よりも小さいサイズにされている。バットには出来れば熱媒 体を自由に循環せしめる為の再加熱コードを設けるのが好ましい。The storage vat 36 has a screen 38 and the mesh is connected to the evaporator 32. The size is smaller than the diameter of the separated crystal. If possible, use a heat medium in the bat. Preferably, a reheating cord is provided to allow free circulation through the body.

給配ネットワークは上記の如く同じ吐出量を持つ2台のポンプ42.44を持つ 。ポンプ42は端末交換器43をかつポンプ14は交換器−蒸発装置32への供 給を夫々受持ち、熱交換器の流速を一定に保つ。更にネットワークは混合用3方 ロバルブ41をネットワークの始点に在る温度調節器の支配下に持ち、これも上 記のバルブ4]は交換器−蒸発装置、および貯蔵バット31から到着する熱媒を ポンプ44による脈動の作用を利用して戻される熱媒と混和することにより配分 ネットワークの温度を一定に保つことを可能にする。The distribution network has two pumps 42, 44 with the same output as described above. . Pump 42 feeds the terminal exchanger 43 and pump 14 feeds the exchanger-evaporator 32. They each take charge of the heat exchanger's flow rate and maintain a constant flow rate in the heat exchanger. Furthermore, the network is 3-way for mixed use. 41 is under the control of the temperature controller at the beginning of the network, which is also located at the top. The valve 4 shown in FIG. Distribution by mixing with the heat medium returned using the pulsating action of the pump 44 It makes it possible to keep the temperature of the network constant.

図4および5に示された発明の第2の実施例に於ては交換器−蒸発装置46は図 1に示された場合の如く貯蔵バットとは分離されている。In a second embodiment of the invention shown in FIGS. 4 and 5, exchanger-evaporator 46 is shown in FIG. It is separate from the storage vat as in the case shown in 1.

1次回路はプレートタイプ48であるが然しその中を蒸発せしめられるべき冷媒 が流れるチューブタイプ(図10および11に示された実施例を参照のこと)で あることも可能であり、又2次回路は冷却又は品枯ぜしめられるべき熱媒が流れ るハウジングを構成する交換器シェルによって形成される。2次熱媒の循環速度 は市らゆる場合に於て交換器2次回路の出口に向って氷又は共晶体を連行するの に充分でおり、これも上記の様には結晶の蓄積が時間を逸することを防止する為 に交換器シェルの上部に設けられている。超音波発振器50は交換器−蒸発装置 46のシェルの上に設けられている;上記のシェルは従ってシェルにより構成さ れる全ハウジングの中に均等に配分される超音波の作用を受けることになる;勿 論施設のすべてのコンポネントおよび付属機器は超音波の作用から遮断されてい る。The primary circuit is of plate type 48, but the refrigerant to be evaporated therein (see examples shown in Figures 10 and 11). It is also possible that the secondary circuit is where the heating medium to be cooled or depleted flows. It is formed by the exchanger shell which constitutes the housing. Circulation speed of secondary heating medium In all cases the ice or eutectic will be entrained towards the outlet of the exchanger secondary circuit. This is also to prevent crystal accumulation from wasting time as mentioned above. is provided at the top of the exchanger shell. The ultrasonic oscillator 50 is an exchanger-evaporation device 46 shells; the above shells are therefore constituted by shells. will be subjected to ultrasonic waves that will be evenly distributed throughout the entire housing; All components and attached equipment of the laboratory are insulated from the action of ultrasound. Ru.

図6に示された上記に代る実施例も又貯蔵バット外に交換器−蒸発装置タイプ5 2を持つ、図6に於ては交換器−蒸発装置シェルに超音波を流す為にその上に設 けられた超音波発振器54並びにその中で冷媒が蒸発せしめられるべき交換器− 蒸発装置のプレート58が同様に示されている。The alternative embodiment shown in FIG. 6 also includes an exchanger-evaporator type 5 outside the storage vat. 2, in Figure 6 the exchanger-evaporator shell is equipped with a an ultrasonic oscillator 54 and an exchanger in which the refrigerant is to be evaporated; Also shown is the plate 58 of the evaporator.

交換器52のシェルにより構成されるハウジングには多数の隔壁56が設けられ ている。2次側熱媒は入口ボート60から中に入りかつ出口ボート62から出て 行き、かつ出口ポー1〜の形状は結晶の溜ることを防止する為に適した形状を持 つ。A housing constituted by the shell of the exchanger 52 is provided with a number of partition walls 56. ing. The secondary heat medium enters from the inlet boat 60 and exits from the outlet boat 62. The shape of the inlet and outlet port 1~ has an appropriate shape to prevent crystals from accumulating. Two.

図7に示された上記に代る実施例も又交換器−蒸発装置タイプ52を貯蔵ハツト の外側に持つ。この図でも同様に発振器54′およびその中を蒸発するべき冷媒 が流れるプレート58の間を流れる熱媒に直接接触する分配板64が設けられて いる。An alternative embodiment, shown in FIG. 7, also incorporates an exchanger-evaporator type 52 into a storage hat. Hold it outside. This figure also shows the oscillator 54' and the refrigerant to be evaporated therein. A distribution plate 64 is provided which is in direct contact with the heat medium flowing between the plates 58 through which the heat medium flows. There is.

図]○および1]に示された実施例は交換器がチューブタイプ58′でおり、乾 式減圧を行う点で上記の実施例とは相違する。In the embodiments shown in Figures] ○ and 1], the exchanger is of tube type 58' and is dry. This embodiment differs from the above-mentioned embodiment in that it performs a pressure reduction.

この発明によりもたらされる利点の中で特に指摘されるべき点は下記の通りで必 る: 1−すべての重要な運動を組合せることの出来ること二設備冷凍能力を直接的に 利用し得ること;この能力を下回る要求と貯蔵供給の両者を同時に満足する設備 冷凍能力の利用;貯蔵供給のみによる冷凍能力の利用;装置の貯蔵ハウジングの 中に蓄積された冷熱エネルギーのみを利用し冷熱発生器は停止する; 2−密封回路中に封入された熱媒/蓄熱流体はネットワークの常用圧力に保持さ れることが出来る。Among the advantages brought about by this invention, the points that should be particularly pointed out are as follows: Ru: 1- Being able to combine all important movements 2- Directly controlling the equipment's refrigeration capacity Availability; equipment that simultaneously satisfies both requirements below this capacity and storage supply. Utilization of refrigeration capacity; Utilization of refrigeration capacity by storage supply only; The cold generator stops using only the cold energy stored in it; 2- The heating medium/storage fluid enclosed in the sealed circuit is maintained at the normal pressure of the network. I can do it.

3−氷又は共晶体の肉眼的な構造の故に交換面積は極めて大ぎく設定されており 、これが解凍の為の交換面積を極めて大きくすることが出来、かつこれが熱媒に 蓄熱体の融解温度にに近い温度を持たしめることになる:4−必要な(2次)能 力が1次能力よりも低くなる時に交換器−蒸発装置の2次回路の温度を熱媒を品 枯せしめる為に熱媒の品枯温度以下の温度にする目的で蒸発温度の低減手段を利 用し得ること 勿論この発明は図示され且つ記載された各種の実施例に限定されることはなくそ れらのあらゆる応用型をも包含する。3-Due to the macroscopic structure of ice or eutectic, the exchange area is set extremely large. This allows the exchange area for thawing to be extremely large, and this also serves as a heat medium. The temperature will be close to the melting temperature of the heat storage body: 4- Necessary (secondary) capacity When the power becomes lower than the primary capacity, the temperature of the secondary circuit of the exchanger-evaporator is In order to deplete the heat medium, a means of reducing the evaporation temperature is used to bring the temperature below the depletion temperature of the heat medium. What can be used Of course, the invention is not limited to the various embodiments shown and described. It also includes all applications of these.

応用型の中で特に図12は1例として本発明による装置に使用するのに適した超 音波プレートを備えた交換器を示す。この図に示される如く蒸発せしめられるべ き液(例えばフレオン〉は2枚のプレートの間を流れ、かつそのうちの成るもの は外側の66で必り:又他のものは中央の68で必り:69に於て液か交換器に 入りかつ70から出て行く。冷却されるべき液は71に入りかつ72に於て冷却 された状態で出て来る。発振器73は外側プレート66の上に設けられ、超音波 はこの場合には水に伝えられ、次にフレオンを含む中央プレートに伝えられるか 或は図12に示され/ご如ξ中央プレートに直接伝えられ、かつこの時に超音波 の流れは逆方向に水に伝達される。この配置は発振プレートと使用されるゾーン との間の距離を最大限に短縮し従って超音波の損失を最大限に抑制することも可 能にする。In particular, FIG. 12 shows, as an example, a superstructure suitable for use in the device according to the invention. Figure 2 shows an exchanger with a sonic plate. It should be evaporated as shown in this figure. A liquid (e.g. Freon) flows between two plates, and is required at the outer 66: and the other is required at the center 68: at 69, the liquid or exchanger Enter and leave from 70. The liquid to be cooled enters 71 and is cooled at 72. It comes out in the same condition. An oscillator 73 is provided on the outer plate 66 and generates ultrasonic waves. is transmitted to the water in this case and then to the central plate containing the freon? Alternatively, as shown in Figure 12, ultrasonic waves can be transmitted directly to the central plate and at this time The flow is transmitted to the water in the opposite direction. This arrangement is the oscillator plate and the zone used It is also possible to minimize the distance between the make it possible.

他方ずべての交換面はかかる条件下では超音波の作用を受け、特定の能力に対し 最大交換効率を大巾に高め、それに比例して交換表面積および超音波の量を減ら すことが出来る。On the other hand, all exchange surfaces are subjected to ultrasonic action under such conditions and are subject to specific capabilities. Greatly increases maximum exchange efficiency and proportionally reduces exchange surface area and amount of ultrasound. I can do it.

n6.1 rtc=、3 r16.6 rtc、、 10 国際調査報告n6.1 rtc=,3 r16.6 rtc,, 10 international search report

Claims (8)

【特許請求の範囲】[Claims] (1)その1次回路が冷熱発生器(16−26)に接続されている氷又は共晶体 を生ぜしめる為の交換器一蒸発装置(32):上記の交換器一蒸発装置の2次側 の表面に生じる氷又は共晶体を分離する手段(22−34−50−54−54′ )を備え、上記の結晶は機械的に又は氷を作り出す熱媒流により自由に連行され るようになっており、更に交換器一蒸発装置の2次側の表面から生じた結晶を受 け取る貯蔵ハウジング(18−36)を備え、該貯蔵はハウジングに上記の結晶 が蓄積することにより行なわれることを特徴とする冷熱エネルギーの貯溜の為の 交換器一蒸発装置。(1) Ice or eutectic whose primary circuit is connected to the cold generator (16-26) Exchanger-evaporator (32) for producing: Secondary side of the above-mentioned exchanger-evaporator Means for separating ice or eutectic formed on the surface of (22-34-50-54-54' ), the above crystals are freely entrained mechanically or by a heat medium flow that creates ice. It is designed to receive crystals generated from the surface of the secondary side of the exchanger-evaporator. a storage housing (18-36) for storing the crystals in the housing; for the storage of cold energy, characterized by the fact that it is carried out by accumulating Exchanger-evaporator. (2)交換器一蒸発装置の表面から氷又は共晶体を分離する手段が機械的なシス テム、特に振動を伝達するシステム、かつ出来れば超音波発振機であり、かつこ の時には超音波の流れは熱媒を通して伝達される請求の範囲第1項記載の装置。(2) The means for separating ice or eutectic from the surface of the exchanger-evaporator is a mechanical system. system, especially a system for transmitting vibrations, preferably an ultrasonic oscillator; 2. The apparatus of claim 1, wherein the ultrasonic flow is transmitted through the heating medium. (3)超音波の流れは発振極(34−54′)がその上に設けられている振動プ レート(40−64)を経て交換器一蒸発装置(32−52)ハウジングの中に 含まれた熱媒に伝達され、各発振極の間隔はハウジング全体に超音波を均等に流 す目的で上記のプレートの振動自体を促進し又場合によっては交換器一蒸発装置 の有効容積用の熱媒の過融解の現象を誘起するために上記の作用を果し得る如く 定められている請求の範囲第1項又は第2項記載の装置。(3) The flow of ultrasonic waves is caused by a vibration plate on which the oscillation poles (34-54') are installed. into the exchanger-evaporator (32-52) housing via the rate (40-64) The spacing between each oscillating pole allows the ultrasonic waves to flow evenly throughout the housing. For the purpose of In order to induce the phenomenon of overmelting of the heating medium for the effective volume of Apparatus according to claim 1 or 2 as defined. (4)過融解現象が特に熱媒が超音波流の外側に出た時にのみ結晶を作るように 利用される請求の範囲第2項又は第3項記載の装置。(4) The overmelting phenomenon causes crystals to form only when the heating medium goes outside the ultrasonic flow. An apparatus according to claim 2 or 3, which is utilized. (5)交換器一蒸発装置(32)が貯蔵バット(36)の中の、特に下部に、又 は上部のバット(18)の外側に設けられ、しかもバット(18)はこの時には 交換器一蒸発装置(12)の下流に位置せしめられる前記請求の範囲の何れか1 項に記載の装置。(5) The exchanger-evaporator (32) is located in the storage vat (36), especially in the lower part, and is provided on the outside of the upper butt (18), and the butt (18) is at this time Any one of the preceding claims, wherein the exchanger is located downstream of the evaporator (12). Equipment described in Section. (6)蒸発装置(46−52)が貯蔵バットの外側に位置し、超音波の流れは上 記の交換器一蒸発装置のシエルを経るか又は熱媒に直接接触する配分プレート( 64)セットを経て熱媒に伝達される前記請求の範囲の何れか1項に記載の装置 。(6) The evaporator (46-52) is located outside the storage vat, and the ultrasonic flow is directed upward. The exchanger described above - the distribution plate (through the shell of the evaporator or in direct contact with the heating medium) 64) A device according to any one of the preceding claims, which is transferred to a heat medium via a set. . (7)利用を意図される熱媒と蓄熱体とは同一液であり、しかも上記の液は液相 である時には熱媒でありかつ固相である時には蓄熱体であり、かつそれはネット ワークの常用圧力値を保持する為に密封回路中に封入されている前記請求の範囲 の何れか1項に記載の装置。(7) The heat medium and heat storage body that are intended to be used are the same liquid, and the above liquid is in a liquid phase. When it is a heat medium, it is a heat storage body when it is a solid phase, and it is a net The scope of the above claim is enclosed in a sealed circuit to maintain the normal pressure value of the workpiece. The device according to any one of the above. (8)交換器一蒸発装置が2系列のプレートを含み、その内の或るものは外側( 66)に在り、又他のものは中央(68)に在り、かつそれらの間には蒸発すべ き液が流れ、冷却かつ晶結せしめられるべき熱媒は上記のプレート系列の何れか の側を流れ、かつ発振極(73)は外側プレート(66)上に取り付けられ又は 直接中央プレート(68)上に取り付けられる前記請求の範囲の何れか1項に記 載の装置。(8) The exchanger-evaporator comprises two series of plates, some of which are outside ( 66), and the other is in the center (68), and there is an evaporation plane between them. The heating medium through which the liquid flows and is to be cooled and crystallized is one of the above plate series. , and the oscillating pole (73) is mounted on the outer plate (66) or according to any of the preceding claims, mounted directly on the central plate (68). equipment.
JP60504479A 1984-10-09 1985-10-07 Cold energy storage device Pending JPS62500466A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8415488A FR2571481B1 (en) 1984-10-09 1984-10-09 REFRIGERATION ENERGY STORAGE DEVICE
FR8415488 1984-10-09

Publications (1)

Publication Number Publication Date
JPS62500466A true JPS62500466A (en) 1987-02-26

Family

ID=9308487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60504479A Pending JPS62500466A (en) 1984-10-09 1985-10-07 Cold energy storage device

Country Status (5)

Country Link
EP (1) EP0197096A1 (en)
JP (1) JPS62500466A (en)
KR (1) KR880700041A (en)
FR (1) FR2571481B1 (en)
WO (1) WO1986002374A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090207A (en) * 1987-02-06 1992-02-25 Reaction Thermal Systems, Inc. Ice building, chilled water system and method
FR2654500B1 (en) * 1989-11-10 1992-10-16 Thermique Generale Vinicole COLD TRANSFER METHOD AND DEVICE.
FR2998955B1 (en) * 2012-12-05 2014-12-26 Commissariat Energie Atomique THERMAL EXCHANGER WITH ULTRASONIC GENERATORS
CN111457632A (en) * 2020-04-02 2020-07-28 安徽省万爱电器科技有限公司 Multifunctional ice maker

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788385A (en) * 1970-11-23 1974-01-29 Chicago Bridge & Iron Co Dry type, liquid-solid cooling system
FR2279052A1 (en) * 1974-03-01 1976-02-13 Commissariat Energie Atomique THERMAL ACCUMULATION PROCESS AND THERMAL ACCUMULATOR WITH LATENT HEAT OF FUSION AND DIRECT CONTACT
DE2649872A1 (en) * 1976-10-29 1978-05-11 Ortner Harald Thermal pump producing useful heat or cold - uses ice produced during winter operation to cover summer cooling demand
FR2462683A1 (en) * 1979-08-02 1981-02-13 Commissariat Energie Atomique THERMAL ACCUMULATION METHOD AND THERMAL BATTERY WITH LATENT HEAT OF FUSION AND WITH DIRECT CONTACT

Also Published As

Publication number Publication date
FR2571481B1 (en) 1987-01-09
FR2571481A1 (en) 1986-04-11
EP0197096A1 (en) 1986-10-15
KR880700041A (en) 1988-02-15
WO1986002374A1 (en) 1986-04-24

Similar Documents

Publication Publication Date Title
US5782093A (en) Gas turbine intake air cooling apparatus
US6647739B1 (en) Ice making machine
JPH10160282A (en) Vapor compression cooling system
JPS6342291Y2 (en)
ATE119656T1 (en) HEAT PUMP.
JPS62500466A (en) Cold energy storage device
JPS63502923A (en) Method of generating and using cold air and apparatus for carrying out the method
US5253523A (en) Absorption type chiller
US2317234A (en) Refrigeration
US2432978A (en) Gas purger and solution regulator in vacuum type absorption refrigerating apparatus
US2501606A (en) Absorption refrigeration
JPS6062539A (en) Storing of ice and method of increasing said storing
RU1776943C (en) Evaporator
JPH09159331A (en) Ice making method and device and warm-water heat accumulating method that uses excess heat of ice making as heat source
JP3852801B2 (en) Internal / external melting double flow type ice heat storage system
JPH11281214A (en) Direct contact ice making method and system
JP6779760B2 (en) Absorption chiller
JPH0359335A (en) Thermal accumulation system
JPS58117937A (en) Coldness heat accumulator
JP3996239B2 (en) Ice slurry production equipment
JP2001033069A (en) Thermal storage system and melting method in the thermal storage system
JPH04174229A (en) Ice heat storage device
JP2853439B2 (en) Absorption type ice machine
JP3421371B2 (en) Evaporative ice making cold heat source equipment
JPH10325657A (en) Ice thermal storage device