JPS6249999B2 - - Google Patents

Info

Publication number
JPS6249999B2
JPS6249999B2 JP2391080A JP2391080A JPS6249999B2 JP S6249999 B2 JPS6249999 B2 JP S6249999B2 JP 2391080 A JP2391080 A JP 2391080A JP 2391080 A JP2391080 A JP 2391080A JP S6249999 B2 JPS6249999 B2 JP S6249999B2
Authority
JP
Japan
Prior art keywords
substrate
semiconductor laser
threshold current
stripe
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2391080A
Other languages
Japanese (ja)
Other versions
JPS56120183A (en
Inventor
Masaaki Ooshima
Michio Matsuki
Isamu Akasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2391080A priority Critical patent/JPS56120183A/en
Publication of JPS56120183A publication Critical patent/JPS56120183A/en
Publication of JPS6249999B2 publication Critical patent/JPS6249999B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明は、GaAsPを基板とし、この上に
InGaPAsをエピタキシヤル成長させてダブルヘ
テロ構造を作つた半導体レーザ素子に関し、しき
い電流を低減させることを目的とするものであ
る。
[Detailed Description of the Invention] The present invention uses GaAsP as a substrate.
The purpose is to reduce the threshold current of a semiconductor laser device that has a double heterostructure formed by epitaxially growing InGaPAs.

従来より気相成長GaAsP結晶を基板とし、こ
の上に、InGaPAsを液相成長させたダブルヘテ
ロ型の可視光発振の半導体レーザが報告されてい
る。例えば、GaAs1-yPy(y=0.3)を基板と
し、この上に液相成長法によつて順次
In1-xGaxAs1-yPy(x=0.66,y〓0.01)の第1
クラツド層、続いてx=0.84〜0.86,y=0.38〜
0.42のIn1-xGaxAs1-yPyアクテイブ層、さらに、
第1クラツドと同一組成の第2クラツド層よりな
るダブルヘテロ構造が実現されている。(R,
CHIN et,al,IEEE.Jounal of Quantum
electronics vol QE―14 No.10,October1978)。
Conventionally, a double-hetero type semiconductor laser that emits visible light has been reported, which uses a vapor-phase grown GaAsP crystal as a substrate and grows InGaPAs in a liquid phase on this substrate. For example, using GaAs 1-y P y (y=0.3) as a substrate, layers are sequentially deposited on this substrate by liquid phase growth.
The first of In 1-x Ga x As 1-y P y (x=0.66, y〓0.01)
Clad layer, followed by x=0.84~0.86, y=0.38~
In 1-x Ga x As 1-y P y active layer of 0.42;
A double heterostructure consisting of a second cladding layer having the same composition as the first cladding layer is realized. (R,
CHIN et,al, IEEE.Journal of Quantum
electronics vol QE―14 No.10, October1978).

このような構造のダブルヘテロエピタキシヤル
ウエハー上に、ストライプ電極を形成し、オーミ
ツク電極をとりつけたのち、順方向電流を流す
と、77〓において6280Åの発振波長のレーザー光
が約100mAのしきい電流で得られる。しかしな
がら室温での連続発振は得られず、77〓の約10倍
の電流をパルスで印加した場合、6580Åの発振波
長が得られたと上記した報告書では述べられてい
る。
After forming stripe electrodes and attaching ohmic electrodes on a double heteroepitaxial wafer with such a structure, when a forward current is applied, a laser beam with an oscillation wavelength of 6280 Å reaches a threshold current of about 100 mA at 77㎓. It can be obtained with However, continuous oscillation at room temperature was not possible, and the above report states that when a current approximately 10 times that of 77〓 was applied as a pulse, an oscillation wavelength of 6580 Å was obtained.

また上記報告書と同一の構造で、第1クラツド
層を1μm、アクテイブ層を0.2μm、第2クラ
ツド層4μmとし、25μm幅のストライプ電極を
設けた半導体レーザについて77〓での発振波長及
びしきい値電流を調べた結果、それぞれ6278Å,
Th=98mAの値を得た。
In addition, for a semiconductor laser with the same structure as in the above report, with a first cladding layer of 1 μm, an active layer of 0.2 μm, a second cladding layer of 4 μm, and a stripe electrode of 25 μm width, the oscillation wavelength and threshold at 77㎓ were determined. As a result of examining the value current, they are 6278Å and 6278Å, respectively.
A value of I Th =98 mA was obtained.

しかしながら発明者が、同一構造のエピタキシ
ヤルウエハーをさらに詳しく検討した結果、この
しきい伝流は、気相成長GaAsP上の縞模様(以
下クロスハツチと呼ぶ)に大きく依存するという
知見を得るに致つた。第1図は、この基板上の縞
模様を示したものである。GaAs(100)面上に気
相成長させたGaAsP成長層は、<110>方向に、
互いに直交する凹凸による格子状の縞模様(クロ
スハツチと呼ばれる)がみられ、図のように横方
向への縞が多く、縦方向への縞が少ない。このよ
うな基板に上記したような組成によつてダブルヘ
テロエピタキシヤル成長を液相法によつて行う
と、第1図A―B断面(へき開面)は第2図のよ
うに非常に凹凸の激しい面となつた。図中1は
GaAsP基板、2は第1クラツド層、3はアクテ
イブ層、4は、第2クラツド層である。(GaAs結
晶は省略してある)。ところが、第1図において
C―D断面は、第3図のように非常にフラツトな
成長面であつた。そして本発明者等はこのような
エピタキシヤルウエハー上にストライプ電極を構
成する場合、C―D方向に平行に、ストライプ電
極の長手方向を構成することによつてしきい電流
が大幅に低減する事実があるという知見を得た。
以下実施例をあげて説明する。
However, after examining epitaxial wafers with the same structure in more detail, the inventor came to the knowledge that this threshold propagation largely depends on the striped pattern (hereinafter referred to as crosshatch) on the vapor-grown GaAsP. . FIG. 1 shows the striped pattern on this substrate. The GaAsP growth layer grown in vapor phase on the GaAs (100) plane is oriented in the <110> direction.
A lattice-like striped pattern (called a crosshatch) made up of unevenness that is perpendicular to each other is seen, and as shown in the figure, there are many horizontal stripes and few vertical stripes. When double heteroepitaxial growth is performed on such a substrate using the liquid phase method using the above-mentioned composition, the cross section A-B (cleavage plane) in Fig. 1 becomes extremely uneven as shown in Fig. 2. It became a fierce aspect. 1 in the diagram is
A GaAsP substrate, 2 is a first cladding layer, 3 is an active layer, and 4 is a second cladding layer. (GaAs crystals are omitted). However, the CD cross section in FIG. 1 was a very flat growth surface as shown in FIG. The present inventors have discovered the fact that when forming stripe electrodes on such an epitaxial wafer, the threshold current is significantly reduced by forming the stripe electrodes in the longitudinal direction parallel to the CD direction. I found out that there is.
This will be explained below by giving examples.

<実施例 1> 一般的な液相成長用スライドボードを使用し、
気相成長させたn−GaAs1-yPy(y=0.3)上に
第1クラツド層としてn−In1-xGaxP1-zAsz(x
=0.66,z〓0.01 Seドープ)、アクテイブ層とし
て、In1-xGaxP1-zAsz(x=0.84,z=0.4ノンド
ープ)、第2クラツド層としてp―
In1-xGaxP1-zAsz(x=0.84,z〓0.01Znドー
プ)を順次成長させた。
<Example 1> Using a general slide board for liquid phase growth,
n- In 1 -x Ga x P 1-z As z (x
= 0.66, z = 0.01 Se doped), active layer: In 1-x Ga x P 1-z As z (x = 0.84, z = 0.4 non-doped), second cladding layer: p-
In 1-x Ga x P 1-z As z (x = 0.84, z = 0.01 Zn doped) was grown sequentially.

基板の大きさは1cm×1cmであり、ボートへ
は、スライド方向が、基板の第1図中A―Bの方
向へ来るように配置した。
The size of the board was 1 cm x 1 cm, and it was placed in the boat so that the sliding direction was in the direction of AB in FIG. 1 of the board.

このようなダブルヘテロエピタキシヤルウエハ
ーを第4図に示すように電極をとりつけた。な
お、ストライプは第1図に示すC―Dの方向にと
りつけられている。
Electrodes were attached to such a double heteroepitaxial wafer as shown in FIG. Note that the stripes are attached in the CD direction shown in FIG.

第4図において5はGaAsP基板層、6は第1
クラツド層、7はアクテイブ層、8は第2クラツ
ド層で組成は上記の通りであり、9は、Al2O3
化膜、10は、AuとCrの合金でオーミツク電極
を形成したのちさらにAuを蒸着した25μm幅の
ストライプ電極である。11は、AuとSnの合金
によるオーミツク電極である。なお試料の大きさ
は200μm×300μmで厚みは100μmである。
In Fig. 4, 5 is the GaAsP substrate layer, 6 is the first layer.
The composition of the cladding layer is as above, 7 is an active layer, 8 is a second cladding layer, 9 is an Al 2 O 3 oxide film, and 10 is an alloy of Au and Cr to form an ohmic electrode, and then Au. It is a 25 μm wide stripe electrode with vapor deposited. 11 is an ohmic electrode made of an alloy of Au and Sn. The size of the sample is 200 μm x 300 μm and the thickness is 100 μm.

上記半導体レーザと、組成はまつたく同じでス
トライプ電極を第1図において、A―Bの方向と
なるようとりつけた半導体レーザとの特性比較を
示したものが第5図である。第5図は、両者の77
〓でのしきい電流を比較したものである。両者は
ストライプ電極のとりつけの方向を変えたのみで
あるにもかかわらず、本発明のC―D方向にスト
ライプ電極の長手方向を形成したものの方が平均
で約1/3.3もしきい電流は低減している。
FIG. 5 shows a comparison of characteristics between the above semiconductor laser and a semiconductor laser having the same composition but with striped electrodes oriented in the direction of AB in FIG. 1. Figure 5 shows the 77
This is a comparison of the threshold currents at 〓. Although the two methods only differed in the mounting direction of the stripe electrodes, the threshold current was reduced by about 1/3.3 on average in the case of the present invention in which the stripe electrodes were formed in the longitudinal direction in the C-D direction. ing.

<実施例 2> 液相エピタキシヤル成長に際して、ボートに対
する基板の位置を、クロスハツチが強い方向、す
なわち、第1図において、C―D方向をボートの
スライド方向となるように配置し、ダブルエピタ
キシヤルウエハーを製造した。実施例1と同様の
電極をとりつけ、ストライプ電極の方向によるし
きい電流の変化を観測したところ、第5図の場合
に比べA―B方向で20%、C―D方向で30%、し
きい電流は改善されることがわかつた。
<Example 2> During liquid phase epitaxial growth, the position of the substrate with respect to the boat was placed in the direction where the crosshatch was strong, that is, the CD direction in FIG. 1 was the sliding direction of the boat, and double epitaxial growth was performed. manufactured wafers. When the same electrode as in Example 1 was attached and the change in threshold current depending on the direction of the striped electrode was observed, the threshold current was 20% in the A-B direction and 30% in the C-D direction compared to the case shown in Fig. 5. It was found that the current was improved.

またしきい電流が20mA以下のものは室温にお
いて連続発振も可能であつた。なおこの時のしき
い電流は、約230mAであつた。
Continuous oscillation was also possible at room temperature when the threshold current was less than 20mA. Note that the threshold current at this time was approximately 230 mA.

<実施例 3> 気相成長n−GaAs1-yPy基板のyの値を0.15か
ら0.4の範囲において変化させた。
<Example 3> The value of y of the vapor-phase grown n-GaAs 1-y P y substrate was varied in the range of 0.15 to 0.4.

なお、この範囲内の基板にはいずれも、第1図
に示すようなC―D方向に強くA―B方向に弱い
クロスハツチが観測された。上記の基板を用い、
格子定数を合せてダブルヘテロ構造を成長させ実
施例1に述べたような方法でストライプ電極をA
―B方向並びにC―D方向にとりつけ、そのしき
い電流の比を調べた。第6図はその結果を示すも
のであり、横軸は、GaAs1-yPy基板のP濃度yを
示している。また縦軸は、ストライプ電極を第1
図のA―B方向へとりつけた場合のしきい電流
IthABと、C―D方向でのIthCDとの比、すな
わち、C―D方向へストライプをとりつけたこと
によるしきい電流の改善の度合を示すものであ
る。
Note that in all of the substrates within this range, crosshatches were observed that were strong in the CD direction and weak in the AB direction, as shown in FIG. Using the above board,
A double heterostructure was grown by matching the lattice constants, and a striped electrode was formed using the method described in Example 1.
-B direction and C-D direction, and the ratio of their threshold currents was investigated. FIG. 6 shows the results, and the horizontal axis shows the P concentration y of the GaAs 1-y P y substrate. Also, the vertical axis indicates the stripe electrode as the first
Threshold current when installed in direction A-B in the diagram
This shows the ratio of Ith A - B to Ith C - D in the CD direction, that is, the degree of improvement in the threshold current by attaching the stripes in the CD direction.

図から分るように、yの値が小さい領域すなわ
ち、P濃度が少ない基板を用いたものでは、本発
明の効果は、あまり顕著ではない。本発明の効果
が現れはじめる、下限のyの値は0.15であつた。
また、yの値が0.35以上の試料については、パル
ス電流を流してしきい電流をしらべたが、yの値
が0.4をこえるものでは、発振が観測されなかつ
た。したがつて本実施例のyの上限は、0.4まで
もその効果を発揮するものである。実際に、おの
おののyの異なる試料を第1図A―B方向にヘキ
開し、観察するとyの値の小さなものでは、第3
図のような、凹凸の少ない良好なダブルヘテロ構
造が観察された。
As can be seen from the figure, the effect of the present invention is not so significant in the region where the value of y is small, that is, in the case where a substrate with a low P concentration is used. The lower limit value of y at which the effects of the present invention begin to appear was 0.15.
In addition, for samples with a y value of 0.35 or more, a pulse current was applied to examine the threshold current, but no oscillation was observed in samples with a y value of more than 0.4. Therefore, the upper limit of y in this embodiment is effective even up to 0.4. In fact, when we cut open samples with different y values in the direction of A-B in Figure 1 and observed them, we found that some samples with small y values had 3.
As shown in the figure, a good double heterostructure with few irregularities was observed.

なお、本実施例では、ブロードコンタクト型の
構造について述べたが、拡散型、埋め込み型
(Appl,Phys.Lett35,7,P513,1979)TJS型
(IEEE,Journal of Quantum Electronics QE
−11,P42,1975)においても同様の効果が得ら
れ、さらに、低い電流での発振が観察された。
In this example, a broad contact type structure was described, but diffused type, embedded type (Appl, Phys. Lett35, 7, P513, 1979), TJS type (IEEE, Journal of Quantum Electronics QE
-11, P42, 1975), a similar effect was obtained, and furthermore, oscillation was observed at low currents.

以上のように、本発明は少なくともGa,P,
Asを含む{100}半導体基板上に、In,Ga,
As,Pのうちの少なくとも3種類の元素を含む
エピタキシヤル層を少なくとも1層設けたダブル
ヘテロ接合型半導体レーザ素子のストライプ電極
を、その長手方向が基板上のクロスハツチの強い
方向と一致するように形成したもので、しきい値
電流の大幅な低減をはかることができるものであ
る。
As described above, the present invention provides at least Ga, P,
In, Ga,
The stripe electrode of a double heterojunction semiconductor laser device, which has at least one epitaxial layer containing at least three types of elements among As and P, is arranged so that its longitudinal direction coincides with the direction of strong crosshatch on the substrate. With this structure, the threshold current can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用した半導体基板上にみら
れるクロスハツチの様子を示す平面図、第2図は
第1図のA―B方向における断面図、第3図は第
1図のC―D方向における断面図、第4図は本発
明の一実施例における半導体素子斜視図、第5図
はしきい値電流特性を示す図、第6図は
GaAs1-yPyの値のしきい値電流との関係を示す図
である。 1,5…半導体基板、2,6…第1クラツド
層、3,7…アクテイブ層、4,8…第2クラツ
ド層、10…ストライプ電極。
FIG. 1 is a plan view showing the appearance of cross hatches on the semiconductor substrate used in the present invention, FIG. 2 is a cross-sectional view taken along the direction A-B in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line C-D in FIG. 4 is a perspective view of a semiconductor device according to an embodiment of the present invention, FIG. 5 is a diagram showing threshold current characteristics, and FIG. 6 is a diagram showing threshold current characteristics.
FIG. 3 is a diagram showing the relationship between the value of GaAs 1-y P y and the threshold current. DESCRIPTION OF SYMBOLS 1, 5... Semiconductor substrate, 2, 6... First cladding layer, 3, 7... Active layer, 4, 8... Second cladding layer, 10... Stripe electrode.

Claims (1)

【特許請求の範囲】 1 少なくともGa,P,及びAsを含み、かつほ
ぼ(100)面を有する半導体基板上に、In,Ga,
As,Pで示される元素のうちの少なくとも3種
類の元素を含むエピタキシヤル層を少なくとも1
層設けたダブルヘテロ接合型半導体レーザ素子に
おいて、前記半導体基板表面にあらわれ、<110>
方向を有しかつ互いに直交する、表面の凹凸から
なる2種の縞模様群のうち、縞模様のより密な、
あるいは凹凸の段差の大きい縞模様群の縞方向と
ストライプ電極の長手方向を一致させるごとくス
トライプ電極を設けたことを特徴とする半導体レ
ーザ素子。 2 半導体基板がGaAs1-yPy基板からなり、かつ
そのyの値が0.15以上0.4以下であることを特徴
とする特許請求の範囲第1項記載の半導体レーザ
素子。
[Claims] 1. On a semiconductor substrate containing at least Ga, P, and As and having an approximately (100) plane,
At least one epitaxial layer containing at least three types of elements shown by As and P
In a double heterojunction semiconductor laser device having a layer, <110> appears on the surface of the semiconductor substrate;
Of the two types of striped pattern groups consisting of surface irregularities that have directions and are orthogonal to each other, the denser striped pattern
Alternatively, a semiconductor laser device characterized in that a stripe electrode is provided so that the stripe direction of a group of stripes with large unevenness steps coincides with the longitudinal direction of the stripe electrode. 2. The semiconductor laser device according to claim 1, wherein the semiconductor substrate is made of a GaAs 1-y P y substrate, and the value of y is 0.15 or more and 0.4 or less.
JP2391080A 1980-02-27 1980-02-27 Semiconductor laser element Granted JPS56120183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2391080A JPS56120183A (en) 1980-02-27 1980-02-27 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2391080A JPS56120183A (en) 1980-02-27 1980-02-27 Semiconductor laser element

Publications (2)

Publication Number Publication Date
JPS56120183A JPS56120183A (en) 1981-09-21
JPS6249999B2 true JPS6249999B2 (en) 1987-10-22

Family

ID=12123629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2391080A Granted JPS56120183A (en) 1980-02-27 1980-02-27 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS56120183A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102970A (en) * 1981-12-16 1983-06-18 Konishiroku Photo Ind Co Ltd Laser recorder

Also Published As

Publication number Publication date
JPS56120183A (en) 1981-09-21

Similar Documents

Publication Publication Date Title
US6984840B2 (en) Optical semiconductor device having an epitaxial layer of III-V compound semiconductor material containing N as a group V element
US20010029086A1 (en) Semiconductor device, method for fabricating the same and method for fabricating semiconductor substrate
CA2028899C (en) Semiconductor laser elements and method for the production thereof
JPH0274088A (en) Semiconductor laser device
US5838028A (en) Semiconductor device having a ridge or groove
JP2630264B2 (en) Strained quantum well semiconductor laser
JPH0677580A (en) Semiconductor structure for optoelectronic component
JP2001345266A (en) Semiconductor devide and its manufacturing method and manufacturing method of semiconductor substrate
EP0945939A2 (en) Semiconductor light-emitting device
JPS6249999B2 (en)
JPH0983071A (en) Semiconductor laser
US5887011A (en) Semiconductor laser
JP4179802B2 (en) Semiconductor laser device and manufacturing method thereof
JPH09266355A (en) Semiconductor light emitting device
JPH1187764A (en) Semiconductor light-emitting device and its manufacture
JPH0214591A (en) Buried semiconductor laser element
EP0867949A2 (en) Semiconductor light-emitting device
JPH01232784A (en) Manufacture of light emitting element of semiconductor
JPH0766992B2 (en) AlGaInP semiconductor laser and manufacturing method thereof
JP3518842B2 (en) Gallium nitride based compound semiconductor laser
JP3139888B2 (en) Semiconductor laser device
JP3005998B2 (en) Manufacturing method of semiconductor laser
JPS6174385A (en) Semiconductor laser
KR830000075B1 (en) Semiconductor laser device
JP2960845B2 (en) Semiconductor laser device and method of manufacturing the same