JPH0214591A - Buried semiconductor laser element - Google Patents

Buried semiconductor laser element

Info

Publication number
JPH0214591A
JPH0214591A JP16427388A JP16427388A JPH0214591A JP H0214591 A JPH0214591 A JP H0214591A JP 16427388 A JP16427388 A JP 16427388A JP 16427388 A JP16427388 A JP 16427388A JP H0214591 A JPH0214591 A JP H0214591A
Authority
JP
Japan
Prior art keywords
layer
gaas
buried
superlattice
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16427388A
Other languages
Japanese (ja)
Inventor
Shoji Kitamura
祥司 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP16427388A priority Critical patent/JPH0214591A/en
Publication of JPH0214591A publication Critical patent/JPH0214591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To form a good-quality regrowth layer by forming a buried layer in the form of a superlattice in which GaAs and AlAs thin films are alternately piled up under a condition that the top of the superlattice which is in contact with a second clad layer is a GaAs thin film. CONSTITUTION:A buried layer 4a is a superlattice (GaAs)6.(AlAs)4 which is equivalent to Al0.4Ga0.6As. In order to pile up GaAs and AlAs layers alternately, law gases trimethylgallium and trimethylaluminum are supplied alternately into a reaction chamber of the MOCVD system under the atmospheric pressure of 800 deg.C in which raw gas arsine is always supplied in a specified amount. With the top or the surface of the superlattice which contacts a second clad layer 5a being a GaAs layer which does not contain Al, a stable oxide film is never generated on the surface of the buried layer 4a which is exposed to the air when an SiO2 film on a stripe is removed by etching. As a result, since a crystal can be grown keeping a good surface condition, a semiconductor laser of stable characteristics and much longer life can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は埋め込みへテロ型半導体レーザ素子の構造に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a buried hetero type semiconductor laser device.

〔従来の技術〕[Conventional technology]

GaAs/AjGa^3系の埋め込みへテロ接合型半導
体レーザ素子は、レーザ光発振しきい値電流が低く、横
モード発振が安定であるなどの特徴を宵し、安定な点光
源となり得ることから、光情報電送、光情報処理用の光
源としての有効な通用が期待されており、さらにこの種
半導体レーザ素子に関して特性を均一にし歩留りを向上
させるために、活性層近傍のみを高抵抗層で埋め込んだ
構造のものが提案されている。
A GaAs/AjGa^3-based buried heterojunction semiconductor laser device has characteristics such as a low threshold current for laser beam oscillation and stable transverse mode oscillation, and can serve as a stable point light source. It is expected that it will be used effectively as a light source for optical information transmission and optical information processing.Furthermore, in order to uniformize the characteristics and improve the yield of this type of semiconductor laser device, only the vicinity of the active layer is buried with a high-resistance layer. structure has been proposed.

第2図はこの半導体レーザ素子の正面からみた模式断面
図であり、その構造は例えばn型GaAs 基板1上に
形成されたn型A7 e、 *Gao、bA3の第1ク
ラツド層2.アンドープAj o、 as Ga o、
 、t Asの活性層3゜アンドープAj o、 *G
ae、hAsの高抵抗埋め込み層4、p型kj @、 
4Gam−& Asの第2クラツド層5.およびn型G
aAsのキャンプ116からなり、活性1i3が第1ク
ラッド層2と第2クラッド115.さらに埋め込みII
4によって完全に囲まれている。7はp側電極、8はn
側電極である。この構造では活性:w3に注入されるキ
ャリアが閉じ込められるので素子の電界分布が安定し、
したがってレーザ発振しきい(tit流を低減させ、発
振モード、とくに横モードの電流変化に対して安定とな
り、また活性層3の幅寸法を適切な大きさに定めること
により、単−横モード発振が可能になるなどすぐれた特
性をもっている。
FIG. 2 is a schematic cross-sectional view of this semiconductor laser device as seen from the front, and its structure includes, for example, a first cladding layer 2 of n-type A7e, *Gao, bA3 formed on an n-type GaAs substrate 1. Undoped Aj o, as Ga o,
, t As active layer 3° undoped Aj o, *G
ae, hAs high resistance buried layer 4, p-type kj @,
4Gam-&As second cladding layer5. and n-type G
It consists of aAs camps 116, and the active 1i3 is the first cladding layer 2 and the second cladding layer 115. Further embedding II
completely surrounded by 4. 7 is the p-side electrode, 8 is the n
This is the side electrode. In this structure, the carriers injected into active w3 are confined, so the electric field distribution of the device is stabilized.
Therefore, by reducing the laser oscillation threshold (tit current), it becomes stable against current changes in the oscillation mode, especially in the transverse mode, and by setting the width of the active layer 3 to an appropriate size, single-transverse mode oscillation can be prevented. It has excellent properties such as being able to

この埋め込み型半導体レーザ素子はMOCVD法を用い
て次のように製造される。第3図はその主な製造工程順
を示したものであり、第2図と共通部分を同一符号で示
しである。まず厚さ10〇−の基板1の上に厚さ1.5
−の第1クラッドFi2厚さ0.1−の活性層3.第2
クラッド層5の一部を順次エピタキシャル成長させる[
第3図(al]。
This embedded semiconductor laser device is manufactured using the MOCVD method as follows. FIG. 3 shows the order of the main manufacturing steps, and parts common to those in FIG. 2 are designated by the same reference numerals. First, on top of the 100-thick substrate 1, a thickness of 1.5
- first cladding Fi2 with thickness 0.1- active layer 3. Second
Part of the cladding layer 5 is epitaxially grown [
Figure 3 (al).

次に表面全面に5tatW149を0.2 tna厚に
スパッタなどで被着し、レジストを塗布してフォトリソ
グラフィにより2−幅のストライブを形成した後、II
FNH,水溶液でストライブ以外の領域のSiO□膜9
を除去する。続いてH3P0t:HzOz :エチレン
グリコールー11:1.6の溶液を用いてストライブ以
外の領域のエピタキシャル成長層を表面から深さlJr
m程度エツチングし、ストライブ状のメサを形成する〔
第3図中)〕0次いで高抵抗埋め込み層4をストライプ
部両側面に成長させその表面が第2クラッド層の上面と
同一面となるようにし、ストライブ上のSlO□膜9を
除去する〔第3図fol)、その後再び第2クラツド層
5.キャップ層6を成長させ〔第3図(d13、さらに
上下両電極を形成することにより第2図の構造をもつ素
子が得られる。
Next, 5 tat W149 was applied to the entire surface by sputtering to a thickness of 0.2 tna, resist was applied, and 2-width stripes were formed by photolithography.
FNH, SiO□ film 9 in areas other than stripes with aqueous solution
remove. Next, using a solution of H3P0t:HzOz:ethylene glycol-11:1.6, the epitaxial growth layer in areas other than the stripes was removed from the surface to a depth of lJr.
Etch approximately 100 m thick to form a striped mesa [
(in Figure 3)] Next, a high-resistance buried layer 4 is grown on both sides of the stripe portion so that its surface is flush with the upper surface of the second cladding layer, and the SlO□ film 9 on the stripe is removed. FIG. 3 fol), then again the second cladding layer 5. By growing the cap layer 6 [FIG. 3 (d13) and forming both upper and lower electrodes, an element having the structure shown in FIG. 2 is obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、第3図のような過程を経て製造される埋
め込み型半導体レーザ素子は、酸化の影響を受けて特性
劣化を生ずるという問題がある。
However, the buried semiconductor laser device manufactured through the process shown in FIG. 3 has a problem in that its characteristics deteriorate due to the influence of oxidation.

すなわち、第3図かられかるように製造時にエツチング
工程を伴い、そのエツチング処理の間は素子を成長反応
容器からとり出して行なうため、表面が大気に曝される
ことになる。とくに埋め込み層4は活性層3との屈折率
差をつけるために、M組成比yが0.3以上の’y G
a+−y Asが用いられているので酸化の影響を受け
やすく、このとき生成されるMの酸化膜は安定であるか
ら、エツチングなどによ一完全に除去することは困難で
ある。したがって埋め込み層4の上に再成長される第2
クラッド層5の結晶性と接合面状態が悪くなり、このこ
とが素子間の特性のばらつきを太き(し、また特性劣化
の原因となっている。
That is, as can be seen from FIG. 3, an etching process is involved during manufacturing, and during the etching process, the element is removed from the growth reaction vessel, so the surface is exposed to the atmosphere. In particular, in order to create a difference in refractive index with the active layer 3, the buried layer 4 is made of 'y G with an M composition ratio y of 0.3 or more.
Since a+-y As is used, it is easily affected by oxidation, and since the M oxide film produced at this time is stable, it is difficult to completely remove it by etching or the like. Therefore, the second layer that is regrown on top of the buried layer 4
The crystallinity of the cladding layer 5 and the state of the bonding surface deteriorate, which increases the variation in characteristics between devices (and causes deterioration of the characteristics).

本発明は上述の点に鑑みてなされたものであり、その目
的は製造過程で酸化の影響を受けることなく良質の再成
長層を形成することができる埋め込み型半導体レーザ素
子を提供することにある。
The present invention has been made in view of the above points, and its purpose is to provide a buried semiconductor laser device that can form a high-quality regrowth layer without being affected by oxidation during the manufacturing process. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明は第1図のように一導電型GaAs基板1の一主
面上に1次形成された−1電型MX Ga5−x As
第1クラッドN2 、 Aj、 Ga+−、As活性層
3.逆導電型Aj X Ga 1− x As第2クラ
ッド層5および逆導電型GaAsキャップ層6を有し、
第1クラッド層2゜活性層3.第2クラツドN5とで形
成されるストライブ部のレーザ光進行方向と平行な両側
面にMアミ 、 −y As埋め込み層4aを備えた構
造の埋め込み型半導体レーザ素子であって、この埋め込
み層4aをGaAsとAjAsの各薄膜を交互に堆積し
た超格子として形成し、かつ第2クラフト層5と接する
その超格子の最上部をGaAs薄膜としたものである。
As shown in FIG.
First cladding N2, Aj, Ga+-, As active layer 3. It has a reverse conductivity type Aj x Ga 1-x As second cladding layer 5 and a reverse conductivity type GaAs cap layer 6,
First cladding layer 2° active layer 3. This is a buried type semiconductor laser element having a structure in which a M, -y As buried layer 4a is provided on both sides parallel to the laser beam traveling direction of a stripe portion formed with a second cladding N5, and this buried layer 4a is formed as a superlattice in which thin films of GaAs and AjAs are deposited alternately, and the top of the superlattice in contact with the second craft layer 5 is made of a GaAs thin film.

〔作用〕 上述のように、本発明では、埋め込みl14aをMアG
a+−y Asと光学的に等価となるようにGaAsと
klAsの各薄膜を交互に堆積し、その最上部をGaA
s薄膜としたことにより、素子製造時のエツチング工程
においても埋め込みN4aの表面はGaAsとなってい
るからuGaAsのような酸化膜は生成されない。
[Operation] As described above, in the present invention, the embedded l14a is
GaAs and klAs thin films are alternately deposited so that they are optically equivalent to a+-y As, and the top layer is deposited with GaAs.
By forming the s-thin film, the surface of the buried N4a becomes GaAs even in the etching process during device manufacturing, so an oxide film such as uGaAs is not generated.

したがって酸化に起因する不都合を生ずることなく、埋
め込み層4aは良好な結晶状態で第2クラッド層5と接
合され電流狭窄層として作用する。
Therefore, the buried layer 4a is bonded to the second cladding layer 5 in a good crystalline state and acts as a current confinement layer without causing any disadvantages due to oxidation.

〔実施例〕〔Example〕

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

第1図は本発明の埋め込み型半導体レーザ素子の正面か
らみた模式断面図であり、本発明に係る埋め込みN4a
以外の部分は第2図に示したものと全く同様である。し
たがって第2図と共通部分については同一符号を用いで
ある。第1図が第2図と異な墨点は第2図では埋め込み
層4はAZyGa+−アAs混晶を成長させているのに
対し、第1図はGaAsとklAsの各薄膜を交互に積
層して埋め込み層4aとしたことにある。
FIG. 1 is a schematic cross-sectional view of a buried semiconductor laser device according to the present invention as seen from the front, and shows a buried N4a according to the present invention.
The other parts are exactly the same as those shown in FIG. Therefore, the same reference numerals are used for parts common to those in FIG. The difference between Figure 1 and Figure 2 is that in Figure 2, the buried layer 4 is made of AZyGa+-As mixed crystal, whereas in Figure 1, GaAs and klAs thin films are alternately laminated. The reason for this is that the buried layer 4a is formed using the same method.

(GaAs)m (Aj As)nは光学的にA7 −
 Ga −As 輪+n       +s+n と同価であり、活性層3から出るレーザ光の横方向への
閉じ込めに対しては何の支障もない、電気的特性に関し
てはたて方向にGaAsとM^3の大きなバリアが存在
して電流を阻止する役割を果たし、またこれらの層に酸
素などの導入により深いエネルギー準位を形成すること
も可能であって超格子埋め込み層4aは、AjF Ga
I−、As埋め込み層と同様な電流狭窄機能をもってい
る。
(GaAs)m (Aj As)n is optically A7 −
It is equivalent to a Ga-As ring +n +s+n, and there is no problem in confining the laser light emitted from the active layer 3 in the lateral direction. A large barrier exists and plays the role of blocking current, and it is also possible to form a deep energy level by introducing oxygen or the like into these layers.
It has the same current confinement function as the I- and As buried layers.

本発明素子の製造方法については第2図の場合すなわち
第3図に示した工程と基本的には同じであるから、ここ
では第3図(c+において埋め込み層4aを形成する方
法のみ述べる。埋め込み層4aはu*、*Gao、hA
sと等価になるように超格子を(GaAs) h(Aj
As)*とした。すなわちGaAsが6原子層2M^3
が4原子層である。これら各層を交互に堆積するニハ、
MOCVD装置系において、常圧800 ℃に保たれた
反応容器に原料ガスのアルシン(A383)を所定量常
時流しておき、同じく原料ガスであるトリメチルガリウ
ム(Ga (OH)コ、以下TMG)とトリメチルアル
ミニウム(Aj (OH) s 、以下TMA)を、こ
れらのラインを切り替えながら供給することにより行な
う、TMGおよびTMAの流量はそれぞれ15e、c、
/■1nとし、成長速度と原子数の異なる各原子層は時
間で制御することが可能であり、TMGを2 sec、
 T M Aを2.5sec交互に供給して上述の超格
子を埋め込み層4aとして形成することができる。
The method for manufacturing the device of the present invention is basically the same as the process shown in FIG. 2, that is, FIG. 3, so only the method for forming the buried layer 4a in FIG. 3 (c+) will be described here. Layer 4a is u*, *Gao, hA
The superlattice is (GaAs) h(Aj
As)*. That is, GaAs is a 6 atomic layer 2M^3
is 4 atomic layers. Niha deposits each of these layers alternately,
In the MOCVD equipment system, a predetermined amount of arsine (A383), which is a raw material gas, is constantly flowed into a reaction vessel maintained at a normal pressure of 800 °C, and trimethyl gallium (Ga (OH) co, hereinafter referred to as TMG), which is also a raw material gas, and trimethyl Aluminum (Aj (OH) s , hereinafter referred to as TMA) is supplied by switching these lines, and the flow rates of TMG and TMA are 15e, c, and 15c, respectively.
/■1n, and each atomic layer with different growth rate and number of atoms can be controlled by time, TMG is 2 sec,
The above superlattice can be formed as the buried layer 4a by alternately supplying TMA for 2.5 seconds.

さらに本発明で重要な点はこの超格子の最上部すなわち
表面が第2クラフト層5aと接する位置はMを含まない
GaAsとすることである。このようにすると、第3図
(C1の過程におけるストライプ上のsio、膜除去の
エツチングに際して、大気中に露出する埋め込み眉4a
の表面に安定な酸化膜を生成することがない3表面はM
の存在に起因する酸化の影響が除かれ、良好な結晶状態
を保持してその後のエピタキシャル成長を続行すること
ができる。
Furthermore, an important point in the present invention is that the top of the superlattice, that is, the position where the surface contacts the second kraft layer 5a, is made of M-free GaAs. In this way, as shown in Fig. 3 (Sio on the stripe in the process of C1, the embedded eyebrow 4a exposed to the atmosphere during etching for film removal).
The three surfaces that do not produce a stable oxide film on the surface of M
The influence of oxidation caused by the presence of is removed, and subsequent epitaxial growth can be continued while maintaining a good crystalline state.

以上のようにして得られた本発明の埋め込み型半導体レ
ーザ素子は埋め込み層をAJ o、 *Ga*、iAs
とした従来構造のものと同等の初期特性を示し、5−の
A P C(Auto Powar Control)
動作における25t、1000時間、のエージング試験
を行なった結果、不良率は従来素子の20%に対して本
発明素子は5%であり、著しい寿命の向上がみられた。
The buried semiconductor laser device of the present invention obtained as described above has a buried layer of AJ o, *Ga*, iAs
The initial characteristics are the same as those of the conventional structure, and the 5-APC (Auto Power Control)
As a result of an aging test of 25 tons and 1000 hours in operation, the defective rate was 5% for the device of the present invention, compared to 20% for the conventional device, indicating a significant improvement in life.

〔発明の効果〕〔Effect of the invention〕

上下二つのクラフト層と側面に埋め込んだ高抵抗層で活
性層を完全に取り囲んだ埋め込み型半導体レーザ素子は
、すぐれた特性を示すが、製造時のkl y Ga、 
y As埋め込み層の形成に当たり、大気中で行なうエ
ツチング工程を伴うことから表面酸化の影響を受け、な
お素子間の特性のばらつきや特性劣化など不安定要素を
もっていたのに対して、本発明では実施例で述べたごと
<、MアGa1−y^3と等価な埋め込み層としてGa
AsとAjAsの各薄膜を交互に積層した超格子を形成
し、しかもその最上部はMを含まないGaAs¥II膜
が位置するようにしたため、製造時のエツチング工程に
おいても酸化膜が表面に生成されることなく、健全な表
面状態を保持して結晶成長させることができ、その結果
本発明の埋め込み型半導体レーザ素子は特性が安定し、
Aj、 GaI−y As埋め込み層を存する構造のも
のより、寿命を大幅に同上させることができた。
A buried semiconductor laser device, in which the active layer is completely surrounded by two craft layers (top and bottom) and a high-resistance layer buried on the sides, exhibits excellent characteristics, but when manufactured,
y The formation of the As buried layer involves an etching process carried out in the atmosphere, which is affected by surface oxidation and has instability factors such as variation in characteristics between devices and deterioration of characteristics. As mentioned in the example, Ga is used as a buried layer equivalent to M a Ga1-y^3.
Since a superlattice is formed by alternately stacking As and AjAs thin films, and the M-free GaAs\II film is located at the top, an oxide film is not formed on the surface during the etching process during manufacturing. As a result, the embedded semiconductor laser device of the present invention has stable characteristics,
It was possible to significantly increase the lifespan compared to a structure having an Aj, GaI-yAs buried layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の埋め込み型半導体レーザ素子の正面か
らみた模式断面図、第2図は従来の埋め込み型半導体レ
ーザ素子の正面からみた模式断面図、第3図は第2図の
素子の主な構造工程図である。 1:基板(GaAs)   2 :第1クラフトITJ
 (AJXGa+−++ As) 、3 :活性層 (
A7. Ga、−、A5)   4 :埋め込み層 (
AZ y GaI−y As) 、4a :埋め込み層
(GaAs/ kl As)  5 :第2クラッド層
 (AI。 Gap−@ As) 、6 :キ+7ブ層 (GaAs
)   7 、 8 :第2図 第3図
FIG. 1 is a schematic sectional view of the embedded semiconductor laser device of the present invention as seen from the front, FIG. 2 is a schematic sectional view of the conventional embedded semiconductor laser device as seen from the front, and FIG. 3 is the main structure of the device in FIG. This is a structural process diagram. 1: Substrate (GaAs) 2: First craft ITJ
(AJXGa+-++ As), 3: Active layer (
A7. Ga, -, A5) 4: Buried layer (
AZ y GaI-y As), 4a: Buried layer (GaAs/kl As) 5: Second cladding layer (AI.Gap-@As), 6: Q+7 layer (GaAs
) 7, 8: Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)一導電型GaAs基板の一主面上に順次形成された
一導電型Al_xGa_1_−_xAs第1クラッド層
、Al_mGa_1_−mAs活性層、逆導電型Al_
xGa_1_−_xAs第2クラッド層、および逆導電
型GaAsキャップ層を有し、前記第1クラッド層、前
記活性層、前記第2クラッド層とで厚さ方向に形成され
るストライプ部のレーザ光進行方向と平行な両側面にA
l_yGa_1_−_yAs埋め込み層を備えた埋め込
み型半導体レーザ素子において、前記埋め込み層をGa
AsとAlAsの各薄膜を交互に堆積した超格子となし
、かつその前記第2クラッド層と接する最上部をGaA
s薄膜としたことを特徴とする埋め込み型半導体レーザ
素子。
1) One conductivity type Al_xGa_1_-_xAs first cladding layer, Al_mGa_1_-mAs active layer, and opposite conductivity type Al_
xGa_1_-_xAs second cladding layer and opposite conductivity type GaAs cap layer, laser beam traveling direction of a stripe portion formed in the thickness direction by the first cladding layer, the active layer, and the second cladding layer A on both sides parallel to
In a buried semiconductor laser device having a l_yGa_1_-_yAs buried layer, the buried layer is made of Ga.
The thin films of As and AlAs are alternately deposited to form a superlattice, and the top layer in contact with the second cladding layer is made of GaA.
An embedded semiconductor laser device characterized in that it is made of a thin film.
JP16427388A 1988-07-01 1988-07-01 Buried semiconductor laser element Pending JPH0214591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16427388A JPH0214591A (en) 1988-07-01 1988-07-01 Buried semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16427388A JPH0214591A (en) 1988-07-01 1988-07-01 Buried semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH0214591A true JPH0214591A (en) 1990-01-18

Family

ID=15789953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16427388A Pending JPH0214591A (en) 1988-07-01 1988-07-01 Buried semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH0214591A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510480A (en) * 1991-06-27 1993-01-19 Nec Corp Gas piping and execution method therefor
JPH06123863A (en) * 1991-07-09 1994-05-06 Seitetsu Gakuen Manufacture of optical switch element having intrinsic multiplex well layer
US5426658A (en) * 1992-01-21 1995-06-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser including ridge confining buffer layer
JP2016184705A (en) * 2015-03-26 2016-10-20 富士通株式会社 Semiconductor optical element and manufacturing method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510480A (en) * 1991-06-27 1993-01-19 Nec Corp Gas piping and execution method therefor
JPH06123863A (en) * 1991-07-09 1994-05-06 Seitetsu Gakuen Manufacture of optical switch element having intrinsic multiplex well layer
US5426658A (en) * 1992-01-21 1995-06-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser including ridge confining buffer layer
JP2016184705A (en) * 2015-03-26 2016-10-20 富士通株式会社 Semiconductor optical element and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US5496767A (en) Semiconductor laser and manufacturing method of the same
US5619518A (en) Semiconductor laser diode
US5157679A (en) Optoelectronic devices
JPH04312991A (en) Semiconductor laser
JPH0214591A (en) Buried semiconductor laser element
JP2501969B2 (en) Semiconductor laser device and method of manufacturing the same
US5586135A (en) Semiconductor laser having an AlGaInP cladding layer
JPS62144385A (en) Semiconductor laser and manufacture thereof
JP2876543B2 (en) Semiconductor device and manufacturing method thereof
JP2554192B2 (en) Semiconductor laser manufacturing method
JP3689733B2 (en) Manufacturing method of semiconductor device
US6023483A (en) Semiconductor light-emitting device
JP3679010B2 (en) Semiconductor laser and manufacturing method thereof
EP0867949A2 (en) Semiconductor light-emitting device
JP3005998B2 (en) Manufacturing method of semiconductor laser
JPH09232691A (en) Semiconductor laser
JPS6356981A (en) Compound semiconductor laser
Ono et al. Study of Selective MBE Growth on Patterned (001) InP Substrates Toward Realization of< 100>-Oriented InGaAs Ridge Quantum Wires
JP2699662B2 (en) Semiconductor laser and manufacturing method thereof
JPH01214083A (en) Semiconductor laser device and its manufacture
JPH0448669A (en) Semiconductor laser device and its manufacture
JPH0766992B2 (en) AlGaInP semiconductor laser and manufacturing method thereof
JPH0563293A (en) Algainp series semiconductor laser element and manufacture thereof
JPH01244690A (en) Semiconductor laser device
JPH01168091A (en) Semiconductor laser element