JPS6249867B2 - - Google Patents

Info

Publication number
JPS6249867B2
JPS6249867B2 JP56039576A JP3957681A JPS6249867B2 JP S6249867 B2 JPS6249867 B2 JP S6249867B2 JP 56039576 A JP56039576 A JP 56039576A JP 3957681 A JP3957681 A JP 3957681A JP S6249867 B2 JPS6249867 B2 JP S6249867B2
Authority
JP
Japan
Prior art keywords
heat
steel plate
steel sheet
resin film
vinyl chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56039576A
Other languages
Japanese (ja)
Other versions
JPS57156255A (en
Inventor
Hideaki Ishida
Eiki Takeshima
Hisao Takamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd, Nisshin Steel Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP56039576A priority Critical patent/JPS57156255A/en
Publication of JPS57156255A publication Critical patent/JPS57156255A/en
Publication of JPS6249867B2 publication Critical patent/JPS6249867B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は塩化ビニル被覆鋼板上に濃淡模様を有
する熱収縮性合成樹脂フイルムが貼着され且つそ
の模様に対応した凹部が形成された意匠効果の優
れた意匠鋼板の製造方法に関するものである。 従来、塗装鋼板の意匠の付与方法としては、
種々実施されているが、ポリ塩化ビニルプラスチ
ゾルを塗装・焼付けした塩化ビニル被覆鋼板に各
種合成樹脂フイルムを熱融着した、いわゆる積層
鋼板の意匠の付与方法としてはフイルムに模様を
印刷するか又はフイルム自体に着色を施して所望
の模様を付与して意匠性を高める方法と、表面に
所定の凹凸模様を彫刻した金属ロールを積層鋼板
に圧着して積層鋼板の塗膜表面に凹凸模様を機械
的に転写することによつて立体的な表面形状を付
与して意匠性を高める方法と、更には前述した二
者の方法を共に行なつてより意匠性を高める方法
とが知られている。 しかしながら、フイルムに模様を印刷するか又
はフイルム自体に着色を施して所望の模様を付与
して意匠性を高める方法は、意匠性を高めるため
に付与される模様が平面的であるために意匠性に
おいて劣つていた。また、積層鋼板の塗膜表面に
凹凸模様を機械的に転写して意匠性を高める方法
は、模様を彫刻した金属ロールの製作コストが高
いと共に多種類の凹凸模様を必要とする場合には
その模様が変わる毎にそれに応じた金属ロールを
用意せねばならないので製造ラインにおける著し
い作業性の低下を招き、更に金属ロールに微細且
つ複雑な形状の凹凸模様を表現することが困難な
ために凹凸模様が比較的単純になり易く、しかも
凹凸模様のみで色彩又は明度に変化がないために
意匠性において劣つていた。これに対し、フイル
ムに模様を印刷するか又はフイルム自体に着色を
施して所望の模様を付与し且つ積層鋼板の塗膜表
面に凹凸模様を機械的に転写して意匠性を高める
方法は、その模様が色彩及び/又は明度の変化と
立体的な凹凸模様との相剰効果により意匠性が非
常に優れた積層鋼板を得る方法であるが、前述し
たようにその凹凸模様を形成するための金属ロー
ルが高価で且つ多数の金属ロールを準備せねばな
らないと共に作業性において劣りしかも凹凸模様
が単純になり、その上、凹凸模様とフイルムに施
した印刷又は着色の模様とを同調整合させること
が極めて困難で僅かでも同調整合していないとそ
の製品の商品価値を半減させることになる欠点を
有していた。 そこで、このような印刷模様と凹凸模様とを同
調させた意匠性の優れた積層鋼板を製造する方法
として、例えばビヒクル中に発泡抑制剤を含有さ
せたインクを使用して印刷した熱収縮性合成樹脂
フイルムと発泡樹脂層とを複合させたシート状物
を使用して模様部分の発泡を抑制することにより
発泡樹脂層の発泡量に変化を与えて模様と同調し
た凹部を形成する方法も提案されているが、この
方法においては発泡した樹脂層自体が軟らかいた
めに鋼板や鋼帯などの自重の大きな基材に複合さ
せても運搬時や保管時などにその凹凸模様が基材
の自重により平滑になつて著しくその商品価値が
低下せしめられる欠点があつた。 また、別の方法として特公昭49―12102号に開
示されているように、基材上に感光性樹脂層を介
して色調及び色の濃淡を異にする印刷模様を表わ
した柔軟且つ透明フイルム層を一体に積層せし
め、このフイルム面上から紫外線を照射すること
により上記フイルム面の印刷模様に同調した深さ
の異なる凹凸模様を形成する立体化粧板の製造方
法もあるが、この方法に使用される感光性樹脂は
高価で実用的ではない。 本発明者らはかかる従来方法の欠点を除去すべ
く鋭意研究の結果、意匠効果の優れた積層鋼板を
安価且つ容易に製造し得る画期的な本発明方法の
開発に成功したのである。 すなわち、本発明の第1の目的は、塩化ビニル
被覆鋼板上に濃淡模様が印刷された合成樹脂フイ
ルムが貼着されている積層鋼板の該合成樹脂フイ
ルム側の表面に、該合成樹脂フイルムに印刷され
た濃淡模様に対応した凹部を形成する意匠鋼板の
製造方法を提供することにある。 本発明の他の目的は、上記濃淡模様に対応した
凹部の形成を、機械的又は物理的なエンボス加工
を施さずに連続ラインで高速に実施する意匠鋼板
の製造方法を提供することにある。 本発明の更に他の目的は、上記濃淡模様に対応
して形成された凹部が、下地層である塩化ビニル
被覆層から始まり、20〜100μという深さの深い
凹部であつて意匠性に非常に富んだ立体効果の優
れた意匠鋼板の製造方法を提供することにある。
本発明の更に他の目的は熱効率が非常に優れてい
て、安価且つ容易に意匠鋼板を製造することがで
きる工業的に優れた意匠鋼板の製造方法を提供す
ることにある。 すなわち、本発明は鋼板にポリ塩化ビニルプラ
スチゾルを塗装・焼付けして塩化ビニル被覆層の
厚さが50〜400μの塩化ビニル被覆層を製造し、
該塩化ビニル被覆鋼板の温度が100〜180℃の範囲
内に冷却されて来た際に、片面に0.5〜3μの厚
さにインクで濃淡模様が印刷されている収縮率が
35〜70%で厚さが20〜100μの熱収縮性合成樹脂
フイルムを該塩化ビニル被覆鋼板の移動速度と同
速度で供給して該熱収縮性合成樹脂フイルムの印
刷面を該塩化ビニル被覆鋼板の塩化ビニル被覆層
上に熱融着せしめ、その直後に熱収縮性合成樹脂
フイルム側から近赤外線を照射せしめることによ
り該熱収縮性合成樹脂フイルムに印刷された濃淡
模様に対応し最大深さが20〜100μの範囲の凹部
を表面に形成された意匠鋼板を製造することを特
徴とする意匠鋼板の製造方法に関するものであ
る。 以下、図面により本発明に係る意匠鋼板の製造
方法について詳細に説明する。 第1図は本発明に係る意匠鋼板の製造方法によ
り製造される意匠鋼板の近赤外線を照射せしめる
前の状態を示す説明用拡大断面図、第2図は第1
図に示した意匠鋼板に近赤外線を照射せしめられ
た後の状態を示す説明用拡大断面図、第3図は本
発明に係る意匠鋼板の製造方法を実施するための
装置の概略図である。 本発明に係る意匠鋼板を製造するためには、先
ず鋼板1にポリ塩化ビニルプラスチゾルを塗装・
焼付けして塩化ビニル被覆鋼板を製造するのであ
る。この鋼板1としては冷延鋼板や、電気めつき
や溶融めつきでめつきを施された亜鉛めつき鋼板
や、溶融めつきでめつきを施されたアルミニウム
めつき鋼板など種々の鋼板を使用することができ
る。かかる鋼板1にポリ塩化ビニルプラスチゾル
を塗装・焼付けして塩化ビニル被覆鋼板を製造す
るには、鋼板1の塗膜密着性及び耐食性を向上せ
しめる目的で鋼板1に化成処理層Eを先ず形成
し、次にその化成処理鋼板1へのポリ塩化ビニル
プラスチゾルの密着性を向上せしめる目的でプラ
イマー塗膜層Dを塗装して形成した後に、ポリ塩
化ビニルプラスチゾルを塗装・焼付けして塩化ビ
ニル被覆層Cを形成させるという従来の塩化ビニ
ル被覆鋼板の製造方法と同様の方法を実施するの
である。かくして塩化ビニル被覆鋼板を製造する
に際して、塩化ビニル被覆層Cの厚さは50〜400
μの範囲内にある必要があり、これは塩化ビニル
被覆層Cの厚さが50μ未満では工業的にポリ塩化
ビニルプラスチゾルをロール塗装する場合に均一
に塗装できないばかりか、後述するように塩化ビ
ニル被覆層Cにも凹部を形成して深さの深い凹部
が形成できなくなるからであり、また厚さが400
μを超えるとその厚さを厚くした効果が凹部形成
に顕著に認められないばかりでなく価格が高価に
なりすぎるからである。このように厚さが50〜
400μの塩化ビニル被覆層Cを形成して、次にこ
の塩化ビニル被覆鋼板の温度が100〜180℃の範囲
内に冷却されて来た際に、片面に0.5〜3μの厚
さにインクで濃淡模様が印刷されているインク層
Bを備えており収縮率が35〜70%で厚さが20〜
100μの熱収縮性合成樹脂フイルムAを塩化ビニ
ル被覆鋼板の移動速度と同速で且つ適当な張力を
付与した状態でインク層Bを介して塩化ビニル被
覆層Cに圧接して熱収縮性合成樹脂フイルムAを
熱融着せしめるのである。ここで熱収縮性合成樹
脂フイルムAの片面に濃淡模様の印刷を施すイン
ク層Bはその下地となる塩化ビニル被覆層C中に
含有せしめられる顔料の配合割合などによつてそ
の種類や色彩などが決定されるが、下地となる塩
化ビニル被覆層Cと最表層となる熱収縮性合成樹
脂フイルムAとの熱融着を阻害せず且つ耐光性、
耐水性、耐熱性などに優れているものであればよ
く、またその厚さはその模様が明確に区別できる
と共に通常のグラビア印刷やオフセツト印刷や凸
版印刷やスクリーン印刷などの手段で鮮明に印刷
できる条件より0.5μ以上の厚さが必要で且つ塩
化ビニル被覆層Cと熱収縮性合成樹脂フイルムA
との熱融着を阻害せずしかも効果的に凹部を形成
せしめるために3μ以下が好ましい。なお、通常
インク層Bの厚さは1μ前後でよい。また、この
インク層Bにより形成される濃淡模様は、同色の
濃淡模様でも、黒色、暗褐色、灰褐色などの濃色
とその濃色以外の淡色との多色による濃淡模様で
も差し支えない。 かかるインク層Bを塩化ビニル被覆層Cと熱収
縮性合成樹脂フイルムAとの間に位置せしめるの
は、インク層Bを最表層に位置せしめたのでは摩
耗などにより意匠が損なわれたり、汚染や光によ
り色艶の劣化が生じる危険性があると共に、後述
する如く近赤外線を照射した際にその熱の影響を
塩化ビニル被覆層Cにまで及ぼして深さの深い凹
部を形成することが不可能なためである。このイ
ンク層Bが片面に印刷形成される熱収縮性合成樹
脂フイルムAとしてはその下地となる塩化ビニル
被覆層Cとの良好な熱融着が可能なポリ塩化ビニ
ルフイルムやポリメチルメタアクリレートフイル
ムの如きアクリル樹脂フイルムなどが好適であ
り、150℃、10分間程度の加熱で収縮率が35〜70
%、好ましくは40〜50%だけ幅方向及び/又は長
手方向に収縮するものを使用する。これはかかる
収縮率の熱収縮性合成樹脂フイルムは容易に入手
し得ると共に後述する近赤外線加熱によつてイン
ク層Bの温度が250〜400℃の温度に加熱された際
に表面に20〜100μの範囲の最大深さの凹部が形
成されるための条件を満足するからであり、収縮
率が35%未満では凹部の深さが浅くて意匠効果が
向上せず、収縮率が70%を超えると凹部の深さが
深くなり過ぎると共にインク層Bによつて形成さ
れる模様によつてはその熱収縮性合成樹脂フイル
ムAの表面に亀裂やシワや破断などが生ずること
があるためである。またこの熱収縮性合成樹脂フ
イルムAの厚さは20〜100μ、好ましくは40〜80
μのものを使用する。すなわち、熱収縮性合成樹
脂フイルムAはその厚さが厚い程、意匠鋼板の表
面に形成される凹部の深さが深くなる傾向にある
が、100μを超える厚さになるとフイルム価格が
高価となつて実用的でないばかりか後述する近赤
外線によつてインク層Bが加熱されたことによつ
て収縮する効果が表面にまで及ばなくなつて好ま
しくなく、厚さが20μ未満となると下地の塩化ビ
ニル被覆層Cとの貼着強度が不充分となつて熱融
着したにもかかわらず使用時に熱収縮性合成樹脂
フイルムAが塩化ビニル被覆層Cから剥離する危
険があり、更に厚さが薄すぎるために本発明の目
的とする20〜100μの範囲の最大深さの凹部を意
匠鋼板の表面に形成できないからである。なお、
製造する意匠鋼板の意匠効果を高めるためには、
熱収縮性合成樹脂フイルムAとして表面艶消しの
ものより表面光沢のものを使用することが好まし
い。 かくして第1図に示す如く鋼板1上に化成処理
層E、プライマー塗膜層D、塩化ビニル被覆層
C、インク層B、熱収縮性合成樹脂フイルムAの
順に積層された積層鋼板を製造したその直後に、
すなわちその積層鋼板の温度が高い内に熱収縮性
合成樹脂フイルムA側から0.5〜3.0μ、好ましく
は0.7〜2.0μの波長の近赤外線を主として照射す
る照射装置より照射して熱収縮性合成樹脂フイル
ムAを通してインク層Bの濃色部分の温度が250
〜400℃となる条件まで短時間加熱するのであ
る。かかる加熱によつてそのインク層Bの両側に
ある塩化ビニル被覆層Cと熱収縮性合成樹脂フイ
ルムAとがそのインク層の濃色部分近傍だけ局部
的に加熱され、熱収縮性合成樹脂フイルムAはそ
の収縮性によつて局部的に加熱された部分だけが
収縮して表面に凹部を形成し、また未だ完全に硬
化していない塩化ビニル被覆層Cも局部的に加熱
された部分だけ再び軟化して熱収縮性合成樹脂フ
イルムAに形成された凹部と同じ位置に熱収縮性
合成樹脂フイルムAの表面に形成された凹部より
浅い凹部が同時に形成されることになる。本発明
方法においては、このように熱収縮性合成樹脂フ
イルムAのみならず塩化ビニル被覆層Cにも凹部
が形成されるので意匠鋼板の表面に形成される凹
部は最大深さが20〜100μという非常に深い深さ
の意匠性の高い意匠鋼板を製造することができる
のであり、また熱収縮性合成樹脂フイルムAを塩
化ビニル被覆鋼板の塩化ビニル被覆層Cに貼着す
るのに塩化ビニル被覆鋼板製造時におけるポリ塩
化ビニルプラスチゾルの焼付後の余熱を利用して
いるため接着剤を必要としないばかりか熱エネル
ギの有効利用を図ることにもなり、更に塩化ビニ
ル被覆層Cと熱収縮性合成樹脂フイルムAとの間
のインク層Bを加熱するのにインク層を選択的に
加熱する近赤外線を使用しておりしかも積層鋼板
の温度が高い内に近赤外線を照射しているので更
に熱エネルギの有効利用を図ることになるのであ
る。 かかる本発明方法を長尺の鋼板について連続的
に実施する装置の1実施例について第3図により
説明する。 長尺の鋼板1はアンコイラー2から巻き出され
て化成処理装置3により化成処理層Eを形成さ
れ、次いで塗布ロール4でプライマー塗料を塗装
された後にそのプライマー塗料を焼付け加熱炉5
で焼付けられてプライマー塗膜層Dを形成され
る。しかる後に塗布ロール6でポリ塩化プラスチ
ゾルを塗装され、焼付け加熱炉7で焼付けされて
50〜400μの塩化ビニル被覆層Cを形成されて塩
化ビニル被覆鋼板を製造され、その塩化ビニル被
覆鋼板の温度が100〜180℃という片面に濃淡模様
のインク層Bが印刷された熱収縮性合成樹脂フイ
ルムAの熱融着最適温度範囲内に冷却されて来た
時に、フイルム給支装置8から張力付与装置9に
よつて張力を付与された状態で鋼板1の移動速度
と同速度で供給される片面に0.5〜3μの厚さに
濃淡模様のインク層Bが予め印刷されていて収縮
率35〜70%で厚さが20〜100μの熱収縮性合成樹
脂フイルムAがインク層Bを鋼板1上の塩化ビニ
ル被覆層C上にラミネートロール10によつて熱
融着されて積層鋼板を形成せしめられる。かくし
て製造された積層鋼板はその直後に主として0.5
〜3μの波長の近赤外線を照射する近赤外線照射
装置11より積層鋼板の表面の熱収縮性合成樹脂
フイルムA側より近赤外線が照射されインク層B
の特に濃色部分が選択的に加熱され、インク層B
が短時間では熱分解しない安全温度である400℃
以下で且つ熱収縮性合成樹脂フイルムAの収縮を
安定して行なえる250℃以上の温度になると次の
冷却装置12で冷却されてインク層Bの濃色模様
部分のみで熱収縮性合成樹脂フイルムAと塩化ビ
ニル被覆層Cとが同時に凹部を形成するので意匠
鋼板が製造され、製造された意匠鋼板はコイラー
13によつて巻き取られるのである。このように
して製造された意匠鋼板の断面形状は第2図のよ
うになるのである。 次に本発明に係る意匠鋼板の製造方法の実施例
について説明する。 実施例 1 板厚0.35mmの普通鋼冷延鋼板に溶融亜鉛めつき
を施したリン酸亜鉛処理のゼロスパングル亜鉛め
つき鋼板〔亜鉛付着量:JIS G3302―1979「亜鉛
鉄板」で規定されるZ25(最小付着量250g/m2)〕
の片面に関西ペイント(株)製のアクリルウレタン変
性エポキシ樹脂製のプライマー塗料を5μの厚さ
に塗装して後、オーブンを使用して焼付けた。し
かる後にそのプライマー塗料上に関西ペイント(株)
製のクリームホワイト色のポリ塩化ビニルプラス
チゾルをロールコーターによりリバース方式で30
m/分の速度で塗膜厚さ100μに塗装し、しかる後
に30m/分の速度でオーブン内を通板せしめて板
温210℃まで加熱し焼付けを行なつて塩化ビニル
被覆鋼板を製造した。しかる後に片面にタイル模
様に大日本印刷(株)製の塩ビーアクリル共重合体を
ビヒクルとする黒色系インク組成物で線幅0.8mm
でインク膜厚1μとなるようにグラビア印刷を施
した半透明な熱収縮性アクリル樹脂フイルム〔鐘
淵化学工業(株)製、ポリメチルメタアクリレートと
アクリル酸ブチルとの共重合体フイルム、収縮率
45〜50%、膜厚50μ〕を張力を付与して30m/分
の速度で供給し、オーブン内を通過した後の板温
が140〜160℃の塩化ビニル被覆鋼板に塩化ビニル
被覆層と印刷面とが接する状態でゴムロール圧着
により熱融着せしめた。次いで、得られた積層鋼
板を直ちに近赤外線照射装置(出力:3KW/
本、発熱長:500mmのマイグラフイク社製棒状近
赤外線ランプを使用、反射板焦点距離:100mm、
以上の装置を5本並列)の直下に照射距離50mmで
通板スピード6m/分で7秒間フイルム面に近赤
外線(最大エネルギ波長:1μ)を照射した処、
積層鋼板の黒色印刷部に相当する部分の熱収縮性
アクリル樹脂フイルムと下層の塩化ビニル被覆層
に凹部が生じ、熱収縮性アクリル樹脂フイルム表
面の凹部の最大深さが25μの立体的な意匠を有す
る意匠鋼板を製造することができた。 実施例 2 実施例1と同じリン酸亜鉛処理のゼロスパング
ル亜鉛めつき鋼板の片面に実施例1と同じプライ
マー塗料を5μの厚さに塗装・焼付けしたプライ
マー塗装鋼板を製造し、しかる後に実施例1と同
じポリ塩化ビニルプラスチゾルをプライマー塗料
上に200μの塗膜厚さに塗装・焼付けを行なつて
塩化ビニル被覆鋼板を製造した。しかる後に片面
に大日本印刷(株)製の塩ビ―アクリル共重合体をビ
ヒクルとするセピア色系インク組成物で木目模様
を印刷しその木目模様の導管部分に大日本印刷(株)
製の塩ビ―アクリル共重合体をビヒクルとする黒
褐色系インク組成物で線幅が0.2〜0.8mmでインク
膜厚1μとなるようにグラビア印刷を施した実施
例1と同じ半透明な熱収縮性アクリル樹脂フイル
ムと透明な熱収縮性ポリ塩化ビニル樹脂フイルム
〔三宝樹脂(株)製、収縮率40〜50%、膜厚40μ〕と
を張力を付与してそれぞれ別々に塩化ビニル被覆
鋼板と同速で140〜160℃の塩化ビニル被覆鋼板の
塩化ビニル被覆層と印刷面とが接する状態でゴム
ロール圧着により熱融着せしめた。その直後に得
られた2種類の積層鋼板を直ちに実施例1と同じ
近赤外線照射装置で実施例1と同じ条件でフイル
ム面に近赤外線を照射した処、積層鋼板の黒褐色
印刷部に相当する部分の熱収縮性アクリル樹脂フ
イルム、熱収縮性ポリ塩化ビニル樹脂フイルムと
下層の塩化ビニル被覆層とに凹部が生じ、熱収縮
性フイルム表面の凹部の最大深さは熱収縮性アク
リル樹脂フイルムの場合には65μ、熱収縮性ポリ
塩化ビニル樹脂フイルムの場合には80μの立体的
な意匠を有する意匠鋼板を製造することができ
た。 実施例 3 実施例1と同じリン酸亜鉛処理のゼロスパング
ル亜鉛めつき鋼板の片面に実施例1と同じプライ
マー塗料を50μの厚さに塗装・焼付けしたプライ
マー塗装鋼板を製造し、しかる後に実施例1と同
じポリ塩化ビニルプラスチゾルをプライマー塗料
上に100μの塗膜厚さに塗装し焼付けを行なつて
塩化ビニル被覆鋼板を製造した。しかる後に片面
に実施例1と同じ黒色系インク組成物でタイル模
様を線幅0.8mmでインク膜厚2μとなるようにグ
ラビア印刷を施した透明な熱収縮性アクリル樹脂
フイルム〔鐘淵化学工業(株)製、収縮率40〜45%、
膜厚75μ〕を張力を付与して塩化ビニル被覆鋼板
と同速で170℃の塩化ビニル被覆鋼板の塩化ビニ
ル被覆層と印刷面とが接する状態でゴムロール圧
着により熱融着せしめた。次いで得られた積層鋼
板の温度が120〜140℃の状態で実施例1と同じ近
赤外線照射装置で実施例1と同じ条件でフイルム
面に近赤外線を照射した処、積層鋼板の黒色印刷
部に相当する部分の熱収縮性アクリル樹脂フイル
ムと下層の塩化ビニル被覆層とに凹部が生じ、熱
収縮性フイルム表面の凹部の最大深さが40μの立
体的な意匠を有する意匠鋼板を製造することがで
きた。 実施例 4 板厚0.4mmの普通鋼冷延鋼板にりん酸亜鉛処理
を施し、その片面に実施例1と同じプライマー塗
料を実施例1と同じ厚さに塗装・焼付けした。し
かる後にそのプライマー塗料上に実施例1と同じ
ポリ塩化ビニルプラスチゾルを塗膜厚さ150μに
塗装・焼付けを行なつて塩化ビニル被覆鋼板を製
造した。 しかる後に片面に大日本印刷(株)製の塩ビ―アク
リル共重合体をビヒクルとするベージユ色系イン
ク組成物で木目模様を印刷しその木目模様の導管
部分に大日本印刷(株)製の塩ビ―アクリル共重合体
をビヒクルとする黒色系インク組成物で線幅が
0.2〜0.8mmでインク膜厚1μとなるようにグラビ
ア印刷を施した実施例1と同じ半透明な熱収縮性
アクリル樹脂フイルムを張力を付与して塩化ビニ
ル被覆鋼板と同速で160〜180℃の塩化ビニル被覆
鋼板の塩化ビニル被覆層と印刷面とが接する状態
でゴムロール圧着により熱融着せしめた。次い
で、得られた積層鋼板を直ちに実施例1と同じ近
赤外線照射装置で実施例1と同じ条件でフイルム
面に近赤外線を照射した処、積層鋼板の黒色印刷
部に相当する部分の熱収縮性アクリル樹脂フイル
ムと下層の塩化ビニル被覆層とに凹部が生じ、熱
収縮性フイルム表面の凹部の最大深さが70μの立
体的な意匠を有する意匠鋼板を製造することがで
きた。 実施例 5 板厚0.5mmの普通鋼冷延鋼板に厚さ40μのアル
ミニウム溶融めつきを施したアルミナイズド鋼板
にリン酸亜鉛処理を施し、そのアルミナイズド鋼
板の片面に実施例4と同じ条件でプライマー塗料
及びポリ塩化ビニルプラスチゾルをそれぞれ塗
装・焼付けを行なつて塩化ビニル被覆鋼板を製造
してから実施例4と同じ半透明な熱収縮性アクリ
ル樹脂フイルムを熱融着せしめて積層鋼板を製造
した。次いで得られた積層鋼板を直ちに実施例4
と同じ条件でフイルム面に近赤外線を照射した
処、実施例4と同様な立体的な意匠を有する意匠
鋼板を製造することができた。 実施例 6 実施例1と同じ条件でプライマー塗装鋼板を製
造して後、次いで実施例1で用いたポリ塩化ビニ
ルプラスチゾルを塗膜厚さ100μに塗装し、その
ポリ塩化ビニルプラスチゾルの焼付け温度を変化
させて、実施例1を同じタイル模様を印刷した熱
収縮性アクリル樹脂フイルムを熱融着せしめて積
層鋼板を製造し、次いで直ちに実施例1と同じ近
赤外線照射装置で実施例1と同じ条件で近赤外線
を照射して意匠鋼板を製造し、得られた意匠鋼板
の塗膜の加工性及び密着性に及ぼすポリ塩化ビニ
ルプラスチゾルの焼付温度の影響について調査し
た結果を表に示す。 なお、比較材としては近赤外線を照射しない積
層鋼板を使用した。 加工性試験は、20℃において加工部が板厚の3
倍の曲率半径の折り曲げとなるようにガードナー
衝撃試験機によつて荷重1.82lb×高さ750mmの力
で衝撃変形させて曲げ部の塗膜割れを以下の評価
基準で評価した。 ◎ 異常なし 〇 極く僅かに割れが発生する △ 若干の割れが発生する × 著しい割れが発生する 密着性試験は沸騰水に4時間浸漬し、20℃湿度
60%の恒温・恒湿雰囲気中に24時間放置した後に
塗膜を強制的にピーリングして、剥離の程度を以
下の評価基準で評価した。 ◎ 異常なし 〇 極く僅かに剥離する △ 若干剥離する × 容易に剥離する
The present invention relates to a method for manufacturing a designed steel plate having an excellent design effect, in which a heat-shrinkable synthetic resin film having a shading pattern is adhered to a vinyl chloride-coated steel plate, and recesses corresponding to the pattern are formed. Traditionally, the methods for adding designs to painted steel sheets are as follows:
Various methods have been used to give designs to so-called laminated steel plates, in which various synthetic resin films are heat-sealed to a vinyl chloride-coated steel plate coated with polyvinyl chloride plastisol and baked, by printing a pattern on the film or using a film. One method is to color the material itself to give it a desired pattern to enhance its design, and the other is to press a metal roll with a predetermined uneven pattern engraved on the surface to a laminated steel plate and mechanically create an uneven pattern on the coating surface of the laminated steel plate. There are two known methods: a method in which a three-dimensional surface shape is imparted by transferring the material to a surface to enhance the design, and a method in which the above-mentioned two methods are combined to further enhance the design. However, the method of printing a pattern on the film or coloring the film itself to give a desired pattern to improve the design quality is difficult to achieve because the pattern added to improve the design quality is two-dimensional. was inferior in In addition, the method of mechanically transferring an uneven pattern to the coating surface of a laminated steel plate to improve the design is expensive to produce metal rolls with engraved patterns, and is not suitable when many types of uneven patterns are required. Each time the pattern changes, metal rolls must be prepared accordingly, resulting in a significant decrease in workability on the production line.Furthermore, it is difficult to express fine and complex uneven patterns on the metal rolls, so uneven patterns are required. It tends to be relatively simple, and it is inferior in design because it is only a concave-convex pattern and there is no change in color or brightness. On the other hand, there is a method of printing a pattern on the film or coloring the film itself to give it a desired pattern, and then mechanically transferring the uneven pattern to the coating surface of the laminated steel plate to improve the design. This is a method to obtain a laminated steel plate with an extremely excellent design due to the mutual effect of changes in color and/or brightness and a three-dimensional uneven pattern, but as mentioned above, the metal used to form the uneven pattern is The rolls are expensive, a large number of metal rolls must be prepared, the workability is poor, the uneven pattern is simple, and it is extremely difficult to match the uneven pattern with the printing or coloring pattern applied to the film. It is difficult and has the drawback that if the same adjustment is not made even slightly, the commercial value of the product will be halved. Therefore, as a method of manufacturing a laminated steel plate with excellent design in which the printed pattern and the uneven pattern are synchronized, for example, a heat-shrinkable synthetic material printed using an ink containing a foaming inhibitor in the vehicle is used. A method has also been proposed in which a sheet material made of a composite of a resin film and a foamed resin layer is used to suppress foaming in the patterned area, thereby varying the amount of foaming in the foamed resin layer to form recesses that match the pattern. However, in this method, the foamed resin layer itself is soft, so even if it is composited onto a base material with a large weight such as a steel plate or steel strip, the uneven pattern will be smoothed out due to the weight of the base material during transportation or storage. However, there were drawbacks that significantly reduced its commercial value over time. Another method, as disclosed in Japanese Patent Publication No. 49-12102, is to form a flexible and transparent film layer with a printed pattern of varying tone and color density on a base material via a photosensitive resin layer. There is also a method for producing a three-dimensional decorative board in which a three-dimensional decorative board is formed by laminating the films together and irradiating ultraviolet rays from the film surface to form an uneven pattern with different depths that is synchronized with the printed pattern on the film surface. The photosensitive resins used are expensive and impractical. As a result of intensive research aimed at eliminating the drawbacks of the conventional methods, the present inventors succeeded in developing the revolutionary method of the present invention, which allows laminated steel plates with excellent design effects to be manufactured easily and inexpensively. That is, the first object of the present invention is to print on the synthetic resin film side surface of a laminated steel plate on which a synthetic resin film with a shading pattern printed on a vinyl chloride coated steel plate is adhered. An object of the present invention is to provide a method for manufacturing a designed steel plate that forms recesses corresponding to a shaded pattern. Another object of the present invention is to provide a method for manufacturing a designed steel sheet in which the formation of recesses corresponding to the above-mentioned shading pattern is carried out at high speed on a continuous line without mechanical or physical embossing. Still another object of the present invention is that the recesses formed corresponding to the light and shade pattern are deep recesses of 20 to 100 μm in depth starting from the vinyl chloride coating layer, which is the base layer, and are extremely aesthetically pleasing. It is an object of the present invention to provide a method for manufacturing a designed steel sheet with a rich three-dimensional effect.
Still another object of the present invention is to provide an industrially superior method for producing a designed steel plate which has very good thermal efficiency and can be manufactured inexpensively and easily. That is, the present invention coats and bakes polyvinyl chloride plastisol on a steel plate to produce a vinyl chloride coating layer with a thickness of 50 to 400 μm,
When the temperature of the vinyl chloride coated steel sheet is cooled to within the range of 100 to 180℃, the shrinkage rate is 0.5 to 3μ thick with a shading pattern printed with ink on one side.
A heat-shrinkable synthetic resin film having a thickness of 35 to 70% and a thickness of 20 to 100μ is supplied at the same speed as the moving speed of the vinyl chloride-coated steel plate, and the printed surface of the heat-shrinkable synthetic resin film is coated with the vinyl chloride-coated steel plate. Immediately after that, near-infrared rays are irradiated from the heat-shrinkable synthetic resin film side onto the vinyl chloride coating layer, so that the maximum depth corresponds to the shading pattern printed on the heat-shrinkable synthetic resin film. The present invention relates to a method for producing a designed steel plate, which comprises producing a designed steel plate having concave portions in the range of 20 to 100 μm formed on its surface. Hereinafter, a method for manufacturing a designed steel sheet according to the present invention will be explained in detail with reference to the drawings. FIG. 1 is an explanatory enlarged cross-sectional view showing the state of a designed steel sheet manufactured by the method for manufacturing a designed steel sheet according to the present invention before it is irradiated with near-infrared rays, and FIG.
FIG. 3 is an explanatory enlarged sectional view showing the state of the designed steel sheet shown in the figure after being irradiated with near-infrared rays, and FIG. 3 is a schematic diagram of an apparatus for carrying out the method for manufacturing the designed steel sheet according to the present invention. In order to manufacture the designed steel sheet according to the present invention, first, the steel sheet 1 is coated with polyvinyl chloride plastisol.
PVC-coated steel sheets are produced by baking. As this steel plate 1, various steel plates are used, such as a cold-rolled steel plate, a galvanized steel plate plated by electroplating or hot-dip galvanizing, and an aluminum-plated steel plate plated by hot-dip galvanizing. can do. In order to manufacture a vinyl chloride-coated steel sheet by painting and baking polyvinyl chloride plastisol on the steel sheet 1, a chemical conversion treatment layer E is first formed on the steel sheet 1 for the purpose of improving the coating film adhesion and corrosion resistance of the steel sheet 1, Next, in order to improve the adhesion of the polyvinyl chloride plastisol to the chemical conversion treated steel sheet 1, a primer coating layer D is applied and formed, and then the polyvinyl chloride plastisol is painted and baked to form a vinyl chloride coating layer C. A method similar to the conventional manufacturing method for vinyl chloride-coated steel sheets is carried out. Thus, when producing a vinyl chloride coated steel sheet, the thickness of the vinyl chloride coating layer C is 50 to 400 mm.
This means that if the thickness of the vinyl chloride coating layer C is less than 50μ, not only will it not be possible to apply polyvinyl chloride plastisol uniformly when industrially roll coating it, but as will be described later, This is because a recess is also formed in the coating layer C, making it impossible to form a deep recess.
This is because if the thickness exceeds μ, not only will the effect of increasing the thickness not be noticeable in forming the recesses, but the price will become too high. Like this, the thickness is 50~
A 400μ thick vinyl chloride coating layer C is formed, and when the vinyl chloride coated steel sheet is cooled to a temperature within the range of 100 to 180°C, it is shaded with ink to a thickness of 0.5 to 3μ on one side. Equipped with ink layer B with a printed pattern, shrinkage rate is 35-70% and thickness is 20-20%.
A heat-shrinkable synthetic resin film A of 100 μm is pressed against the vinyl chloride coating layer C through the ink layer B at the same speed as the moving speed of the vinyl chloride-coated steel plate and with an appropriate tension applied to the heat-shrinkable synthetic resin. Film A is heat-sealed. Here, the type and color of the ink layer B, which prints a light and shade pattern on one side of the heat-shrinkable synthetic resin film A, depends on the blending ratio of the pigment contained in the underlying vinyl chloride coating layer C. However, it does not inhibit the heat fusion between the vinyl chloride coating layer C as the base and the heat-shrinkable synthetic resin film A as the outermost layer, and has light resistance,
Any material can be used as long as it has excellent water resistance and heat resistance, and its thickness is such that the pattern can be clearly distinguished and that it can be clearly printed using ordinary gravure printing, offset printing, letterpress printing, screen printing, etc. According to the conditions, a thickness of 0.5μ or more is required, and the vinyl chloride coating layer C and the heat-shrinkable synthetic resin film A
The thickness is preferably 3 μm or less in order to effectively form a recessed portion without inhibiting thermal fusion with the material. Note that the thickness of the ink layer B may normally be around 1 μm. Further, the shading pattern formed by this ink layer B may be a shading pattern of the same color, or a shading pattern of multiple colors including a dark color such as black, dark brown, or grayish brown, and a light color other than the dark color. The reason why the ink layer B is placed between the vinyl chloride coating layer C and the heat-shrinkable synthetic resin film A is because if the ink layer B is placed on the outermost layer, the design may be damaged due to abrasion, etc., or contamination may occur. There is a risk that the color and luster may deteriorate due to light, and as will be described later, when near infrared rays are irradiated, the effect of the heat extends to the vinyl chloride coating layer C, making it impossible to form deep recesses. This is for a reason. The heat-shrinkable synthetic resin film A on which the ink layer B is printed on one side may be a polyvinyl chloride film or a polymethyl methacrylate film that can be thermally bonded well to the underlying vinyl chloride coating layer C. An acrylic resin film is suitable, and the shrinkage rate is 35 to 70 when heated at 150℃ for about 10 minutes.
%, preferably 40 to 50%, in the width direction and/or length direction. This is because heat-shrinkable synthetic resin films with such shrinkage rates are easily available, and when the ink layer B is heated to a temperature of 250 to 400°C by near-infrared heating, which will be described later, 20 to 100 microns of This is because it satisfies the conditions for forming a recess with a maximum depth within the range of .If the shrinkage rate is less than 35%, the depth of the recess will be shallow and the design effect will not improve, and if the shrinkage rate exceeds 70%. This is because if the depth of the recess becomes too deep and the pattern formed by the ink layer B, cracks, wrinkles, or breaks may occur on the surface of the heat-shrinkable synthetic resin film A. The thickness of this heat-shrinkable synthetic resin film A is 20 to 100μ, preferably 40 to 80μ.
Use μ. In other words, the thicker the heat-shrinkable synthetic resin film A is, the deeper the recesses formed on the surface of the designed steel sheet tend to be, but when the thickness exceeds 100μ, the film becomes expensive. Not only is this not practical, but it is also undesirable because the effect of shrinkage due to heating of the ink layer B by near-infrared rays, which will be described later, does not extend to the surface, and if the thickness is less than 20μ, the underlying vinyl chloride coating Even though the adhesion strength with layer C was insufficient and heat-sealed, there was a risk that heat-shrinkable synthetic resin film A would peel off from vinyl chloride coating layer C during use, and furthermore, the thickness was too thin. This is because it is impossible to form recesses with a maximum depth in the range of 20 to 100 μm on the surface of the designed steel sheet, which is the objective of the present invention. In addition,
In order to enhance the design effect of the designed steel sheets manufactured,
As the heat-shrinkable synthetic resin film A, it is preferable to use one with a glossy surface rather than one with a matte surface. In this way, a laminated steel plate was manufactured in which a chemical conversion treatment layer E, a primer coating layer D, a vinyl chloride coating layer C, an ink layer B, and a heat-shrinkable synthetic resin film A were laminated in this order on a steel plate 1 as shown in FIG. Immediately after,
That is, while the temperature of the laminated steel plate is high, the heat-shrinkable synthetic resin film is irradiated from the A side with near-infrared rays with a wavelength of 0.5 to 3.0μ, preferably 0.7 to 2.0μ from an irradiation device that mainly irradiates the heat-shrinkable synthetic resin. The temperature of the dark colored part of ink layer B through film A is 250
It is heated for a short period of time to a temperature of ~400°C. By this heating, the vinyl chloride coating layer C and the heat-shrinkable synthetic resin film A on both sides of the ink layer B are locally heated only near the dark colored portion of the ink layer, and the heat-shrinkable synthetic resin film A is heated. Due to its shrinkability, only the locally heated portions contract and form recesses on the surface, and the vinyl chloride coating layer C, which has not yet been completely cured, softens again only in the locally heated portions. As a result, a recess shallower than the recess formed on the surface of the heat-shrinkable synthetic resin film A is simultaneously formed at the same position as the recess formed in the heat-shrinkable synthetic resin film A. In the method of the present invention, since recesses are formed not only in the heat-shrinkable synthetic resin film A but also in the vinyl chloride coating layer C, the maximum depth of the recesses formed on the surface of the designed steel sheet is 20 to 100 μm. It is possible to produce a highly designed steel sheet with a very deep depth, and a vinyl chloride-coated steel sheet is used to attach the heat-shrinkable synthetic resin film A to the vinyl chloride coating layer C of the vinyl chloride-coated steel sheet. Since the residual heat after baking the polyvinyl chloride plastisol during manufacturing is used, not only is there no need for adhesives, but thermal energy can be used effectively. Near-infrared rays that selectively heat the ink layer are used to heat the ink layer B between the film A, and since the near-infrared rays are irradiated while the temperature of the laminated steel plate is still high, the thermal energy is further reduced. This means making effective use of it. An embodiment of an apparatus for continuously carrying out the method of the present invention on long steel plates will be described with reference to FIG. A long steel plate 1 is uncoiled from an uncoiler 2, and a chemical conversion treatment layer E is formed in a chemical conversion treatment device 3, and then a primer paint is applied with a coating roll 4, and then the primer paint is baked in a heating furnace 5.
A primer coating layer D is formed by baking. Thereafter, it is coated with polychlorinated plastisol using a coating roll 6 and baked in a baking furnace 7.
A heat-shrinkable synthetic material in which a vinyl chloride coating layer C of 50 to 400 μm is formed to produce a vinyl chloride coated steel plate, and an ink layer B with a light and shade pattern is printed on one side of the vinyl chloride coated steel plate at a temperature of 100 to 180°C. When the resin film A has been cooled to within the optimum thermal fusion temperature range, it is supplied from the film feeding device 8 at the same speed as the moving speed of the steel plate 1 while being tensioned by the tensioning device 9. A heat-shrinkable synthetic resin film A with a shrinkage rate of 35-70% and a thickness of 20-100μ has an ink layer B with a shading pattern printed on one side of the steel plate 1 with a thickness of 0.5-3μ. A laminated steel plate is formed by heat-sealing the vinyl chloride coating layer C on the upper vinyl chloride coating layer C using a laminating roll 10. The laminated steel plate produced in this way is mainly 0.5
The near-infrared rays are irradiated from the heat-shrinkable synthetic resin film A side on the surface of the laminated steel plate from the near-infrared irradiation device 11 that irradiates near-infrared rays with a wavelength of ~3μ to form an ink layer B.
Particularly dark colored parts of the ink layer B are selectively heated.
400℃, which is a safe temperature that will not cause thermal decomposition in a short period of time.
When the temperature reaches 250°C or higher at which the heat-shrinkable synthetic resin film A can stably shrink, it is cooled by the next cooling device 12 and the heat-shrinkable synthetic resin film is formed only in the dark-colored patterned portion of the ink layer B. Since A and the vinyl chloride coating layer C simultaneously form the recesses, a designed steel plate is manufactured, and the manufactured designed steel plate is wound up by the coiler 13. The cross-sectional shape of the designed steel sheet manufactured in this manner is as shown in FIG. Next, an example of the method for manufacturing a designed steel sheet according to the present invention will be described. Example 1 Zero-spangle galvanized steel plate treated with zinc phosphate, which is obtained by hot-dip galvanizing a cold-rolled ordinary steel sheet with a thickness of 0.35 mm [Zinc coating amount: Z25 specified in JIS G3302-1979 "galvanized iron sheet" (Minimum adhesion amount 250g/m 2 )]
A primer paint made of acrylic urethane modified epoxy resin manufactured by Kansai Paint Co., Ltd. was applied to a thickness of 5 μm on one side of the substrate, and then baked in an oven. After that, apply Kansai Paint Co., Ltd. over the primer paint.
A cream-white polyvinyl chloride plastisol made of
A vinyl chloride-coated steel sheet was manufactured by applying the coating to a thickness of 100 μm at a speed of 30 m/min, and then passing the sheet through an oven at a speed of 30 m/min to heat the sheet to 210° C. and baking it. After that, a tile pattern was created on one side using a black ink composition with a vinyl chloride acrylic copolymer vehicle manufactured by Dai Nippon Printing Co., Ltd. with a line width of 0.8 mm.
A translucent heat-shrinkable acrylic resin film gravure-printed to an ink film thickness of 1μ [manufactured by Kanebuchi Chemical Co., Ltd., copolymer film of polymethyl methacrylate and butyl acrylate, shrinkage rate]
45~50%, film thickness 50μ] is applied under tension at a speed of 30 m/min, and the vinyl chloride coating layer is printed on a vinyl chloride coated steel plate whose temperature after passing through an oven is 140~160℃. Heat fusion bonding was performed by rubber roll pressure bonding while the surfaces were in contact with each other. Next, the obtained laminated steel plate was immediately exposed to a near-infrared irradiation device (output: 3KW/
Book, using a rod-shaped near-infrared lamp manufactured by Migrapic with a heat generation length of 500 mm, a reflector focal length of 100 mm,
The film surface was irradiated with near-infrared rays (maximum energy wavelength: 1μ) for 7 seconds at a threading speed of 6m/min at an irradiation distance of 50mm directly under the above-mentioned 5 devices in parallel).
Recesses are formed in the heat-shrinkable acrylic resin film and the lower vinyl chloride coating layer in the areas corresponding to the black printed parts of the laminated steel plate, creating a three-dimensional design with a maximum depth of 25μ for the recesses on the surface of the heat-shrinkable acrylic resin film. We were able to produce a steel plate with a design. Example 2 A primer-coated steel plate was manufactured by painting and baking the same primer paint as in Example 1 to a thickness of 5μ on one side of a zero-spangle galvanized steel plate treated with zinc phosphate as in Example 1, and then applying the same primer paint as in Example 1. A polyvinyl chloride-coated steel plate was produced by coating and baking the same polyvinyl chloride plastisol as in Example 1 on a primer paint to a film thickness of 200 μm. After that, a wood grain pattern was printed on one side with a sepia-colored ink composition using a vinyl chloride-acrylic copolymer vehicle manufactured by Dai Nippon Printing Co., Ltd., and the conduit portion of the wood grain pattern was inked by Dai Nippon Printing Co., Ltd.
Gravure printing was carried out using a blackish brown ink composition containing a PVC-acrylic copolymer manufactured by Co., Ltd. as a vehicle, with a line width of 0.2 to 0.8 mm and an ink film thickness of 1 μm. Same translucent heat shrinkability as in Example 1. An acrylic resin film and a transparent heat-shrinkable polyvinyl chloride resin film (manufactured by Sanpo Jushi Co., Ltd., shrinkage rate 40-50%, film thickness 40 μm) were each separately heated at the same speed as the vinyl chloride-coated steel sheet by applying tension. The vinyl chloride coating layer of the vinyl chloride coated steel plate and the printed surface were in contact with each other at 140 to 160°C and were thermally fused by rubber roll pressure bonding. Immediately after that, the two types of laminated steel plates obtained were immediately irradiated with near-infrared rays on the film surface under the same conditions as in Example 1 using the same near-infrared irradiation device as in Example 1. In the heat-shrinkable acrylic resin film, a recess is formed between the heat-shrinkable polyvinyl chloride resin film and the lower vinyl chloride coating layer, and the maximum depth of the recess on the heat-shrinkable film surface is It was possible to produce a designed steel plate with a three-dimensional design of 65μ and 80μ in the case of heat-shrinkable polyvinyl chloride resin film. Example 3 A primer-coated steel sheet was manufactured by painting and baking the same primer paint as in Example 1 to a thickness of 50μ on one side of a zero spangle galvanized steel sheet treated with zinc phosphate as in Example 1, and then applying the same primer paint as in Example 1. The same polyvinyl chloride plastisol as in Example 1 was coated on the primer paint to a film thickness of 100 μm and baked to produce a vinyl chloride-coated steel sheet. Thereafter, a transparent heat-shrinkable acrylic resin film was gravure printed with a tile pattern on one side using the same black ink composition as in Example 1 with a line width of 0.8 mm and an ink film thickness of 2 μm [Kanebuchi Chemical Co., Ltd.] Co., Ltd., shrinkage rate 40-45%,
[film thickness 75μ] was applied with tension and heat-fused by rubber roll pressure bonding at the same speed as the vinyl chloride-coated steel plate, with the vinyl chloride coating layer of the vinyl chloride-coated steel plate and the printed surface being in contact with each other at 170°C. Next, with the obtained laminated steel plate at a temperature of 120 to 140°C, the film surface was irradiated with near-infrared rays under the same conditions as in Example 1 using the same near-infrared irradiation device as in Example 1. As a result, the black printed portion of the laminated steel plate It is possible to produce a designed steel sheet with a three-dimensional design in which depressions are formed in the corresponding portions of the heat-shrinkable acrylic resin film and the lower vinyl chloride coating layer, and the maximum depth of the depressions on the surface of the heat-shrinkable film is 40μ. did it. Example 4 A cold-rolled ordinary steel sheet with a thickness of 0.4 mm was treated with zinc phosphate, and one side of the sheet was coated with the same primer paint as in Example 1 and baked to the same thickness as in Example 1. Thereafter, the same polyvinyl chloride plastisol as in Example 1 was coated and baked on the primer paint to a thickness of 150 μm to produce a vinyl chloride-coated steel sheet. After that, a wood grain pattern was printed on one side with a beige-colored ink composition using a PVC-acrylic copolymer vehicle manufactured by Dai Nippon Printing Co., Ltd., and a PVC manufactured by Dai Nippon Printing Co., Ltd. was printed on the conduit portion of the wood grain pattern. - A black ink composition that uses an acrylic copolymer as a vehicle to improve line width.
The same translucent heat-shrinkable acrylic resin film as in Example 1, which was gravure printed to give an ink film thickness of 1 μm at 0.2 to 0.8 mm, was then heated at 160 to 180°C at the same speed as the vinyl chloride-coated steel sheet. The vinyl chloride coating layer of the vinyl chloride-coated steel plate and the printed surface were heat-sealed by rubber roll pressure bonding in a state in which they were in contact with each other. Next, the film surface of the obtained laminated steel plate was immediately irradiated with near-infrared rays using the same near-infrared irradiation device as in Example 1 under the same conditions as in Example 1, and the heat shrinkage of the portion corresponding to the black printed part of the laminated steel plate was confirmed. Recesses were formed between the acrylic resin film and the lower vinyl chloride coating layer, and it was possible to produce a designed steel sheet with a three-dimensional design in which the maximum depth of the recesses on the surface of the heat-shrinkable film was 70 μm. Example 5 Zinc phosphate treatment was applied to an aluminized steel plate made by hot-dipping aluminum to a thickness of 40μ on a cold-rolled ordinary steel plate with a thickness of 0.5 mm, and one side of the aluminized steel plate was treated with the same conditions as in Example 4. A vinyl chloride-coated steel plate was produced by painting and baking a primer paint and polyvinyl chloride plastisol, and then a laminated steel plate was produced by heat-sealing the same translucent heat-shrinkable acrylic resin film as in Example 4. . Next, the obtained laminated steel plate was immediately prepared in Example 4.
When the film surface was irradiated with near-infrared rays under the same conditions as described above, a designed steel plate having a three-dimensional design similar to that of Example 4 could be manufactured. Example 6 After manufacturing a primer-coated steel plate under the same conditions as in Example 1, the polyvinyl chloride plastisol used in Example 1 was then applied to a coating thickness of 100μ, and the baking temperature of the polyvinyl chloride plastisol was varied. Then, a heat-shrinkable acrylic resin film printed with the same tile pattern as in Example 1 was heat-sealed to produce a laminated steel plate, and then immediately under the same conditions as in Example 1 using the same near-infrared irradiation equipment as in Example 1. A designed steel sheet was produced by irradiation with near-infrared rays, and the results of investigating the influence of the baking temperature of polyvinyl chloride plastisol on the workability and adhesion of the coating film of the obtained designed steel sheet are shown in the table. Note that a laminated steel plate that is not irradiated with near-infrared rays was used as a comparative material. In the workability test, the processed part was 3 mm thick at 20°C.
Impact deformation was performed using a Gardner impact tester with a load of 1.82 lb x height of 750 mm so that the bending radius was doubled, and coating film cracking at the bent portion was evaluated using the following evaluation criteria. ◎ No abnormality 〇 Very slight cracking occurs △ Slight cracking occurs × Significant cracking occurs Adhesion test was performed by immersing in boiling water for 4 hours at 20℃ humidity
After being left in a constant temperature and humidity atmosphere of 60% for 24 hours, the coating film was forcibly peeled off, and the degree of peeling was evaluated using the following evaluation criteria. ◎ No abnormalities 〇 Very slight peeling △ Slight peeling × Easy peeling

【表】 上記の結果より、近赤外線を照射する本発明方
法により製造された意匠鋼板は、比較材に比べて
加工性及び塗膜の密着性が向上していることが確
認できたと共に、塗膜性能に及ぼすポリ塩化ビニ
ルプラスチゾルの焼付温度の影響をほとんど受け
ないことが観察された。 以上詳述した如く、本発明に係る意匠鋼板の製
造方法は、鋼板にポリ塩化ビニルプラスチゾルを
塗装・焼付けして塩化ビニル被覆層の厚さが50〜
400μの塩化ビニル被覆鋼板を製造し、この塩化
ビニル被覆鋼板のポリ塩化ビニルプラスチゾルの
焼付け時の余熱を利用して、片面に濃淡模様をイ
ンクで印刷した厚さが20〜100μの熱収縮性合成
樹脂フイルムを印刷面が塩化ビニル被覆鋼板の塩
化ビニル被覆層に当接するようにして熱融着させ
て積層鋼板を製造し、次いでその積層鋼板の温度
が100〜180℃の範囲の未だ熱い中に熱収縮性合成
樹脂フイルム側から近赤外線を照射して濃色印刷
面を選択的に加熱させてインク層によつて形成さ
れた濃淡模様に対応する部分に熱収縮性合成樹脂
フイルムの軟化及び収縮特性を利用して最大深さ
が20〜100μとなる凹部を表面に形成して、加工
性が良く且つ写実性及び美感に富んでいて装飾効
果並びに立体効果の優れた凹凸模様を表面に有す
る意匠鋼板を製造する方法に関するものである。
得られる意匠鋼板の用途は建築物や車輛などの内
装材や、シヤツターなどの素材、あるいは自動販
売機や家電機器や事務機器や家具やキヤビネツト
類などの意匠用鋼板としてその応用分野な非常に
広いのである。また本発明方法は以下に列挙する
如き種々の利点を有しており、その工業的価値は
非常に大きなものがある。 (1) 最表面の熱収縮性合成樹脂フイルムと下地層
となる塩化ビニル被覆層との間に濃淡模様の印
刷インク層が存在している積層鋼板より意匠鋼
板を製造する方法であるため、製造された意匠
鋼板は表面の摩耗や汚染などによつて印刷模様
の色や濃淡や艶の劣化が生じ難い。 (2) 下地層となるポリ塩化ビニルプラスチゾルの
鋼板への焼付けを、熱収縮性合成樹脂フイルム
の熱融着前の通常の焼付けと、印刷インク層の
加熱用としての近赤外線照射による焼付けとの
2段加熱によつて行なうため、最適の塩化ビニ
ル被覆層を形成するための通常の焼付けに比べ
てその焼付け温度を低く管理することができる
ので熱エネルギの節約ができると共に、近赤外
線の照射は塩化ビニル被覆層上に濃淡模様を印
刷された熱収縮性合成樹脂フイルムを熱融着し
た直後の積層鋼板が保有熱を充分に有している
状態で行なうので、予備加熱を全く必要としな
い模様印刷部を所望温度まで容易に加熱して模
様印刷部に対応した凹部を効果的に形成するこ
とができるため、熱エネルギを効果的に利用で
きる。 (3) 模様印刷部に対応した凹部を形成するに際し
て、従来の如く金属製型ロールなどを全く使用
する必要がなく、また微細又は複雑な模様に対
応した凹部も容易に形成することができる。
[Table] From the above results, it was confirmed that the designed steel sheet manufactured by the method of the present invention, which irradiates with near-infrared rays, has improved workability and coating adhesion compared to comparative materials. It was observed that the baking temperature of polyvinyl chloride plastisol had little effect on membrane performance. As detailed above, the method for producing a designed steel sheet according to the present invention involves painting and baking polyvinyl chloride plastisol on a steel sheet so that the thickness of the vinyl chloride coating layer is 50 to 50 mm.
A heat-shrinkable composite with a thickness of 20 to 100 μm is produced by manufacturing a 400μ PVC-coated steel plate, and using the residual heat from baking the PVC plastisol of the PVC-coated steel plate, a shading pattern is printed with ink on one side. A laminated steel plate is manufactured by heat-sealing a resin film so that the printed surface is in contact with the vinyl chloride coating layer of a vinyl chloride-coated steel plate, and then the laminated steel plate is heated in a still hot temperature range of 100 to 180°C. The heat-shrinkable synthetic resin film is irradiated with near-infrared rays from the side to selectively heat the dark-colored printed surface, softening and shrinking the heat-shrinkable synthetic resin film in areas corresponding to the shading pattern formed by the ink layer. A design that utilizes the characteristics to form concavities with a maximum depth of 20 to 100μ on the surface, and has a concave-convex pattern on the surface that is easy to work with, is rich in realism and beauty, and has an excellent decorative effect and three-dimensional effect. The present invention relates to a method of manufacturing a steel plate.
The resulting decorative steel sheets can be used in a wide variety of fields, including interior materials for buildings and vehicles, materials for shutters, and decorative steel sheets for vending machines, home appliances, office equipment, furniture, and cabinets. It is. Furthermore, the method of the present invention has various advantages as listed below, and its industrial value is extremely large. (1) This is a method for manufacturing decorative steel sheets from laminated steel sheets in which a printing ink layer with a dark and light pattern exists between the outermost heat-shrinkable synthetic resin film and the vinyl chloride coating layer that serves as the base layer. Designed steel sheets are less susceptible to deterioration of the color, shading, and gloss of the printed pattern due to surface abrasion or contamination. (2) The polyvinyl chloride plastisol that will serve as the base layer is baked on the steel plate by two methods: normal baking before heat-sealing the heat-shrinkable synthetic resin film, and baking using near-infrared irradiation to heat the printing ink layer. Since it is performed using two-stage heating, the baking temperature can be controlled lower than that of normal baking to form the optimal vinyl chloride coating layer, saving thermal energy and reducing near-infrared irradiation. Since the process is carried out in a state where the laminated steel plate has sufficient heat immediately after heat-sealing the heat-shrinkable synthetic resin film with a shaded pattern printed on the vinyl chloride coating layer, preheating is not required at all. Since the printed portion can be easily heated to a desired temperature and a recessed portion corresponding to the pattern printed portion can be effectively formed, thermal energy can be used effectively. (3) When forming recesses corresponding to pattern printing areas, there is no need to use metal mold rolls or the like as in the past, and recesses corresponding to fine or complex patterns can be easily formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る意匠鋼板の製造方法によ
り製造される意匠鋼板の近赤外線を照射せしめる
前の状態を示す説明用拡大断面図、第2図は第1
図に示した意匠鋼板に近赤外線を照射せしめられ
た後の状態を示す説明用拡大断面図、第3図は本
発明に係る意匠鋼板の製造方法を実施するための
装置の概略図である。 1……鋼板、2……アンコイラー、3……化成
処理装置、4……塗布ロール、5……焼付け加熱
炉、6……塗布ロール、7……焼付け加熱炉、8
……フイルム給支装置、9……張力付与装置、1
0……ラミネートロール、11……近赤外線照射
装置、12……冷却装置、13……コイラー、A
……熱収縮性合成樹脂フイルム、B……インク
層、C……塩化ビニル被覆層、D……プライマー
塗膜層、E……化成処理層。
FIG. 1 is an explanatory enlarged cross-sectional view showing the state of a designed steel sheet manufactured by the method for manufacturing a designed steel sheet according to the present invention before it is irradiated with near-infrared rays, and FIG.
FIG. 3 is an explanatory enlarged sectional view showing the state of the designed steel sheet shown in the figure after being irradiated with near-infrared rays, and FIG. 3 is a schematic diagram of an apparatus for carrying out the method for manufacturing the designed steel sheet according to the present invention. DESCRIPTION OF SYMBOLS 1... Steel plate, 2... Uncoiler, 3... Chemical conversion treatment equipment, 4... Coating roll, 5... Baking heating furnace, 6... Coating roll, 7... Baking heating furnace, 8
...Film feeding device, 9...Tension applying device, 1
0... Laminating roll, 11... Near-infrared irradiation device, 12... Cooling device, 13... Coiler, A
... Heat-shrinkable synthetic resin film, B ... Ink layer, C ... Vinyl chloride coating layer, D ... Primer coating layer, E ... Chemical conversion treatment layer.

Claims (1)

【特許請求の範囲】 1 鋼板にポリ塩化ビニルプラスチゾルを塗装・
焼付けして塩化ビニル被覆層の厚さが50〜400μ
の塩化ビニル被覆鋼板を製造し、該塩化ビニル被
覆鋼板の温度が100〜180℃の範囲内に冷却されて
来た際に、片面に0.5〜3μの厚さにインクで濃
淡模様が印刷されている収縮率が35〜70%で厚さ
が20〜100μの熱収縮性合成樹脂フイルムを該塩
化ビニル被覆鋼板の移動速度と同速度で供給して
該熱収縮性合成樹脂フイルムの印刷面を該塩化ビ
ニル被覆鋼板の塩化ビニル被覆層上に熱融着せし
め、その直後に熱収縮性合成樹脂フイルム側から
近赤外線を照射せしめることにより該熱収縮性合
成樹脂フイルムに印刷された濃淡模様に対応し最
大深さが20〜100μの範囲の凹部を表面に形成さ
れた意匠鋼板を製造することを特徴とする意匠鋼
板の製造方法。 2 近赤外線の照射を0.5〜3.0μの波長の近赤外
線を主として照射する照射装置を使用して照射す
る特許請求の範囲第1項に記載の意匠鋼板の製造
方法。 3 近赤外線を熱収縮性合成樹脂フイルムに印刷
された印刷面の濃色のインクの温度が250〜400℃
となる条件で照射する特許請求の範囲第1項又は
第2項に記載の意匠鋼板の製造方法。 4 ポリ塩化ビニルプラスチゾルが塗装される鋼
板として冷延鋼板を使用する特許請求の範囲第1
項から第3項までいずれか1項に記載の意匠鋼板
の製造方法。 5 ポリ塩化ビニルプラスチゾルが塗装される鋼
板として亜鉛めつき鋼板を使用する特許請求の範
囲第1項から第3項までのいずれか1項に記載の
意匠鋼板の製造方法。 6 ポリ塩化ビニルプラスチゾルが塗装される鋼
板としてアルミニウムめつき鋼板を使用する特許
請求の範囲第1項から第3項までのいずれか1項
に記載の意匠鋼板の製造方法。 7 熱収縮性合成樹脂フイルムとしてポリ塩化ビ
ニルフイルムを使用する特許請求の範囲第1項か
ら第6項までのいずれか1項に記載の意匠鋼板の
製造方法。 8 熱収縮性合成樹脂フイルムとしてアクリル樹
脂フイルムを使用する特許請求の範囲第1項から
第6項までのいずれか1項に記載の意匠鋼板の製
造方法。
[Claims] 1. Painting polyvinyl chloride plastisol on a steel plate.
After baking, the thickness of the vinyl chloride coating layer is 50~400μ
A vinyl chloride coated steel plate is manufactured, and when the temperature of the vinyl chloride coated steel plate is cooled to within the range of 100 to 180℃, a shading pattern is printed with ink to a thickness of 0.5 to 3μ on one side. A heat-shrinkable synthetic resin film having a shrinkage rate of 35 to 70% and a thickness of 20 to 100μ is fed at the same speed as the vinyl chloride-coated steel plate, and the printed surface of the heat-shrinkable synthetic resin film is It is heat-sealed onto the vinyl chloride coating layer of a vinyl chloride-coated steel plate, and immediately after that, near-infrared rays are irradiated from the heat-shrinkable synthetic resin film side to correspond to the shading pattern printed on the heat-shrinkable synthetic resin film. 1. A method for producing a designed steel plate, which comprises producing a designed steel plate having a surface formed with recesses having a maximum depth of 20 to 100μ. 2. The method for manufacturing a designed steel sheet according to claim 1, wherein near-infrared irradiation is performed using an irradiation device that mainly irradiates near-infrared rays with a wavelength of 0.5 to 3.0 μ. 3 Near infrared rays are printed on a heat-shrinkable synthetic resin film when the temperature of the dark ink on the printed surface is 250 to 400℃.
A method for manufacturing a designed steel sheet according to claim 1 or 2, in which irradiation is performed under conditions such that: 4 Claim 1 in which a cold-rolled steel plate is used as the steel plate coated with polyvinyl chloride plastisol
A method for manufacturing a designed steel sheet according to any one of paragraphs to paragraphs 3 to 3. 5. The method for manufacturing a designed steel sheet according to any one of claims 1 to 3, wherein a galvanized steel sheet is used as the steel sheet coated with polyvinyl chloride plastisol. 6. The method for manufacturing a designed steel sheet according to any one of claims 1 to 3, wherein an aluminum-plated steel sheet is used as the steel sheet coated with polyvinyl chloride plastisol. 7. The method for producing a designed steel sheet according to any one of claims 1 to 6, wherein a polyvinyl chloride film is used as the heat-shrinkable synthetic resin film. 8. The method for manufacturing a designed steel sheet according to any one of claims 1 to 6, wherein an acrylic resin film is used as the heat-shrinkable synthetic resin film.
JP56039576A 1981-03-20 1981-03-20 Manufacture of design steel plate Granted JPS57156255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56039576A JPS57156255A (en) 1981-03-20 1981-03-20 Manufacture of design steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56039576A JPS57156255A (en) 1981-03-20 1981-03-20 Manufacture of design steel plate

Publications (2)

Publication Number Publication Date
JPS57156255A JPS57156255A (en) 1982-09-27
JPS6249867B2 true JPS6249867B2 (en) 1987-10-21

Family

ID=12556898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56039576A Granted JPS57156255A (en) 1981-03-20 1981-03-20 Manufacture of design steel plate

Country Status (1)

Country Link
JP (1) JPS57156255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103158768A (en) * 2011-12-14 2013-06-19 现代自动车株式会社 Composite chassis frame and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131243A (en) * 1983-12-19 1985-07-12 積水化学工業株式会社 Automatic pasting device for heat-insulating material for table flap

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103158768A (en) * 2011-12-14 2013-06-19 现代自动车株式会社 Composite chassis frame and method for manufacturing the same
CN103158768B (en) * 2011-12-14 2016-08-31 现代自动车株式会社 Composite carrier frame and manufacture method thereof

Also Published As

Publication number Publication date
JPS57156255A (en) 1982-09-27

Similar Documents

Publication Publication Date Title
US3962009A (en) Decorative laminated structures and method of making same
JPS6249867B2 (en)
JPS6056621B2 (en) Colored galvanized iron plate with embossed pattern
JPH0531871A (en) Decorative laminate and production thereof
FI85568B (en) YTBEHANDLINGSFOERFARANDE.
CN1026890C (en) Holographic grating resin sandwich transparent glass
JP3089656B2 (en) Manufacturing method of metal decorative board
JP2678835B2 (en) Vinyl chloride decorative metal plate and method for producing the same
JP4788452B2 (en) Embossed decorative board and manufacturing method thereof
JPH0121787B2 (en)
JPWO2003020520A1 (en) Decorative member and method of manufacturing the same
JPH05293435A (en) Metal decorative panel and production thereof
US4997505A (en) Surface coating process
KR200363504Y1 (en) A steel sheet having three-dimensional patterns
JPH0255126A (en) Preparation of resin coated metal plate having high sharpness
JPH07256752A (en) Decorative sheet and cooling roll used in production thereof
JP2816194B2 (en) Transfer sheet manufacturing method
JPH01155965A (en) Production of japanese-lacquer ornamental material
JPH0592508A (en) Metallic sheet coated with resin film and production thereof
JP2001239610A (en) Transparent hologram laminated metal sheet and method for preparing it
JP2000334366A (en) Strip plate coating equipment
JPS60196231A (en) Embossing device
TW510831B (en) Steel plate having a press-printing and painting singular surface and process making therefor
JPH08446B2 (en) Method for manufacturing coated metal plate
JPH0221306B2 (en)