JPS6249738B2 - - Google Patents
Info
- Publication number
- JPS6249738B2 JPS6249738B2 JP57129248A JP12924882A JPS6249738B2 JP S6249738 B2 JPS6249738 B2 JP S6249738B2 JP 57129248 A JP57129248 A JP 57129248A JP 12924882 A JP12924882 A JP 12924882A JP S6249738 B2 JPS6249738 B2 JP S6249738B2
- Authority
- JP
- Japan
- Prior art keywords
- lead frame
- temperature
- semiconductors
- heated
- package
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 claims description 24
- 239000004065 semiconductor Substances 0.000 claims description 21
- 238000000465 moulding Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 6
- 229920005992 thermoplastic resin Polymers 0.000 claims description 5
- 229920005989 resin Polymers 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- 238000005304 joining Methods 0.000 description 12
- 238000007789 sealing Methods 0.000 description 9
- 239000000470 constituent Substances 0.000 description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910000975 Carbon steel Inorganic materials 0.000 description 3
- 239000010962 carbon steel Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000004581 coalescence Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 238000013036 cure process Methods 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000005341 toughened glass Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/68—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
- B29C70/74—Moulding material on a relatively small portion of the preformed part, e.g. outsert moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/02—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
- B29C43/04—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds
- B29C43/06—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts
- B29C43/08—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts with circular movement, e.g. mounted on rolls, turntables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/02—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
- B29C43/04—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds
- B29C2043/043—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds rotating on their own axis without linear displacement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/32—Component parts, details or accessories; Auxiliary operations
- B29C43/36—Moulds for making articles of definite length, i.e. discrete articles
- B29C2043/3676—Moulds for making articles of definite length, i.e. discrete articles moulds mounted on rotating supporting constuctions
- B29C2043/3678—Moulds for making articles of definite length, i.e. discrete articles moulds mounted on rotating supporting constuctions on cylindrical supports with moulds or mould cavities provided on the periphery
- B29C2043/3684—Moulds for making articles of definite length, i.e. discrete articles moulds mounted on rotating supporting constuctions on cylindrical supports with moulds or mould cavities provided on the periphery opening/closing or acting radially, i.e. vertical to the rotation axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/32—Component parts, details or accessories; Auxiliary operations
- B29C43/44—Compression means for making articles of indefinite length
- B29C43/46—Rollers
- B29C2043/466—Rollers the rollers having specific shape, e.g. non cylindrical rollers, conical rollers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/30—Reducing waste in manufacturing processes; Calculations of released waste quantities
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Description
本発明はダイオードやトランジスターのような
半導体素子や、これら半導体の集積回路(以下半
導体類と称す)を気密収納する為のパツケージ成
形方法に係り、更に詳しくは内部に半導体類を収
納するキヤビテイを有する熱可塑性樹脂製のフラ
ツトパツケージ及びデユアルインラインパツケー
ジ等のパツケージ成形方法に関するものである。
従来半導体類を封止するための樹脂としては、
主にエポキシ系及シリコーン系等の熱硬化性樹脂
が用いられており、これらの樹脂による封止成形
方法としてはいわゆるトランスフアー、キヤステ
イング、デイピング及びポツテイング等と呼称さ
れる成形方法が封止対象に応じてそれぞれ使い分
けられている。中でも代表的な方法としてはエポ
キシ樹脂によるトランスフアー成形があげられ
る。
セラミツクや金属を用いたいわゆるハーメチツ
クシールと称されるパツケージに比べてエポキシ
樹脂等のプラスチツクを用いたプラスチツクパツ
ケージは半導体類を装着した多数のリードフレー
ムを一括して封止成形するため低価格であるとい
う大きな特徴を有している半面用いている樹脂が
熱硬化性樹脂であることによる工程上の致命的な
欠点を有している。
即ちこれら熱硬化性樹脂を用いたパツケージは
封止成形後に樹脂をより完全に硬化させる目的で
ポストキユア工程と呼ばれている数時間にも及ぶ
熱エージング工程が必要であり、このため半導体
素子が組み込まれたウエハのチツプ単位への分割
工程からチツプをリードフレームのタブ部に固定
するダイボンデイング工程、チツプ電極部とリー
ドを導通化させるワイヤボンデイング工程、樹脂
封止工程、リードの後加工工程及びマーキング工
程に到る組立工程の各工程間を円滑につなぎ一貫
自動化を計ることが困難であるという大きな欠点
を有していた。
このような欠点を改良するため、本発明者らは
特願昭56−66607号(特開昭57−181129号公報)
に示したような半導体類パツケージ成形用合体装
置を開発したがかゝる装置による合体方法は、第
1図に示すごとく、少なくとも1個が半導体類を
収納するための窪みを有する2個の板状成形品
を、2個の合体用型1,1′の位置にあるキヤ
ビテイ2,2′に供給し、合体用型を回転軸6,
6′に沿つて矢印の方向に90゜ずつ回転させ、位
置及びで熱風ヒーター8,8′及び9,9′に
より板状成形品の合体面を加熱溶融し、次いでキ
ヤビテイを位置まで90゜回転し、一方リードフ
レーム7は2つの合体用型の間に位置させ図示は
していないが予熱された後合体部に送りこまれ、
加熱溶融された板状成形品および予熱されたリー
ドフレーム7は2つの合体用型1,1′により加
圧一体化される。
しかしかゝる装置による合体においても用いる
リードフレームの熱伝導度が大きい系にあつては
前工程で合体用型がリードフレームに接触してい
る合体工程中に次工程で合体されるべきリードフ
レームから合体用型が熱を奪うため合体品の封止
性即ち板状成形品とリードフレームの密着性をそ
こなうといつた欠点が認められた。
また従来型材質としては一般に強度、耐久性に
すぐれた炭素鋼が用いられているがその熱伝導度
は大略0.5J/cm・sec・〓程度と鋼の中では比較
的大きく前述のようにリードフレームから熱を奪
いやすく合体品の封止性をそこなうといつた欠点
を有していた。
本発明はかゝる状況に鑑みなされたものであつ
てその要旨は少なくとも1個が半導体類を収納す
るための窪みを有する2個一組からなる熱可塑性
樹脂板状成形品を、少くとも一対の合体用型のキ
ヤビテイに供給した状態で加熱した後半導体類を
装着してなる2個以上の構成単位よりなるリード
フレームを挾み各構成単位ずつ加熱一体化させる
半導体類のパツケージ成形方法において、合体用
型の少くともリードフレームに接する部分を
0.3J/cm・sec・〓以下の熱伝導度を有する材料
で構成したものであることを特徴とする半導体類
のパツケージ成形方法にある。
ここで、0.3J/cm・sec・〓以下の熱伝導度を
有する材料としてはコーデイライト(0.01J/
cm・sec・K)、ステアタイト(0.03)、ジルコニ
ア(0.03)及びアルミナ(0.21)などのセラミツ
クス、更に強化ガラス(0.011)や18/8ステンレ
ス鋼(0.15)などであつて成形加工が可能であつ
てプレス時に破損変形しないものが適している。
なお、合体用型の熱伝導度が0.3J/cm・sec・〓
を越えると温度低下が大きくなり封止性が悪化す
るので好ましくない。
合体時合体用型のリードフレームに接する部分
をかゝる材料で構成することによりリードフレー
ムからの合体用型への熱の移動量が少なくなり次
に合体されるリードフレームの構成単位の温度低
下が抑えられる。したがつて2番目以降の合体品
の封止性も良好となる。
本発明に用いられる板状成形品用熱可塑性樹脂
としてはそれぞれの半導体類のパツケージに対す
る要求特性に応じて種々の種類のものが用いられ
るが高い耐熱性(耐熱変形性及び耐熱劣化性)と
低い透湿性及び一定水準以上の電気、機械特性に
加え更に一定水準以上の成形性を有することが必
要である。
代表例としてはポリフエニレンオキサイドや、
ポリエーテルサルフオン、ポリスルフオン、フエ
ノキシ樹脂、ポリアセタール等のエーテル系樹
脂、ポリエチレンテレフタレート、ポリブチレン
テレフタレート、ポリアリレート等のエステル系
樹脂、ポリカーボネート等の炭酸エステル系樹
脂、ポリアミド系樹脂の中でも吸水率の低いグレ
ード、ポリフエニレンサルフアイド等の樹脂及び
これら樹脂の一部とガラス繊維を中心とした各種
充填剤との組み合わせ等をあげることが出来る。
以下実施例により更に本発明を説明する。
実施例
ジルコニアで作つた合体用型を有する第1図に
示した半導体類のパツケージ成形用合体装置を用
いて熱変形温度(ASTM D−648 18.6Kg/cm2荷
重)が260℃以上のポリフエニレンサルフアイド
樹脂よりなる板状成形品を合体用型部1,1′の
位置にあるキヤビテイ2,2′に供給し、熱風
ヒーター8,8′及び9,9′により板状成形品合
体面を溶融させ、リードフレームを加熱した後、
上下の合体用型部1,1′の間に供給し、板状成
形品およびリードフレーム7を合体した。
本実施例においては板状成形品合体面の合体直
前の温度を300℃以上とし、一方リードフレーム
は予熱熱盤の温度を410℃に設定し、該熱盤上を
摺動させることによりリードフレーム7の予熱を
行つた。合体用型部のキヤビテイ部は150℃に設
定した。
リードフレーム7としては10個の構成単位から
なる10連型のリードフームを使用し、リードフレ
ーム構成単位の1番、2番、5番および10番目の
タブに近い内部リード先端に熱電対をとりつけ合
体時の温度プロフアイルを求めた。第2図にリー
ドフレーム7の第1、第2番目の構成単位の温度
プロフアイル測定結果を示した。縦軸は温度、横
軸は時間を表わす。軸の尺度としては10が1サ
イクルを表わす。第1番目11ではリードフレー
ム予熱熱盤12によるリードフレームの加熱とと
もにリードフレームの温度が上昇し、合体部の2
サイクル前の段階で最高温度となり1サイクル前
で若干温度が低下し、次にリードフレーム送り開
始時13よりリードフレームが合体部に送りこま
れはじめられると急激に温度低下のはじまること
がわかる。さらに合体用型部1,1′がリードフ
レームを挾み込むことによりさらに温度低下が急
激となることがわかる。この2つの温度低下の勾
配の交点がリードフレーム7の合体直前の温度1
4となる。第1番目11では353℃となつた。第
2番目15の構成単位は1サイクル遅れた形で第
1番目とほぼ同様の温度プロフアイルを示す。第
2番目15のリードフレーム7の合体直前の温度
16は335℃となつた。
第1、2、5、10番目の構成単位のリード部の
合体直前の温度をまとめると表−1に示すように
なつた。
The present invention relates to a method for molding a package for airtightly housing semiconductor elements such as diodes and transistors, and integrated circuits of these semiconductors (hereinafter referred to as semiconductors). The present invention relates to a method for molding packages such as flat packages and dual-in-line packages made of thermoplastic resin. Conventional resins for sealing semiconductors include:
Thermosetting resins such as epoxy and silicone are mainly used, and the molding methods using these resins include so-called transfer, casting, dipping, potting, etc. They are used differently depending on the situation. Among them, transfer molding using epoxy resin is a typical method. Compared to packages called hermetic seals that use ceramics or metals, plastic packages that use plastics such as epoxy resin are cheaper because they seal and mold multiple lead frames with semiconductors attached at once. On the other hand, it has a fatal disadvantage in terms of process because the resin used is a thermosetting resin. In other words, packages using these thermosetting resins require a heat aging process lasting several hours, called a post-cure process, in order to more completely cure the resin after sealing and molding, and for this reason, it is difficult to incorporate semiconductor elements into the package. From the process of dividing the wafer into chips, the die bonding process to fix the chips to the tabs of the lead frame, the wire bonding process to make the chip electrodes conductive to the leads, the resin sealing process, the post-processing process of the leads, and the marking process. This method has a major drawback in that it is difficult to seamlessly connect each process in the assembly process and achieve consistent automation. In order to improve such drawbacks, the present inventors have proposed Japanese Patent Application No. 56-66607 (Japanese Patent Application Laid-open No. 57-181129).
We have developed a combining device for forming semiconductor packages as shown in Figure 1.The combining method using such a device consists of two plates, at least one of which has a recess for storing semiconductors, as shown in Figure 1. The shaped molded product is supplied to the cavities 2, 2' located at the positions of the two merging molds 1, 1', and the merging molds are connected to the rotating shafts 6, 1'.
6' in the direction of the arrow, heat and melt the combined surface of the plate-shaped molded product with hot air heaters 8, 8' and 9, 9' at the position, and then rotate the cavity 90 degrees to the position. On the other hand, the lead frame 7 is placed between two merging molds and is preheated (not shown) before being fed into the merging section.
The heated and melted plate-like molded product and the preheated lead frame 7 are integrated under pressure by two combining molds 1 and 1'. However, in the case of a system in which the lead frame used has a high thermal conductivity even in the joining using such a device, the lead frame to be joined in the next process is used during the joining process in which the joining mold is in contact with the lead frame in the previous process. It was found that the mold for joining takes away heat, which impairs the sealing properties of the joined product, that is, the adhesion between the plate-shaped molded product and the lead frame. Carbon steel, which has excellent strength and durability, is generally used as a conventional material, but its thermal conductivity is approximately 0.5 J/cm・sec・〓, which is relatively high among steels and leads as mentioned above. It has the disadvantage that it tends to absorb heat from the frame and impairs the sealing properties of the combined product. The present invention has been made in view of the above situation, and its gist is to provide at least a pair of thermoplastic resin plate-shaped molded products each having a recess at least one of which is for accommodating a semiconductor. In a semiconductor package molding method, a lead frame consisting of two or more structural units to which semiconductors are mounted is sandwiched between the lead frame, which is heated while being supplied to the cavity of a combination mold, and each structural unit is heated and integrated. At least the part of the joining mold that touches the lead frame
A method for molding a package for semiconductors, characterized in that the package is made of a material having a thermal conductivity of 0.3 J/cm·sec·〓 or less. Here, cordierite (0.01J/
cm・sec・K), steatite (0.03), zirconia (0.03), alumina (0.21), and other ceramics, as well as tempered glass (0.011) and 18/8 stainless steel (0.15), can be molded. A material that does not break or deform during pressing is suitable.
In addition, the thermal conductivity of the joining mold is 0.3J/cm・sec・〓
Exceeding this is not preferable because the temperature drop will be large and the sealing performance will deteriorate. By composing the part of the merging mold that comes into contact with the lead frame during merging with such a material, the amount of heat transferred from the lead frame to the merging mold is reduced, resulting in a decrease in the temperature of the constituent units of the lead frame that will be joined next. can be suppressed. Therefore, the sealability of the second and subsequent combined products is also good. Various types of thermoplastic resins are used for the plate-shaped molded products used in the present invention, depending on the characteristics required for each semiconductor package. In addition to moisture permeability and electrical and mechanical properties of a certain level or higher, it is also necessary to have moldability of a certain level or higher. Typical examples are polyphenylene oxide,
A grade with low water absorption among ether resins such as polyether sulfon, polysulfon, phenoxy resin, and polyacetal, ester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyarylate, carbonate ester resins such as polycarbonate, and polyamide resins. Examples include resins such as polyphenylene sulfide, and combinations of some of these resins and various fillers, mainly glass fibers. The present invention will be further explained below with reference to Examples. Example Polyphenylene with a heat deformation temperature (ASTM D-648 18.6 kg/cm 2 load) of 260°C or higher was produced using the combining device for molding semiconductor packages shown in Figure 1, which has a combining mold made of zirconia. A plate-shaped molded product made of Rensulfide resin is supplied to the cavities 2, 2' located at the mold parts 1, 1' for combination, and the combined surface of the plate-shaped molded product is heated by hot air heaters 8, 8' and 9, 9'. After melting and heating the lead frame,
It was supplied between the upper and lower combining mold parts 1 and 1', and the plate-shaped molded product and lead frame 7 were combined. In this example, the temperature of the joining surface of the plate-shaped molded products immediately before joining is set to 300°C or higher, while the temperature of the lead frame is set to 410°C on a preheating plate, and the lead frame is heated by sliding on the heating plate. 7 preheating was performed. The temperature of the cavity part of the joining mold part was set to 150°C. As the lead frame 7, a 10-piece lead frame consisting of 10 structural units is used, and thermocouples are attached to the tips of the internal leads near the 1st, 2nd, 5th, and 10th tabs of the lead frame structural units. The temperature profile was determined. FIG. 2 shows the temperature profile measurement results of the first and second constituent units of the lead frame 7. The vertical axis represents temperature and the horizontal axis represents time. As a scale of the axis, 10 represents one cycle. In the first 11, the temperature of the lead frame rises as the lead frame is heated by the lead frame preheating plate 12, and the temperature of the lead frame rises.
It can be seen that the temperature reaches the maximum at the stage before the cycle, the temperature decreases slightly one cycle before, and then the temperature starts to decrease rapidly when the lead frame starts to be fed into the joining part from 13 at the start of lead frame feeding. Furthermore, it can be seen that the temperature drop becomes even more rapid as the joining mold parts 1, 1' sandwich the lead frame. The intersection point of these two temperature drop gradients is the temperature 1 immediately before the lead frame 7 is joined.
It becomes 4. The temperature reached 353℃ in the 1st 11th test. The second fifteenth constituent unit exhibits a temperature profile substantially similar to the first one, but with a delay of one cycle. The temperature 16 of the second 15 lead frame 7 immediately before joining was 335°C. Table 1 summarizes the temperatures immediately before the lead parts of the first, second, fifth, and tenth structural units were combined.
【表】
表−1に示したようにリードフレームの合体直
前の温度は第1番目構成単位のリード部温度に比
べ最高でも23℃しか低下しなかつた。また実際に
合体を行い10連の合体品を得、得られた合体品を
5Kg/cm2、24時間の加圧赤色水浸せき試験にかけ
ても赤色物のパツケージ内への浸入は認められず
良好な封止性を示すことを確認した。
比較実施例 1
炭素鋼で作られた合体用型を使用したこと以外
は実施例と同様にしてリードフレームの合体時の
温度プロフアイルを求めた。第3図にはリードフ
レーム7の第1、第2番目の構成単位の温度プロ
フアイル測定結果を示したが、第1番目11′で
は第2図とほぼ同様のプロフアイルを示し、リー
ドフレームの合体直前の温度14′は353℃であつ
た。一方第2番目15′では合体の1サイクル前
より温度の急激な低下が始まり、合体直前16′
では268℃と85℃もの温度低下が観測された。こ
れは炭素鋼合体用型1,1′に第1番目の構成単
位が挾み込まれることにより連結したリード部1
3より2番目の構成単位の熱が奪われたためと考
えられる。
第1、2、5、10番目の構成単位のリード部の
合体直前の温度をまとめると表−2に示すように
なつた。[Table] As shown in Table 1, the temperature immediately before the lead frame was assembled was only 23°C lower than the temperature of the lead part of the first structural unit. In addition, 10 sets of combined products were actually obtained, and the resulting combined products were subjected to a pressurized red water immersion test at 5 kg/cm 2 for 24 hours, but no red matter was observed to enter the package cage, indicating a good result. It was confirmed that sealing properties were exhibited. Comparative Example 1 The temperature profile during lead frame assembly was determined in the same manner as in Example except that a combination mold made of carbon steel was used. FIG. 3 shows the temperature profile measurement results of the first and second constituent units of the lead frame 7, and the first component 11' shows a profile almost the same as that in FIG. The temperature 14' immediately before coalescence was 353°C. On the other hand, at the second 15', the temperature begins to drop rapidly one cycle before the merger, and just before the merger, at the 16'
A temperature drop of 268°C and 85°C was observed. This is the lead part 1 connected by sandwiching the first structural unit between the carbon steel joining molds 1 and 1'.
This is thought to be due to heat being taken away from the second structural unit. Table 2 summarizes the temperatures immediately before the lead portions of the first, second, fifth, and tenth structural units were combined.
【表】
また実際に合体を行い10連の合体品を得、得ら
れた合体品を5Kg/cm2、24時間の加圧赤色水浸せ
き試験をかけたところ、第1番目の構成単位では
赤色物のパツケージ内への浸入は認められなかつ
たが第2番目以降では赤色物のパツケージ内への
浸入が認められ、良好な封止性が得られなかつ
た。
以上の説明から明らかなごとく本発明は少なく
とも1個が半導体類を収納するための窪みを有す
る2個一組からなる熱可塑性樹脂板状成形品を、
少くとも一対の合体用型のキヤビテイに供給した
状態で加熱した後半導体類を装着してなる2個以
上の構成単位よりなるリードフレームを挾み各構
成単位ずつ加熱一体化させる半導体類のパツケー
ジ成形方法において、合体用型の少くともリード
フレームに接する部分を0.3J/cm・sec・〓以下
の熱伝導度を有する材料で構成したので、合体時
合体用型がリードフレームを挾み込んでいてもリ
ードフレームの熱が奪われることがなく次に合体
されるリードフレーム構成単位の板状成形品の合
体部に相当する部位の温度は第1番目の構成単位
とほぼ同一に保持されるため、すべての構成単位
の封止性を高い信頼性のもとに保証することが可
能となつた。[Table] In addition, 10 units of combined products were actually obtained, and the resulting combined products were subjected to a pressurized red water immersion test at 5 kg/cm 2 for 24 hours. Although no substance was observed to enter the package, in the second and subsequent tests, red substances were observed to enter the package, and good sealing performance could not be obtained. As is clear from the above description, the present invention provides a thermoplastic resin plate-shaped molded product consisting of a set of two pieces, at least one of which has a recess for accommodating a semiconductor.
Semiconductor package molding in which a lead frame made up of two or more structural units with semiconductors mounted thereon is sandwiched between the lead frames, which are heated while being supplied to the cavities of at least a pair of merging molds, and heated to integrate each structural unit one by one. In this method, at least the part of the merging mold that contacts the lead frame is made of a material with a thermal conductivity of 0.3 J/cm・sec・〓 or less, so that the merging mold does not sandwich the lead frame during merging. However, the heat of the lead frame is not taken away, and the temperature of the part corresponding to the combined part of the plate-shaped molded product of the lead frame component unit to be combined next is maintained almost the same as that of the first component unit. It has become possible to guarantee the sealing properties of all structural units with high reliability.
第1図は本発明に用いられる合体装置の概念斜
視図、第2図および第3図は合体工程中のリード
部の温度プロフアイルを示すグラフである。
符号の説明、1,1′……合体用型部、2,
2′……キヤビテイ、3,3′……キヤビテイ
、4,4′……キヤビテイ、5,5′……キヤ
ビテイ、6,6′……回転軸、7……リードフ
レーム、8,8′……熱風ヒーター、9,9′…
…熱風ヒーター、10……1サイクル、11,
11′……一番目の構成単位の温度プロフアイ
ル、12……リードフレーム予熱々盤、13……
リードフレームの送り開始時刻、14,14′…
…1番目の構成単位の合体直前の温度、15,1
5′……2番目の構成単位の温度プロフアイル、
16,16′……2番目の構成単位の合体直前の
温度。
FIG. 1 is a conceptual perspective view of the combining device used in the present invention, and FIGS. 2 and 3 are graphs showing the temperature profile of the lead portion during the combining process. Explanation of symbols, 1, 1'...Mold part for combination, 2,
2'... Cavity, 3, 3'... Cavity, 4, 4'... Cavity, 5, 5'... Cavity, 6, 6'... Rotating shaft, 7... Lead frame, 8, 8'... ...Hot air heater, 9,9'...
...hot air heater, 10...1 cycle, 11,
11'...Temperature profile of the first constituent unit, 12...Lead frame preheating plate, 13...
Lead frame feeding start time, 14, 14'...
...Temperature just before coalescence of the first structural unit, 15,1
5'...Temperature profile of the second constituent unit,
16,16'...Temperature just before the second constituent unit coalesces.
Claims (1)
窪みを有する2個一組からなる熱可塑性樹脂板状
成形品を、少なくとも一対の合体用型のキヤビテ
イに供給した状態で加熱した後半導体類を装着し
てなる2個以上の構成単位よりなるリードフレー
ムを挟み各構成単位ずつ逐次加熱一体化させる半
導体類のパツケージ成形方法において、合体型の
少なくともリードフレームに接する部分を0.3J/
cm・sec・〓以下の熱伝導度を有する材料で構成
したものであることを特徴とする半導体類のパツ
ケージ成形方法。1 A set of two thermoplastic resin plate molded products, at least one of which has a recess for accommodating semiconductors, is supplied to the cavities of at least a pair of merging molds, heated, and then semiconductors are mounted. In a semiconductor package molding method in which a lead frame consisting of two or more structural units is sandwiched and each structural unit is sequentially heated and integrated, at least the part of the combined type in contact with the lead frame is heated to 0.3 J/
A method for molding a package for semiconductors, characterized in that the package is made of a material having a thermal conductivity of cm・sec・〓 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57129248A JPS5919359A (en) | 1982-07-23 | 1982-07-23 | Forming method for package of semiconductors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57129248A JPS5919359A (en) | 1982-07-23 | 1982-07-23 | Forming method for package of semiconductors |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5919359A JPS5919359A (en) | 1984-01-31 |
JPS6249738B2 true JPS6249738B2 (en) | 1987-10-21 |
Family
ID=15004864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57129248A Granted JPS5919359A (en) | 1982-07-23 | 1982-07-23 | Forming method for package of semiconductors |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5919359A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2541907Y2 (en) * | 1990-12-17 | 1997-07-23 | 宮田工業株式会社 | Foam fire extinguishing agent emission nozzle |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5648155A (en) * | 1979-09-27 | 1981-05-01 | Hitachi Chem Co Ltd | Package forming method for semiconductor |
-
1982
- 1982-07-23 JP JP57129248A patent/JPS5919359A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5648155A (en) * | 1979-09-27 | 1981-05-01 | Hitachi Chem Co Ltd | Package forming method for semiconductor |
Also Published As
Publication number | Publication date |
---|---|
JPS5919359A (en) | 1984-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5949132A (en) | Dambarless leadframe for molded component encapsulation | |
US7061082B2 (en) | Semiconductor die with attached heat sink and transfer mold | |
US20100052213A1 (en) | Structure of Parts Made From Plural Composite Pieces and Method of Building Those Parts | |
EP1119037A2 (en) | Semiconductor device and method of manufacturing thereof | |
JP5098440B2 (en) | Method for manufacturing power semiconductor device | |
US4305897A (en) | Packaging process for semiconductors | |
US4751611A (en) | Semiconductor package structure | |
KR101261104B1 (en) | Semiconductor device and method for manufacturing the same | |
US4764235A (en) | Process and apparatus for sealing semiconductor packages | |
JP3207286B2 (en) | Resin-sealed semiconductor device | |
JPS6249738B2 (en) | ||
JPH0373144B2 (en) | ||
JPS6119117B2 (en) | ||
KR900019066A (en) | PTC Demister and its manufacturing method | |
JPS6138862B2 (en) | ||
JPS6258546B2 (en) | ||
JPS6140135B2 (en) | ||
JPH04107955A (en) | Sealing method of electronic circuit element | |
JPS6122467B2 (en) | ||
KR20060134602A (en) | Compression molding method of semiconductor package using substitute for chip | |
JPS60154542A (en) | Element sealed semiconductor device | |
JP2000151071A (en) | Lead frame insertion mold substrate and its manufacture | |
JPS58185B2 (en) | Semiconductor package molding method | |
JPS63144551A (en) | Manufacture of semiconductor device | |
JP2003347484A (en) | Hybrid integrated circuit device |