JPS6249379B2 - - Google Patents

Info

Publication number
JPS6249379B2
JPS6249379B2 JP54000968A JP96879A JPS6249379B2 JP S6249379 B2 JPS6249379 B2 JP S6249379B2 JP 54000968 A JP54000968 A JP 54000968A JP 96879 A JP96879 A JP 96879A JP S6249379 B2 JPS6249379 B2 JP S6249379B2
Authority
JP
Japan
Prior art keywords
yarn
boiling water
temperature
fabric
water shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54000968A
Other languages
Japanese (ja)
Other versions
JPS5593833A (en
Inventor
Yoshuki Sasaki
Mitsuo Kuwabara
Shigeru Ito
Hisanori Tabata
Taketomo Tetori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP96879A priority Critical patent/JPS5593833A/en
Publication of JPS5593833A publication Critical patent/JPS5593833A/en
Publication of JPS6249379B2 publication Critical patent/JPS6249379B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はドレープ性(しなやかさ)に優れた織
編物の製造法に関するものである。本発明の目的
はポリエステル織編物に絹、レーヨンの有するド
レープ性に極めて類似した特性を付与し得るポリ
エステル織編物の製造法を提供することにある。 合成繊維、特にポリエチレンテレフタレートを
主たる繰返し単位として含む合成高分子繊条(以
后ポリエステルと略す)は種々の優れた特性特に
皺回復やウオシユアンドウエアー性等に優れてい
る為衣料用素材として広く好んで用いられている
が、たゞ惜しむらくは風合なかでもドレープ性に
関しては絹やレーヨンに今一歩及ばないのが実情
である。 本発明者等は上述の点に鑑み、種々検討した結
果、先に、ポリエステル素材に特性上の工夫を行
なうと共にこれらを仕上工程とうまく噛み合わせ
る事により高い収縮率の糸条を用い、その特性を
利用してドレープ性の優れた織物を製造する方法
(特開昭55−93832号)を提案した。 この方法は沸水収縮率が20%以上で沸水収縮率
(%表示)を沸水収縮後(沸水処理後と称するこ
ともある)の弾性率(Kg/mm2表示)で除した値が
4/100以上であるようなポリエチレンテレフタレ
ートを主たる繰返し単位として含むフラツトヤー
ンを製編織し、これを精練、染色、又はこれに類
する工程に於いて糸を収縮させることにより、織
編物組織を座屈・弛緩せしめて高度のドレープ性
を付与することより成り、その際合成高分子繊条
としては例えばポリエチレンテレフタレートを主
たる繰返し単位として含む合成高分子を高速紡糸
して複屈折率が0.025以上の中間配向未延伸糸と
し、これを二次転位点以下の温度で延伸して比重
1.36以下の低比重延伸糸としたものを採用するも
のである。 然るに、その後の研究によると、前記方法にお
ける製織時は普通は勿論問題無いが、特殊な場合
として製織中の織機を長時間停止放置しておいた
りすると、時として織段が発生し易い問題がある
事が判つた。それ故、本発明者等は前述の織段の
解消につき、特に素材物性面から更に検討した結
果、その解決手段を見出すに到つたのである。 かくして、本発明によれば沸水収縮率が20%以
上、該沸水収縮率(%表示)を沸水収縮後の弾性
率(Kg/mm2表示)で除した値が4/100以上で且つ
フリー状態での10時間放置に於ける自然収縮率が
0.2%以下であるポリエステル系フラツトヤーン
を製織し、、これを精練、染色、又はこれに類す
る工程に於いて糸を収縮させることにより織物組
織を座屈・弛緩せしめて高度のドレープ性を付与
する事を特徴とする織物の製造方法が提供され
る。 尚、上記の“フラツトヤーン”とは捲縮等の嵩
高加工が施されていないフイラメントヤーン(生
糸とも呼ばれる。)のことを意味する。 本発明を更に詳しく説明すると、第1図イはレ
ーヨン織物の断面図であつて、レーヨンの場合そ
の膨潤性により精練染色時に於いて水で膨潤した
糸条が乾燥時に体積減少する際織物組織間の接圧
を減ずるので可撓性に富む構造をしている。一
方、ポリエステル織物の場合にはこの様な膨潤性
が無いのでロの如く織物組織がつつぱつた状態で
あり、レーヨンの様なドレープ性は殆んど有しな
い。そこで本発明者等はポリエステル糸条を製造
する際に高速紡糸をして中間配向的(複屈折率に
して0.025以上)な未延伸糸を作り、これを二次
転位点以下の温度で延伸して沸水収縮率20%以上
の高収縮ポリエステル糸条とし、これを製織后精
練、染色、又はこれに類する工程(化学処理等)
にてハの如く糸の収縮により織物組織を座屈させ
更に弛緩させる事によりニの如くレーヨンに似た
織物構造にせしめて高ドレープ性を付与すること
を工夫し、且つ先願にて提案したわけである。 然しながら、この方法によつて織物を製織する
際、通常の場合は問題ないが、特に何か特別の事
情で織機を長時間停めたりすると、時として織段
が生じる問題がある事が解つた。第2図はその時
の織物の様子を示したものであつて、図中の矢印
A点が織機を長時間停めた点でありこの点に織段
が発生する。しかもその織段はこの点を境として
織後Bの方向のみ一時的に緯糸の密度が増す織段
である事も判明した。 勿論この織段については、再運転の織機をうま
く口合わせすれば段として目立たないようにする
こともできるかもしれないが、これとて作業する
人の技量に依存する所が大きく必ずしも簡単なこ
とではない。そこで、この原因について検討した
結果、これが糸の自然収縮によるものである事が
判明した。 即ち、第3図は製織中の経糸の状態を示したも
のであつてイ図に於いて経糸はB点からC点の方
に向つて進行し、その間シヤトルSによつて緯糸
が挿入され、矢印A点(所謂織前)より右は経緯
交錯した状態となつている。然るにこの状態で織
機を長時間停めておくと、その矢印A点がロ図矢
印A′点の如くdだけ(数mm)左方向に移動し、
その結果シヤトルSと矢印A′との間の距離が短
かくなり、従つて次に織機を再運転した時に一時
的に織密度が込んで織段となる事が解つた。更に
矢印Aが何故移動するのか検討したところ、こゝ
で使用している糸は高いドレープ性を発生させる
様に不安定な微細構造のものとしている為、第4
図1に示す如く、普通のポリエステル糸2に比べ
て極めて高い自然放置(室温)収縮率を有する。
その為、織機を長時間停止すると自然に収縮を始
め、その場合第3図イのA点より右方は緯糸が詰
つているので縮む事が出来ないが左方はフリーで
縮む事が出来、その結果左右のバランスがくずれ
てA点は左方に数mm引き寄せられる為である事が
判つた。そこでこのような不都合を排除すべく
種々検討の結果、原糸としては沸水収縮率20%以
上という高収縮率を保ちながら且つ目安として10
時間に於ける自然放置収縮率を0.2%以下(好ま
しくは0.1%以下)に抑える事により、高いドレ
ープ性を保持しながら織段の心配も無くこれを製
造出来ることが判つた。 この様な原糸の作り方の一例を示すと、先ずポ
リエステルを高速紡糸して複屈折率が0.025以上
の中間配向未延伸糸を作る。この場合のポリエス
テルは100%のものの他、所謂第三成分が添加さ
れていてもよく、要するにポリエステル糸であれ
ば良い。次にこれを第5図の如き延伸機にて延伸
する。即ち、この未延伸乃至中間配向糸1が使用
に適切な伸度例えば20〜40%位になる程度に引き
伸ばされる。この場合、ポリエステルでは通常供
給ローラー2を充分加熱して未延伸糸の温度を二
次転位点以上に上げてから延伸ローラー3により
引張る事により、繊維に充分な結晶配向を行なわ
しめるのが普通であるが、本発明では糸を二次転
位点以下の温度で低温延伸し微細構造を不安定
(例えば比重1.36以下)にして高ドレープ性のも
のとする。この場合の二次転位点以下の温度と言
うのは糸自身の温度を指すのであつて、供給ロー
ラー1は必ずしも二次転位点以下でなければなら
ない事はないが、糸が二次転位点を越える様な強
い加熱(温度、時間)であつてはならない。一般
には無加熱で用いるのが風合上望ましいが、延伸
性(ラツプ、糸切れ等)が悪くなる様な場合には
若干加熱しても良い。その場合にも糸が二次転位
温度(約70℃前后、ポリマーや紡速によつて異な
る)を越えない様に注意する必要がある。 但し、このまゝでは前述の様に織機の長時間停
止の際織段が出来易いので、糸が低温延伸され不
完全構造が出来た時点で瞬時高温加熱をヒーター
4によつて施し、捲取装置5に巻取るのがよい。
この場合、糸本来の沸水収縮率までセツトしてし
まうと意味がないので、なるべくそれに影響を与
えない様にしながら常温での自然放置収縮のみを
押える様にしなければならず、その為には高温で
瞬時セツトするのが良い。第6図は複屈折率0.05
の未延伸糸を室温1.5倍で延伸した時のセツトの
温度、時間と糸の沸水収縮率、10時間自然放置収
縮率の関係を示した一例であつて、セツト温度が
低いと自然収縮率が、本発明で必要とされる0.2
%以下に下らず、また時間が長くなると沸水収縮
率が20%を切つてしまう。この関係は紡糸の条
件、延伸倍率等によつても若干違うが、一般に
150℃以上の温度にて0.1秒以下の時間でセツトす
るのが良い。これ等のセツトは非接触、接触何れ
の加熱方式でも良いが、非接触の方が糸の損傷が
少い利点がある。 また、この様に延伸に於いては低温延伸を行な
うので、紡糸する未延伸糸は高速紡糸等によつて
複屈折率0.025以上の中間配向にするのが望まし
く、もしこれ未満であると延伸時に斑、ラツプ等
を生じて好ましくない。またこの様にして出来た
原糸を製織し、これを精練等にて縮め織物を座屈
させる程度については幅入りにして通常の同類の
織物の場合の5割増以上の幅入りさせる事が望ま
しく、糸の収縮程度としては10%以上縮める方が
良い。また仕上セツトに於いてもあまり引張らな
い方が良く、幅出しにして0%〜5%程度が適当
であり、本発明の趣旨に従つてこれ等の値を適当
に選べば良い。この様にして本発明の方法によれ
ば何等かの理由で長時間織機を停止しても織段の
心配なく高ドレープ性の織物を作る事が出来るの
で、初心者でも安心して生産に携わる事が可能で
ある。 実施例 固有粘度が0.61のポリエチレンテレフタレート
チツプを溶融状態でホール数36ケの口金より吐出
し、これを3500m/minの引取速度で115de/
36filの中間配向糸としてボビンに巻取つた。ま
た、この中間配向糸の複屈折率は0.041であつ
た。次に、この中間配向糸を延伸倍率1.6で100℃
の加熱ローラにて延伸して延伸糸Aを得た。これ
とは別に、前記中間配向糸を第5図の工程でヒー
ター2の温度を室温ヒーター4の温度を160℃と
し、その際熱処理時間を種々変えて延伸して種々
の延伸糸(B1〜Bo)を得た。 これらの延伸糸の物性を第1表に示す。
The present invention relates to a method for producing a woven or knitted fabric with excellent drapability (flexibility). An object of the present invention is to provide a method for producing a polyester woven or knitted fabric that can provide the polyester woven or knitted fabric with drape properties extremely similar to those of silk or rayon. Synthetic fibers, especially synthetic polymer fibers containing polyethylene terephthalate as the main repeating unit (hereinafter referred to as polyester), are widely preferred as materials for clothing because they have various excellent properties, especially wrinkle recovery and wash and wear properties. Unfortunately, it is not even close to silk or rayon in terms of texture and drapability. In view of the above points, the inventors of the present invention have conducted various studies, and have first devised the characteristics of the polyester material and combined these with the finishing process to use yarn with a high shrinkage rate. proposed a method for producing woven fabrics with excellent drape properties (Japanese Patent Application Laid-Open No. 55-93832). In this method, when the boiling water shrinkage rate is 20% or more, the value obtained by dividing the boiling water shrinkage rate (in %) by the elastic modulus (in Kg/ mm2 ) after boiling water shrinkage (also referred to as after boiling water treatment) is calculated.
By knitting and weaving a flat yarn containing polyethylene terephthalate as a main repeating unit with a polyethylene terephthalate ratio of 4/100 or more, and shrinking the yarn in a scouring, dyeing, or similar process, the fabric structure can be buckled or knitted. In this case, the synthetic polymer fibers are made by spinning synthetic polymers containing polyethylene terephthalate as the main repeating unit at high speed and having a birefringence index of 0.025 or more. The drawn yarn is drawn at a temperature below the secondary dislocation point to determine the specific gravity.
A low specific gravity drawn yarn of 1.36 or less is used. However, subsequent research has shown that although there are normally no problems when weaving using the above method, in special cases, when the loom is left stopped for a long time, problems can occur where weaving steps are likely to occur. I realized something. Therefore, the inventors of the present invention have further investigated the problem of the above-mentioned weaving steps, particularly from the viewpoint of the physical properties of the material, and as a result, have found a means for solving the problem. Thus, according to the present invention, the boiling water shrinkage rate is 20% or more, the value obtained by dividing the boiling water shrinkage rate (in %) by the elastic modulus after boiling water contraction (in Kg/ mm2 ) is 4/100 or more, and in a free state. The natural shrinkage rate when left for 10 hours is
Weaving polyester flat yarn with a content of 0.2% or less and shrinking the yarn during scouring, dyeing, or similar processes to buckle and loosen the fabric structure, giving it a high degree of drape. A method for manufacturing a textile is provided. Note that the above-mentioned "flat yarn" means filament yarn (also called raw silk) that has not been subjected to bulking processing such as crimping. To explain the present invention in more detail, FIG. 1A is a cross-sectional view of a rayon fabric. In the case of rayon, due to its swelling property, when the threads swell with water during scouring and dyeing decrease in volume during drying, the fabric structure is It has a highly flexible structure as it reduces the contact pressure. On the other hand, in the case of polyester fabric, since it does not have such swelling properties, the fabric structure is loose as shown in (b), and has almost no drapability like rayon. Therefore, when producing polyester yarn, the present inventors performed high-speed spinning to create an intermediately oriented (birefringence index of 0.025 or more) undrawn yarn, and then stretched it at a temperature below the secondary dislocation point. A highly shrinkable polyester yarn with a boiling water shrinkage rate of 20% or more is produced, which is then subjected to scouring, dyeing, or similar processes (chemical treatment, etc.) after weaving.
As shown in C, we devised a method of buckling the fabric structure by shrinking the threads and further relaxing it, thereby creating a fabric structure similar to rayon, as shown in D, and imparting high drape properties. That's why. However, when weaving textiles using this method, although there is no problem under normal circumstances, it has been found that if the loom is stopped for a long period of time due to some special circumstances, there may sometimes be a problem where weaving steps occur. FIG. 2 shows the state of the woven fabric at that time, and the arrow A point in the figure is the point where the loom was stopped for a long time, and a weaving stage is generated at this point. Furthermore, it was also found that the weft thread density temporarily increases only in the weaving direction B from this point as a boundary. Of course, it may be possible to make these looms less noticeable if the looms are re-operated and the looms are properly aligned, but this depends on the skill of the person doing the work, and it is not always easy to do so. isn't it. As a result of investigating the cause of this, it was found that this was due to the natural shrinkage of the thread. That is, Fig. 3 shows the state of the warp threads during weaving. To the right of the arrow point A (so-called Orimae), there is a state of interlacing of the latitude and the latitude. However, if the loom is stopped for a long time in this state, the arrow point A will move by d (several mm) to the left, as shown by the arrow A' point in the diagram.
As a result, the distance between the shuttle S and the arrow A' became shorter, and it was found that the next time the loom was restarted, the weave density would temporarily increase and the weave would become a row. Furthermore, we considered why arrow A moves, and found that the yarn used here has an unstable fine structure that produces high drapability.
As shown in FIG. 1, it has an extremely high shrinkage rate (at room temperature) compared to ordinary polyester yarn 2.
Therefore, if the loom is stopped for a long time, it will start shrinking naturally, and in that case, the right side of point A in Figure 3 A is clogged with weft threads and cannot shrink, but the left side is free to shrink. As a result, it was found that the left and right balance was disrupted and point A was pulled several mm to the left. Therefore, as a result of various studies in order to eliminate such inconveniences, we found that while maintaining a high shrinkage rate of boiling water shrinkage of 20% or more for raw yarn, as a guideline, 10%
It has been found that by suppressing the natural shrinkage rate over time to 0.2% or less (preferably 0.1% or less), this can be manufactured without worrying about weaving steps while maintaining high drapability. To give an example of how to make such a raw yarn, first, polyester is spun at high speed to create an intermediately oriented undrawn yarn with a birefringence index of 0.025 or more. In this case, the polyester may be 100% or may contain a so-called third component, and in short, any polyester thread may be used. Next, this is stretched using a stretching machine as shown in FIG. That is, this undrawn to intermediately oriented yarn 1 is stretched to an elongation appropriate for use, for example, about 20 to 40%. In this case, in the case of polyester, it is common practice to sufficiently heat the supply roller 2 to raise the temperature of the undrawn yarn above the secondary dislocation point, and then stretch it with the drawing roller 3 to achieve sufficient crystal orientation in the fibers. However, in the present invention, the yarn is drawn at a low temperature below the secondary dislocation point to make the fine structure unstable (for example, specific gravity is 1.36 or less) and to make it highly drapeable. In this case, the temperature below the secondary dislocation point refers to the temperature of the yarn itself, and the temperature of the supply roller 1 does not necessarily have to be below the secondary dislocation point, but the temperature of the yarn does not necessarily have to be below the secondary dislocation point. The heating (temperature and time) must not be so strong as to exceed the temperature. In general, it is desirable to use the material without heating in terms of texture, but if the stretchability (wrap, thread breakage, etc.) is likely to deteriorate, it may be slightly heated. Even in that case, care must be taken to ensure that the yarn does not exceed the secondary transposition temperature (approximately 70°C or more, which varies depending on the polymer and spinning speed). However, as mentioned above, if the loom is stopped for a long time, weaving steps will easily occur, so when the yarn is drawn at a low temperature and an incomplete structure is formed, instantaneous high temperature heating is applied by the heater 4, and winding is performed. It is preferable to wind it up on the device 5.
In this case, it would be meaningless to set the boiling water shrinkage rate to the yarn's original boiling water shrinkage rate, so it is necessary to suppress only the natural shrinkage at room temperature while minimizing the effect on the boiling water shrinkage rate. It is best to set it instantly. Figure 6 shows birefringence of 0.05.
This is an example showing the relationship between the setting temperature, time, boiling water shrinkage rate of the yarn, and 10-hour natural shrinkage rate when undrawn yarn is stretched at 1.5 times room temperature. , 0.2 required by the present invention
% or less, and if the time is prolonged, the boiling water shrinkage rate will drop below 20%. This relationship differs slightly depending on spinning conditions, stretching ratio, etc., but in general
It is best to set the temperature in 0.1 seconds or less at a temperature of 150℃ or higher. These sets may be heated using either non-contact or contact heating methods, but non-contact heating has the advantage of less damage to the yarn. In addition, since low-temperature drawing is performed during drawing as described above, it is desirable that the undrawn yarn to be spun has an intermediate orientation with a birefringence of 0.025 or more by high-speed spinning, etc. If the birefringence is less than this, then during drawing This is undesirable as it causes spots, laps, etc. In addition, it is desirable to weave the raw yarn made in this way, shrink it by scouring, etc., and to make the fabric buckle, the width should be increased by at least 50% of that of ordinary similar fabrics. It is better to shrink the thread by 10% or more. Also, in finishing setting, it is better not to apply too much tension, and a width of about 0% to 5% is appropriate, and these values may be appropriately selected in accordance with the spirit of the present invention. In this way, according to the method of the present invention, even if the loom is stopped for a long time for some reason, it is possible to make a fabric with high drape without worrying about the weaving stage, so even beginners can engage in production with peace of mind. It is possible. Example A polyethylene terephthalate chip with an intrinsic viscosity of 0.61 is discharged in a molten state from a nozzle with 36 holes, and it is drawn at a drawing speed of 3500 m/min to 115 de/min.
It was wound onto a bobbin as a 36fil intermediately oriented yarn. Further, the birefringence index of this intermediately oriented yarn was 0.041. Next, this intermediately oriented yarn was stretched at a stretching ratio of 1.6 at 100°C.
A drawn yarn A was obtained by drawing with a heated roller. Separately, the intermediate oriented yarn is stretched in the process shown in FIG. 5 with the temperature of the heater 2 and the temperature of the room temperature heater 4 set at 160° C., while varying the heat treatment time to obtain various drawn yarns (B 1 - B o ) was obtained. Table 1 shows the physical properties of these drawn yarns.

【表】 次に、A〜B5の糸を夫々第2表の織物設計で
織成し、精練、染色仕上げした時の各織物の状態
特性について第3表に示す。尚、織成時には16時
間織り、次いで8時間休止し再開する工程を3回
繰返した。 第 2 表 経密度 1.7.2羽/cm2本入れ 緯密度 33本/cm 精練浴 40℃〜95℃まで1時間に亘つて 昇温、巾入り15% セツト 180℃×30秒巾出し3% 染 色 130℃×60分 セツト 160℃×30秒巾出し0%
[Table] Next, Table 3 shows the condition characteristics of each fabric when yarns A to B5 were woven according to the fabric design shown in Table 2, and the fabrics were scoured and dyed. In addition, during weaving, the process of weaving for 16 hours, then stopping for 8 hours, and restarting was repeated three times. 2nd surface warp density 1.7.2 birds/cm 2 pieces weft density 33 pieces/cm Scouring bath Heat up from 40℃ to 95℃ for 1 hour, width 15% set 180℃ x 30 seconds width 3% dyeing Color 130℃ x 60 minutes Set 160℃ x 30 seconds Width increase 0%

【表】【table】

【表】 以上の結果から明らかなように、沸水収縮率/
弾性率の大きいものほどドレープ性が良好である
が、但し、自然収縮率の大きいものは織段が発生
するのでその双方を満足するものが望ましい。
[Table] As is clear from the above results, boiling water shrinkage ratio/
The higher the modulus of elasticity, the better the drape properties; however, the higher the natural shrinkage rate, the more weaving will occur, so it is desirable to have a material that satisfies both requirements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の織物や本発明の織物の製造経過
を説明する織物断面の模式図、第2図は織段発生
状態の織物上面図、第3図は織機の長時間停台前
后の変化を示す糸状態模式図、第4図は時間経過
と糸の自然収縮率の関係を示すグラフ、第5図は
延伸の一実施態様を示す側面図、第6図は加熱温
度、時間と糸の沸水収縮率及び自然収縮率の関係
を示すグラフである。 図において、1……未延伸乃至中間配向糸、2
……供給ローラー、3……延伸ローラー、4……
ヒーター、5……捲取装置、である。
Fig. 1 is a schematic diagram of a cross section of a woven fabric explaining the manufacturing process of conventional woven fabrics and the woven fabric of the present invention, Fig. 2 is a top view of the woven fabric in a state where weaving steps are generated, and Fig. 3 shows changes before and after the loom stops for a long time. Fig. 4 is a graph showing the relationship between the passage of time and the natural shrinkage rate of the thread, Fig. 5 is a side view showing one embodiment of drawing, and Fig. 6 is a graph showing the relationship between heating temperature, time and the thread It is a graph showing the relationship between boiling water shrinkage rate and natural shrinkage rate. In the figure, 1...undrawn to intermediately oriented yarn, 2
... Supply roller, 3 ... Stretching roller, 4 ...
Heater, 5... Winding device.

Claims (1)

【特許請求の範囲】 1 沸水収縮率が20%以上、該沸水収縮率(%表
示)を沸水収縮後の弾性率(Kg/mm2表示)で除し
た値が4/100以上で且つフリー状態での10時間放
置に於ける自然収縮率が0.2%以下であるポリエ
ステル系フラツトヤーンを製織し、、これを精
練、染色、又はこれに類する工程に於いて糸を収
縮させることにより織物組織を座屈・弛緩せしめ
て高度のドレープ性を付与する事を特徴とする織
物の製造方法。 2 ポリエステル系フラツトヤーンが0.025以上
の複屈折率を有するポリエステル未延伸糸を二次
転移点温度以下で延伸し、且つ150℃以上の温度
で0.1秒以下の接触又は非接触加熱にて熱処理を
施したものである、特許請求の範囲第1項記載の
織物の製造方法。
[Scope of Claims] 1. Boiling water shrinkage is 20% or more, the value obtained by dividing the boiling water shrinkage (in %) by the elastic modulus after boiling water shrinkage (in Kg/ mm2 ) is 4/100 or more, and in a free state. A polyester flat yarn with a natural shrinkage rate of 0.2% or less when left for 10 hours is woven, and the fabric structure is buckled by shrinking the yarn during scouring, dyeing, or similar processes. - A method for producing a fabric characterized by relaxing it and imparting a high degree of drapability. 2 An undrawn polyester yarn whose polyester flat yarn has a birefringence index of 0.025 or higher is stretched at a temperature below the secondary transition point temperature, and heat treated by contact or non-contact heating at a temperature of 150°C or higher for 0.1 seconds or less. A method for producing a woven fabric according to claim 1, wherein the woven fabric is manufactured by:
JP96879A 1979-01-11 1979-01-11 Production of fabric Granted JPS5593833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP96879A JPS5593833A (en) 1979-01-11 1979-01-11 Production of fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP96879A JPS5593833A (en) 1979-01-11 1979-01-11 Production of fabric

Publications (2)

Publication Number Publication Date
JPS5593833A JPS5593833A (en) 1980-07-16
JPS6249379B2 true JPS6249379B2 (en) 1987-10-19

Family

ID=11488422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP96879A Granted JPS5593833A (en) 1979-01-11 1979-01-11 Production of fabric

Country Status (1)

Country Link
JP (1) JPS5593833A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143728A (en) * 1977-05-16 1978-12-14 Teijin Ltd Production of polyester filament yarns

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143728A (en) * 1977-05-16 1978-12-14 Teijin Ltd Production of polyester filament yarns

Also Published As

Publication number Publication date
JPS5593833A (en) 1980-07-16

Similar Documents

Publication Publication Date Title
JPS6140778B2 (en)
JPS6249379B2 (en)
US3608295A (en) Highly elasticized fibrous composite and a method for manufacturing the same
JPS6249378B2 (en)
CN106801285A (en) A kind of dyeing and finishing processing method of napping fabric
US3486208A (en) Process for making woven stretch fabrics
JP3058892B2 (en) Method for producing high density fabric
JP7360168B2 (en) Composite yarn and woven and knitted fabrics using the yarn
JP2610207B2 (en) Manifest bulky thread
JPH02289171A (en) Washable silk woven fabric and production thereof
JPS6249381B2 (en)
JP3449839B2 (en) Manufacturing method of polyester thick and thin mixed yarn
JPH034652B2 (en)
JPH06123072A (en) Production of highly stretchable light-resistant cloth
KR920010291B1 (en) Process for manufacturing textured polyester yarn
JP2878758B2 (en) Method for producing bulky entangled yarn
JPH03167333A (en) False twisted conjugated yarn and production thereof
JP3083685B2 (en) Method for producing a woven fabric having a natural appearance
JPS5898447A (en) Spun yarn like polyester processed yarn
JPH07252777A (en) Production of cloth having high stretchability
JP2003113550A (en) Polyester woven fabric
JPH0140143B2 (en)
JPH0978442A (en) Production of easily napped synthetic fiber fabric
JPH0223607B2 (en)
JPS6247982B2 (en)