JPS6248999A - Method for operating compressor - Google Patents

Method for operating compressor

Info

Publication number
JPS6248999A
JPS6248999A JP18777285A JP18777285A JPS6248999A JP S6248999 A JPS6248999 A JP S6248999A JP 18777285 A JP18777285 A JP 18777285A JP 18777285 A JP18777285 A JP 18777285A JP S6248999 A JPS6248999 A JP S6248999A
Authority
JP
Japan
Prior art keywords
compressor
pressure
stage
discharge pressure
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18777285A
Other languages
Japanese (ja)
Inventor
Kenichi Moritomo
守友 健一
Toru Nagaseko
長迫 透
Yukihiro Fukuda
福田 幸博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP18777285A priority Critical patent/JPS6248999A/en
Publication of JPS6248999A publication Critical patent/JPS6248999A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To prevent surging and carry out safe and efficient operation by carrying out operating control while adjusting suction pressure based on the quantity of inside condition of a compressor estimated based on detected operation data or the number of revolutions, or discharge pressure. CONSTITUTION:Data from each of temp., pressure, and flow-rate indicators and a rotation number detector in each of a compressor are converted into digital signals and inputted into a central processing unit. An actual flow rate inside the compressor, discharge temperature, and discharge pressure are obtained using a pressure coefficient and an adiabatic exponent which are obtained based on operation data, and the quantity of inside condition is estimated and displayed. Based on this, a correcting operation is carried out to enable safe and efficient operation of the compressor. On carrying out the correcting operation, when the number of revolutions or discharge pressure is above the limit of control, control is carried out based on said quantity of inside condition, whereas, when it is below the limit of control, suction pressure is controlled in accordance with the number of revolutions or the discharge pressure. Thereby, a surging phenomenon which is liable to occur when the compressor is stopped can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧1i!機の運転方法に関する。詳しくは、
多段式遠心圧縮機等の内部状態量を推定し、この内部状
態量を安全に保ちながら運転制御する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to pressure 1i! Concerning how to operate the machine. For more information,
This invention relates to a method for estimating the internal state quantity of a multistage centrifugal compressor, etc., and controlling the operation while safely maintaining this internal state quantity.

〔背景技術とその問題点〕[Background technology and its problems]

従来、圧縮機の定常運転時における性能は知られている
Conventionally, the performance of a compressor during steady operation is known.

しかし、非定常運転時、例えば定格回転数の30〜80
%回転時や起動、停止時における性能を把握することは
困難である。特に、起動、停止時における実流量や圧縮
比等は、圧縮機の温度、圧力が一定でないために把握す
ることは困難である。
However, during unsteady operation, for example, the rated rotation speed is 30 to 80.
It is difficult to understand the performance at % rotation, start-up, and stop. In particular, it is difficult to determine the actual flow rate, compression ratio, etc. during startup and shutdown because the temperature and pressure of the compressor are not constant.

そのため、特に停止時にサージング現象が発生しやすい
。ちなみに、サージング現象とは、例えば圧縮機の吸入
量が成限界点以下に絞られたとき等に起こり、風圧が脈
動したり、風量が変動し、さらに振動や騒音を発し、使
用に耐えない現象をいう。
Therefore, surging phenomenon is likely to occur especially when stopped. By the way, surging phenomenon is a phenomenon that occurs, for example, when the suction amount of a compressor is throttled below the critical point, and the wind pressure pulsates, the air volume fluctuates, and vibrations and noise are emitted, making it unusable. means.

〔発明の目的〕[Purpose of the invention]

ここに、本発明の目的は、このような欠点を解消すべく
なされたもので、サージングを起こすことなく、圧ii
?i機を安全に運転制御できる圧縮機の運転方法を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate such drawbacks, and to reduce pressure ii without causing surging.
? An object of the present invention is to provide a method for operating a compressor that can safely control the operation of an i-machine.

〔問題点を解決するための手段および作用〕そのため、
本発明では、圧縮機の運転データを検出し、この運転デ
ータを基に圧縮機の内部状態tを11ト定し、この推定
した内部状afflまたは圧縮機の回転数もしくは吐出
圧力を基に吸込圧力を修正しながら圧縮機を運転制御す
ることを特徴としている。
[Means and actions for solving problems] Therefore,
In the present invention, the operating data of the compressor is detected, the internal state t of the compressor is determined based on this operating data, and the suction is It is characterized by controlling the operation of the compressor while correcting the pressure.

〔実施例〕〔Example〕

第1図は三段式遠心圧縮機をエチレンプロセスに用いた
一実施例を示している。同図において、遠心圧縮機10
は、3段の圧縮部11.12.13を有する三段式で、
モータ14により駆動される。圧縮a10の回転数は、
回転数検出器18によって常時検出されている。
FIG. 1 shows an example in which a three-stage centrifugal compressor is used in an ethylene process. In the same figure, a centrifugal compressor 10
is a three-stage type having three stages of compression sections 11, 12, and 13,
It is driven by a motor 14. The rotation speed of compression a10 is
It is constantly detected by the rotation speed detector 18.

第1段の圧縮部11の入口側には、第2図CL、示す如
く、温度指示計T1.および流量指示計Fl、がそれぞ
れ設けられている。また、第2段の圧縮部12の入口側
には、温度指示計T1.および流量指示計FI2がそれ
ぞれ設けられている。さらに、第3段の圧縮部13には
、その人口側に温度指示計Tl3iおよびml指示計F
fffiがそれぞれ設けられているとともに、出口側に
温度指示計T1.。、圧力指示計P1.−0および流量
指示計Fl、。がそれぞれ設けられている。
On the inlet side of the first stage compression section 11, as shown in FIG. 2CL, there is a temperature indicator T1. and a flow rate indicator Fl. Further, on the inlet side of the second stage compression section 12, a temperature indicator T1. and a flow rate indicator FI2 are provided, respectively. Furthermore, the third stage compression section 13 has a temperature indicator Tl3i and an ml indicator F on its population side.
fffi are provided respectively, and a temperature indicator T1. . , pressure indicator P1. -0 and flow indicator Fl,. are provided for each.

第1段の圧縮部11には配管15を介して第1段のドラ
ム21からのエチレンガスが、第2段の圧縮部12には
配管16を介して第2段のドラム22からのエチレンガ
スが、第3段の圧縮部13には配管17を介して第3段
のドラム23からのエチレンガスが、それぞれ供給され
ている。これらの圧縮部11.12.13によって圧縮
されたエチレンガスは、熱交換器HCb、 HCaでプ
ロピレンによって冷却された後、第4段のドラム24に
貯えられるとともに、弁V0を介して第1段のトラム2
1へ戻される。
Ethylene gas from the first stage drum 21 is supplied to the first stage compression section 11 via piping 15, and ethylene gas is supplied from the second stage drum 22 via piping 16 to the second stage compression section 12. However, ethylene gas from the third stage drum 23 is supplied to the third stage compression section 13 via the piping 17. The ethylene gas compressed by these compression sections 11, 12, 13 is cooled by propylene in heat exchangers HCb and HCa, and then stored in the fourth stage drum 24 and transferred to the first stage via valve V0. tram 2
Returned to 1.

各段のドラム2]、22.23には、液面調節計LCI
 、LCz 、LC3がそれぞれ設けられているととも
に、一端が次段のドラム22.23゜24の底部に接続
された配管25.26.27の他端がそれぞれ接続され
ている。配管25,26゜27の途中には、m1段のド
ラム21.22.23に設けられた前記液面調節計LC
,,LC2)LC8からの信号により開閉される液面調
節弁LV+ =  LVz 、LV、がそれぞ挿入され
ている。ただし、配管27には、液面調節弁LV、のほ
かに、例えば蒸留塔の塔頂凝縮器や原料の冷却として利
用される熱交換器HC4が挿入されている。各液面調節
弁LV、 、Lv、 、LVj に対しては、前記熱交
換器I C、と同様な熱交換器)[Cl+ HCz。
Drum 2], 22.23 of each stage has a liquid level controller LCI.
, LCz, and LC3 are provided, and one end of each pipe 25, 26, 27 is connected to the bottom of the drum 22, 23, 24 of the next stage, and the other end of the pipe 25, 26, 27 is connected to the bottom of the drum 22, 23, 24 of the next stage. In the middle of the pipes 25, 26 and 27, there is the liquid level controller LC installed on the m1 stage drum 21, 22, 23.
, LC2) Liquid level control valves LV+ = LVz and LV, which are opened and closed by signals from LC8, are inserted, respectively. However, in addition to the liquid level control valve LV, the piping 27 is inserted with a heat exchanger HC4 used, for example, as a top condenser of a distillation column or for cooling raw materials. For each liquid level control valve LV, , Lv, , LVj, a heat exchanger similar to the heat exchanger IC) [Cl+HCz.

HC,および弁V+ 、Vt 、V3を有する配管28
.29.30が並列に接続されている。
HC, and piping 28 with valves V+, Vt, V3
.. 29.30 are connected in parallel.

前記配管16.17のドラム22.23出口側と前記配
管25.26のドラム21.22人口側とは、配管31
.32を介して互いに理工mされている。各配管31.
32の途中には、Hit段のドラム21.22に設けら
れた圧力調節計PC,、PO2からの信号により開閉さ
れる圧力調節弁pv。
The drum 22.23 outlet side of the piping 16.17 and the drum 21.22 population side of the piping 25.26 are the piping 31
.. They are connected to each other via 32. Each pipe 31.
In the middle of the drum 32, there is a pressure regulating valve PV that is opened and closed by a signal from the pressure regulator PC, PO2 provided on the drum 21, 22 of the Hit stage.

、pv、がそれぞれ挿入されている。また、前記熱交換
器HC5,HC6の間と前記配管27のトラム23人口
側とは、配管33を介して互いに連通されている。配管
33の途中には、第3段のトラノ、23に設けられた圧
力調節計PC,からの信号により開閉される圧力調節弁
PV3が挿入されている。さらに、第4のドラム24の
頂部と前記配管27のドラム23の入口側とは、配管3
4を介して互いに連通されている。配管34の途中には
、第4のドラム24に設けられた圧力調節計PCjから
の18号により開閉される圧力調節弁PV、が挿入され
ている。
, pv, are inserted respectively. Moreover, the space between the heat exchangers HC5 and HC6 and the tram 23 population side of the pipe 27 are communicated with each other via a pipe 33. In the middle of the pipe 33, a pressure regulating valve PV3 is inserted which is opened and closed by a signal from a pressure regulator PC provided in the third stage tornograph 23. Furthermore, the top of the fourth drum 24 and the inlet side of the drum 23 of the piping 27 are connected to the piping 3
They communicate with each other via 4. A pressure regulating valve PV, which is opened and closed by a pressure regulator No. 18 from a pressure regulator PCj provided on the fourth drum 24, is inserted in the middle of the piping 34.

第3図はデータ処理装置を示している。同図にす3いて
、第1段の圧縮部11に設けられた各指示計T+、、P
ct 、Fl、 、第2段の圧縮部12に設けられた各
指示計712 、  F Iz 、第3段の圧縮部13
に設けられた各指示計T I 3i+  F l 31
゜]” Iz。’、  P Ixo、  F Iz。お
よび圧縮機lOの回転数を検出する回転数検出器1日か
らの検出データは、マルチプレクサ41によって順次選
択的に堰込才れ、続いてA/D変喚器42でデジタル信
号に変換された後、中央処理装置(以下、CPUという
。)43に取込まれる。
FIG. 3 shows a data processing device. In the same figure, each indicator T+, , P provided in the first stage compression section 11 is shown.
ct , Fl, , each indicator 712 provided in the second stage compression section 12 , F Iz , third stage compression section 13
Each indicator provided in T I 3i + F l 31
゜]"Iz.', P Ixo, F Iz., and the rotation speed detector that detects the rotation speed of the compressor 1O. The detection data from the first day are selectively filtered sequentially by the multiplexer 41, and then A After being converted into a digital signal by the /D converter 42, it is taken into a central processing unit (hereinafter referred to as CPU) 43.

CPU43は、これらのデータおよび予め設定された各
種定数を基に圧縮機10の内部状態量を推定し、これを
表示装置44に表示すると同時に、11045を介して
モータ14の回転数および圧力調節計PC,−PCff
の設定圧力の修正操作を行う。つまり、圧縮機10のモ
ータ14の回転を制御するとともに、各ドラム21,2
2.23の圧力調節計P C+ 、  P Cz 、 
 P C3の設定値を修正する。
The CPU 43 estimates the internal state quantity of the compressor 10 based on these data and various preset constants, and displays this on the display device 44, and at the same time displays the rotation speed of the motor 14 and the pressure regulator via 11045. PC, -PCff
Correct the set pressure. In other words, while controlling the rotation of the motor 14 of the compressor 10, each drum 21, 2
2.23 pressure regulators P C+ , P Cz ,
Correct the setting value of PC3.

次に、本実施例の作用を第4図のフローチャートを参照
しながら説明する。圧tjh機1oが運転されると、温
度指示計T I+、T Ix、T Izr、 T I、
Next, the operation of this embodiment will be explained with reference to the flowchart shown in FIG. When the pressure tjh machine 1o is operated, the temperature indicators T I+, T Ix, T Izr, T I,
.

からの温度データLl+ 17. t、i−so、圧力
調節り および指示計PC,,PI3゜からの圧力データP1、
P、。、流量指示計F I+、F Iz、F Izi、
  F Ii;からの流量データF +、 F 2. 
F zr、  F s。および回転数検出器18で検出
された回転数データRは、マルチプレクサ41によって
順次選択的に取り込まれ、続いてA/D変lA器42に
よりデジタル信号に変換された後、CPU43に取込ま
れる。
Temperature data from Ll+ 17. t, i-so, pressure adjustment and indicator PC,, pressure data P1 from PI3°,
P. , flow rate indicator F I+, F Iz, F Izi,
Flow rate data from F Ii; F +, F 2.
F zr, F s. The rotational speed data R detected by the rotational speed detector 18 is sequentially and selectively taken in by a multiplexer 41, then converted into a digital signal by an A/D converter 42, and then taken into the CPU 43.

CP、U43は、取込まれた運転データを益に士ず物性
定数、つまり圧縮係数および断3さ指数の近似計算を行
う。
The CP and U43 perform approximate calculations of physical property constants, that is, compression coefficients and shear indexes, taking advantage of the captured operating data.

圧縮係数の近似計算に当たっては、ますり」臨界温度T
r、対臨界圧P、を求める。いま、温度をT、圧力をP
とすると、対臨界温度T、、、対臨界圧P、は、対応状
態原理から、 T、  =T/Tc P、  =p/  Pe で求められる。ただし、Tcは臨界温度、PCは臨界圧
である。この対臨界温度T、および対臨界圧P、を、圧
縮係数と対臨界温度、対臨界圧力との関係を示す次の近
似式に代入して、圧縮係数Zを求める。即ち、 Z=a +b −P、  +c−T、  +d −p謬
+e−T、” である。こ、−で、a、b、c、d、eは物質固有の定
数である。
In approximating the compression coefficient, the critical temperature T
Find r and critical pressure P. Now, the temperature is T and the pressure is P.
Then, the critical temperature T, ..., and the critical pressure P, are obtained from the corresponding state principle as follows: T, = T/Tc P, = p/ Pe. However, Tc is the critical temperature and PC is the critical pressure. The compression coefficient Z is obtained by substituting the above critical temperature T and critical pressure P into the following approximate equation showing the relationship between the compression coefficient, the critical temperature, and the critical pressure. That is, Z=a+b-P,+c-T,+d-p+e-T,'' where a, b, c, d, and e are constants specific to the substance.

また、断熱指数にの近似計算に当たっては、前記温度T
および圧力Pを、次の近似式に代入して、断熱指数K 
= Cp / Cv (Cp ;定圧比熱、CV;定容
比熱)を求める。即ち、 Cp=A+B−T+C−T” +DT’  +E−T’
から v p −Cp である。ただし、Rはガス定数である。
In addition, in approximating the adiabatic index, the temperature T
and pressure P into the following approximate equation, the insulation index K
=Cp/Cv (Cp: constant pressure specific heat, CV: constant volume specific heat) is determined. That is, Cp=A+B-T+C-T"+DT'+E-T'
, then v p -Cp. However, R is a gas constant.

次に、この圧縮係数Zおよび断熱指数Kを用いて、各段
の圧縮部毎に内部状態量の推定計算を行う。
Next, using the compression coefficient Z and the adiabatic index K, an estimation calculation of the internal state quantity is performed for each compression section of each stage.

第1段の内部状c、量の推定計算では、入口温度1、お
よび入口圧力(吸込圧力)P+ が検出されているため
、■実流量、■サージング流量、■重量流量、■軸馬力
、■出口温度、■流量比、■出口圧力(吐出圧力)につ
いての推定計算を行う。
In the estimation calculation of the internal state c and quantity of the first stage, since the inlet temperature 1 and the inlet pressure (suction pressure) P+ are detected, ■actual flow rate, ■surging flow rate, ■weight flow rate, ■shaft horsepower, Perform estimation calculations for outlet temperature, ■flow rate ratio, and ■outlet pressure (discharge pressure).

■実流量Q、は、第1段圧縮部の入口温度をt5、人口
圧力をP、とすると、 で求められる。ここで、常数0.99は標準状態の圧縮
係数である。
■Actual flow rate Q is calculated as follows, where t5 is the inlet temperature of the first stage compression section and P is the population pressure. Here, the constant 0.99 is the compression coefficient in the standard state.

■サージング流jlQ、、は、設計回転数をN9、運転
時の回転数をN。、設計回転数におけるサージング>A
 MをQas(単位; f t’ /min )とする
と、 (m’ /D) で求められる。
■For the surging flow jlQ, the design rotation speed is N9 and the rotation speed during operation is N. , surging at design rotation speed>A
When M is Qas (unit: f t' /min), it is calculated as (m' /D).

■重量流■W、は、 で求められる。■Weight flow■W, ha, is required.

■軸馬力K W + は、 で求められる。ここで、H8はポリトロープヘッド、η
、はポリトロープ効率で、それぞれ実験により得られた
近似式によって求められる。
■Shaft horsepower K W + can be found as follows. Here, H8 is a polytropic head, η
, are the polytropic efficiencies, and are determined by approximate expressions obtained through experiments.

■出ロ温度t、dは、 〔℃ 〕 で求められる。ちなみに、上記の式の求め方は、ポリト
ロープ圧縮の式より、 が得られる。ここで、 L   P。
■Output temperatures t and d are found in [°C]. By the way, the above formula can be found from the polytropic compression formula. Here, L.P.

を上式に代入すると、 KZ     Rη が得られる。ただし、Zは吸込、吐出の平均圧縮係数、
mは気体の分子量(28,05) 、Rは気体定数(8
47)である。
Substituting into the above equation, KZ Rη is obtained. However, Z is the average compression coefficient of suction and discharge,
m is the molecular weight of the gas (28,05), R is the gas constant (8
47).

■ン禿量比Q +  / Q +−は、Q+ / QC
s  = Q+ / Q+sX 100    (%〕
で求められる。
■The baldness ratio Q+/Q+- is Q+/QC
s = Q+ / Q+sX 100 (%)
is required.

■出口圧力(吐出圧力)F2は、ドラム21の圧力P1
から吸入流IFgで生じる差圧を差し引いて求める。つ
まり、 P2=Pl  −ΔPF2 で求められる。ただし、ΔPFZはF2により生じる差
圧である。
■The outlet pressure (discharge pressure) F2 is the pressure P1 of the drum 21
It is obtained by subtracting the differential pressure generated in the suction flow IFg from In other words, it is determined by P2=Pl-ΔPF2. However, ΔPFZ is the differential pressure caused by F2.

以上が第1段の圧縮部11における内部状態量であるが
、第2段以降の圧縮部における内部状態量についても同
様にして求める。ただし、第2段以降の入口温度tx 
s、ts sおよび実流量Q2)Q3については、次の
ようにして求める。例えば、第2段の入口温度t2S、
実流’tt Q Zの求め方は、 Q、= (W+  +Wz )Vz    (m” /
D)である。ここで、■2は第2段入口ガスの比容積(
m’ /T)で、 である。
The above are the internal state quantities in the first stage compression section 11, but the internal state quantities in the second and subsequent stage compression sections are determined in the same manner. However, the inlet temperature tx after the second stage
s, ts s and the actual flow rate Q2)Q3 are determined as follows. For example, the second stage inlet temperature t2S,
How to find the actual flow 'tt Q Z is as follows: Q, = (W+ +Wz)Vz (m" /
D). Here, ■2 is the specific volume of the second stage inlet gas (
m'/T).

以上の推定計算終了後、表示装置44には、第5図のよ
うに圧縮機各段の実流量と圧力比とがサージング曲線と
ともに表示される。このとき、第6図のように、前記推
定計算によって求められた内部状JLifftを同時に
画面表示させることができる。
After the above estimation calculation is completed, the display device 44 displays the actual flow rate and pressure ratio of each stage of the compressor together with the surging curve as shown in FIG. At this time, as shown in FIG. 6, the internal shape JLift obtained by the estimation calculation can be simultaneously displayed on the screen.

なお、第6図において、〔〕内のデータは推定計算によ
って求められた値を示している。また、表示と同時に圧
縮機の内部状況に応じた修正操作が自動的に実行される
In addition, in FIG. 6, data in brackets indicate values obtained by estimation calculation. Further, at the same time as the display is displayed, corrective operations are automatically executed depending on the internal situation of the compressor.

修正操作は、安全性を重視して実流量がサージング流量
に対して120%以上の流量比を保つように実行される
。ここで、停止操作へ移った場合には、修正操作が実行
されながら、圧縮機の降速および冷媒の抜出し等の通常
の停止操作が実行される。
The correction operation is performed so that the actual flow rate maintains a flow rate ratio of 120% or more with respect to the surging flow rate, with emphasis on safety. Here, when moving to the stop operation, normal stop operations such as reducing the speed of the compressor and extracting the refrigerant are performed while the corrective operation is being performed.

■)停止操作において、圧縮機の回転数または吐出圧力
が制御限界以上のとき、ここでは圧縮機の回転数が76
00rpm以上、吐出圧力が16゜0 kg / cf
l!以上のとき、第1段の流量比が120%よりも下が
ると、第1段のドラム21の圧力(圧力調節計PC3の
設定圧力)を上昇させる。第1のドラム21の圧力が1
 、0 kg / cdになっても、120%以上の流
量比が保てない場合は、第2段のドラム22の圧力(圧
力調節計PC2の設定圧力〉を2 、4 kg / d
を下限として下降させる。この操作は、例えば第7図に
示すように、圧力比がA点の状態にあるとき、圧力比を
下げて、120%以上の流量比を保つために実行する。
■) In the stop operation, when the compressor rotation speed or discharge pressure is above the control limit, here the compressor rotation speed is 76
00 rpm or more, discharge pressure is 16゜0 kg/cf
l! In the above case, when the flow rate ratio of the first stage falls below 120%, the pressure of the first stage drum 21 (the set pressure of the pressure regulator PC3) is increased. The pressure of the first drum 21 is 1
, 0 kg/d, if the flow rate ratio of 120% or more cannot be maintained, reduce the pressure of the second stage drum 22 (pressure regulator PC2 set pressure) to 2.4 kg/d.
is lowered as the lower limit. This operation is performed, for example, when the pressure ratio is at point A, as shown in FIG. 7, to lower the pressure ratio and maintain a flow rate ratio of 120% or more.

第2)第3段についても同様の操作を実行する。2nd) Perform the same operation for the third stage.

即ち、第2段の流量比が120%よりも下がると、第2
段のドラム22の圧力(圧力調節針pc、の設定圧力)
を上昇させる。第2段のドラム22の圧力が3.0kr
/−になっても、120%以上の流量比が保てない場合
は、第3段のドラム23の圧力(圧力調節計pciの設
定圧力)を6、Okg / cntを下限として下降さ
せる。
That is, when the flow rate ratio of the second stage falls below 120%, the second stage
Pressure of drum 22 of stage (set pressure of pressure adjustment needle pc)
to rise. The pressure of the second stage drum 22 is 3.0kr
/-, if the flow rate ratio of 120% or more cannot be maintained, lower the pressure of the third stage drum 23 (set pressure of the pressure regulator pci) to 6,000 kg/cnt as the lower limit.

第3段の流量比が120%よりも下がると、第3段のド
ラム23の圧力(圧力調節計PCsの設定圧力)を上昇
させる。第3段のドラム23の圧力が7゜0kr/−に
なっても、120%以上の流量比が保てない場合は、第
2段のドラム22の圧力(圧力調節計PC!の設定圧力
)を2.4kg/dを下限として下降させる。
When the flow rate ratio of the third stage falls below 120%, the pressure of the third stage drum 23 (the set pressure of the pressure regulator PCs) is increased. Even if the pressure of the third stage drum 23 reaches 7°0 kr/-, if the flow rate ratio of 120% or more cannot be maintained, the pressure of the second stage drum 22 (set pressure of the pressure regulator PC!) is lowered to a lower limit of 2.4 kg/d.

このようにして、各段の流量比が120%以上を保つよ
うに、各段の吸込圧力を修正する。
In this way, the suction pressure of each stage is corrected so that the flow rate ratio of each stage is maintained at 120% or more.

■)停止操作において、圧縮機の回転数または吐出圧力
が制御限界未満のとき、ここでは圧Villaの回転数
が760Orpm未満、吐出圧力が16゜9 kg /
 c+a未満のとき、即ち停止工程が進み、圧縮機を降
速していったとき、定常運転域で推定した内部状態量は
使用できず、回転数および吐出圧力に対応した入口圧力
を保つことにより安全な運転を維持する。
■) In the stop operation, when the rotation speed or discharge pressure of the compressor is below the control limit, here the rotation speed of the pressure Villa is less than 760 Orpm and the discharge pressure is 16゜9 kg/
When the temperature is less than c + a, that is, when the stop process progresses and the compressor speed is lowered, the internal state quantity estimated in the steady operation region cannot be used, and by maintaining the inlet pressure corresponding to the rotation speed and discharge pressure. Maintain safe driving.

回転数は、通常の停止手順で降達される。吐出圧力は、
その時点の回転数と系内のガス保有量により決る(第8
図参照)。従って、流量比120%に保つ修正動作の最
終回の運転値(第8図の回転数760Orpmと各段の
圧力)を参考値として、その後の回転数、吐出圧力に対
応する各段の圧力の最適解を求める。
The rotational speed is reduced using the normal stopping procedure. The discharge pressure is
Determined by the rotational speed at that time and the amount of gas held in the system (No. 8
(see figure). Therefore, using the final operation value of the correction operation to maintain the flow rate ratio of 120% (rotation speed 760 orpm and pressure at each stage in Figure 8) as a reference value, the subsequent rotation speed and pressure at each stage corresponding to the discharge pressure. Find the optimal solution.

いま、圧縮機の回転数をN、ヘッドをHとすると、相似
性の関係から次の式が成り立つ。
Now, assuming that the rotation speed of the compressor is N and the head is H, the following equation holds from the relationship of similarity.

H+ /Hz −(N+ /Nz )’      (
1)各段圧力の最適解は次のようにして求める0例えば
、第8図のX、を求めるには、弐(1)に代入すると 、゛・ x、  −6,96 である。xt〜x4、ylA−y、、z1〜z4につい
ても同様に求め、これらの値が各段の設定圧力となるよ
う修正操作を実行する。
H+ /Hz −(N+ /Nz)' (
1) The optimal solution for each stage pressure is found as follows.0For example, to find X in FIG. Similarly, xt to x4, ylA-y, z1 to z4 are obtained, and correction operations are performed so that these values become the set pressures for each stage.

従って、本実施例によれば、圧縮機の運転データを基に
圧縮機の内部状態量を推定し、これを基に修正操作を行
うようにしたので、庄m機を安全にかつ効率的に運転す
ることかできる。
Therefore, according to this embodiment, the internal state quantity of the compressor is estimated based on the operating data of the compressor, and correction operations are performed based on this, so that the Sho-m machine can be operated safely and efficiently. I can drive.

この際、推定した圧縮機の内部状B旦を表示装置44に
表示するようにしたので、定常運転および8仙、停止時
における圧縮機の内部状態量を容易に把握することがで
きる。
At this time, the estimated internal state of the compressor is displayed on the display device 44, so that it is possible to easily grasp the internal state quantity of the compressor during steady operation, during operation, and when stopped.

しかも、修正操作を行うに当たり、圧縮機の回転数また
は吐出圧力が制御限界以上のとき、前記内部状BMを基
準に制御する一方、回転数または吐出圧力が制御限界未
満のとき、その回転数または吐出圧力に応じて吸込圧力
を制御するようにしたので、圧縮機の゛停止時に発生し
やすいサージング現象を防止することができる。
Moreover, in performing the correction operation, when the rotation speed or discharge pressure of the compressor is above the control limit, control is performed based on the internal state BM, while when the rotation speed or discharge pressure is below the control limit, the rotation speed or Since the suction pressure is controlled according to the discharge pressure, it is possible to prevent the surging phenomenon that tends to occur when the compressor is stopped.

なお、実施に従って、圧v?1機としては、上記実施例
で述べた三段式遠心型に限らず、他の型式でもよい。
In addition, according to the implementation, the pressure v? The single machine is not limited to the three-stage centrifugal type described in the above embodiment, but may be of other types.

また、上記実施例で、は、エチレンプロセスについて述
べたが、本発明はこれに限らず、圧縮機を使用するシス
テム−最に応用できる。
Further, in the above embodiments, an ethylene process has been described, but the present invention is not limited to this, and can be most applicable to a system using a compressor.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、圧縮機の内部状態量を把
握しながら運転制御できるので、特に停止時のサージン
グを防−止でき、圧縮機を安全に運転することができる
As described above, according to the present invention, since the operation can be controlled while grasping the internal state quantity of the compressor, surging can be particularly prevented during stoppage, and the compressor can be operated safely.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法をエチレンプロセスに応用した状
態のフロー図、第2図は圧縮機の部分を示す図、第3図
はデータ処理装置の内部構成を示すブロック図、第4図
はフローチャート、第5図および第6図は画面の表示例
を示す図、第7図は流量と圧力比との関係を示す図、第
8図は回転数および吐出圧力に対する各ドラム圧力の関
係を示す図である。 lO・・・圧縮機、11.12.13・・・圧縮部。
Fig. 1 is a flow diagram of the method of the present invention applied to the ethylene process, Fig. 2 is a diagram showing the compressor section, Fig. 3 is a block diagram showing the internal configuration of the data processing device, and Fig. 4 is a diagram showing the compressor section. Flowchart, Figures 5 and 6 are diagrams showing examples of screen display, Figure 7 is a diagram showing the relationship between flow rate and pressure ratio, and Figure 8 is a diagram showing the relationship of each drum pressure with respect to rotation speed and discharge pressure. It is a diagram. lO... Compressor, 11.12.13... Compression section.

Claims (5)

【特許請求の範囲】[Claims] (1)圧縮機の運転データを検出し、この運転データを
基に圧縮機の内部状態量を推定し、この推定した内部状
態量または圧縮機の回転数もしくは吐出圧力を基に吸込
圧力を修正しながら圧縮機を運転制御することを特徴と
する圧縮機の運転方法。
(1) Detect the operating data of the compressor, estimate the internal state quantity of the compressor based on this operating data, and correct the suction pressure based on the estimated internal state quantity, compressor rotation speed, or discharge pressure. A compressor operating method characterized by controlling the operation of the compressor while the compressor is being operated.
(2)特許請求の範囲第1項において、圧縮機の内部状
態量を推定するに当たって、圧縮機の運転データを基に
圧縮係数および断熱指数を求め、これらの圧縮係数およ
び断熱指数を用いて圧縮機内部の実流量、吐出温度およ
び吐出圧力を求めることを特徴とする圧縮機の運転方法
(2) In claim 1, when estimating the internal state quantity of the compressor, a compression coefficient and an adiabatic index are determined based on the operating data of the compressor, and the compression coefficient and adiabatic index are used to calculate the compression coefficient and the adiabatic index. A compressor operating method characterized by determining the actual flow rate inside the machine, discharge temperature, and discharge pressure.
(3)特許請求の範囲第1項または第2項において、内
部状態量を表示するようにしたことを特徴とする圧縮機
の運転方法。
(3) A compressor operating method according to claim 1 or 2, characterized in that an internal state quantity is displayed.
(4)特許請求の範囲第3項において、前記実流量およ
び圧力比をサージング曲線とともに表示することを特徴
とする圧縮機の運転方法。
(4) A compressor operating method according to claim 3, characterized in that the actual flow rate and pressure ratio are displayed together with a surging curve.
(5)特許請求の範囲第1項ないし第4項のいずれかに
おいて、前記修正に当たって、前記圧縮機の回転数また
は吐出圧力が制御限界以上のとき前記内部状態量を基準
に吸込圧力を修正する一方、圧縮機の回転数または吐出
圧力が制御限界未満のとき前記回転数または吐出圧力に
応じて吸込圧力を修正することを特徴とする圧縮機の運
転方法。
(5) In any one of claims 1 to 4, when the correction is performed, the suction pressure is corrected based on the internal state quantity when the rotation speed or discharge pressure of the compressor is equal to or higher than a control limit. On the other hand, a compressor operating method characterized in that when the rotation speed or discharge pressure of the compressor is less than a control limit, the suction pressure is corrected according to the rotation speed or discharge pressure.
JP18777285A 1985-08-27 1985-08-27 Method for operating compressor Pending JPS6248999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18777285A JPS6248999A (en) 1985-08-27 1985-08-27 Method for operating compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18777285A JPS6248999A (en) 1985-08-27 1985-08-27 Method for operating compressor

Publications (1)

Publication Number Publication Date
JPS6248999A true JPS6248999A (en) 1987-03-03

Family

ID=16211941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18777285A Pending JPS6248999A (en) 1985-08-27 1985-08-27 Method for operating compressor

Country Status (1)

Country Link
JP (1) JPS6248999A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100398A (en) * 1989-09-12 1991-04-25 Mitsubishi Electric Corp Surging preventing apparatus for turbo compressor
US5054995A (en) * 1989-11-06 1991-10-08 Ingersoll-Rand Company Apparatus for controlling a fluid compression system
CN103867446A (en) * 2012-12-07 2014-06-18 三星泰科威株式会社 Method for anti-surge controlling of multi-stage compressing system
JP2014177915A (en) * 2013-03-15 2014-09-25 Mitsubishi Chemicals Corp Method for controlling intake flow rate of multistage centrifugal compressor
WO2016002565A1 (en) * 2014-07-01 2016-01-07 三菱重工業株式会社 Multi-stage compressor system, control device, method for assessing abnormality, and program
JP2016514788A (en) * 2013-03-26 2016-05-23 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. Method and system for anti-surge control of a turbo compressor with side flow
JP2017125661A (en) * 2016-01-15 2017-07-20 株式会社中島自動車電装 Multistage variable-type gas recovery machine and multistage variable-type refrigerant recovery machine
WO2017138481A1 (en) * 2016-02-08 2017-08-17 三菱重工コンプレッサ株式会社 Compressor surge generation prevention device and compressor system
EP3693609A1 (en) * 2019-02-08 2020-08-12 Safran Aero Boosters SA Measurement of total pressure and total temperature in a turbine engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666490A (en) * 1979-11-02 1981-06-04 Hitachi Ltd Controlling method of multistage centrifugal compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666490A (en) * 1979-11-02 1981-06-04 Hitachi Ltd Controlling method of multistage centrifugal compressor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100398A (en) * 1989-09-12 1991-04-25 Mitsubishi Electric Corp Surging preventing apparatus for turbo compressor
US5054995A (en) * 1989-11-06 1991-10-08 Ingersoll-Rand Company Apparatus for controlling a fluid compression system
CN103867446A (en) * 2012-12-07 2014-06-18 三星泰科威株式会社 Method for anti-surge controlling of multi-stage compressing system
JP2014177915A (en) * 2013-03-15 2014-09-25 Mitsubishi Chemicals Corp Method for controlling intake flow rate of multistage centrifugal compressor
JP2016514788A (en) * 2013-03-26 2016-05-23 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. Method and system for anti-surge control of a turbo compressor with side flow
US10989211B2 (en) 2013-03-26 2021-04-27 Nuovo Pignone Srl Methods and systems for antisurge control of turbo compressors with side stream
JP2016014335A (en) * 2014-07-01 2016-01-28 三菱重工業株式会社 Multistage compressor system, controller, abnormality determination method, and program
WO2016002565A1 (en) * 2014-07-01 2016-01-07 三菱重工業株式会社 Multi-stage compressor system, control device, method for assessing abnormality, and program
CN106460835A (en) * 2014-07-01 2017-02-22 三菱重工业株式会社 Multi-stage compressor system, control device, method for assessing abnormality, and program
US10746182B2 (en) 2014-07-01 2020-08-18 Mitsubishi Heavy Industries Compressor Corporation Multi-stage compressor system, control device, malfunction determination method, and program
JP2017125661A (en) * 2016-01-15 2017-07-20 株式会社中島自動車電装 Multistage variable-type gas recovery machine and multistage variable-type refrigerant recovery machine
WO2017138481A1 (en) * 2016-02-08 2017-08-17 三菱重工コンプレッサ株式会社 Compressor surge generation prevention device and compressor system
EP3693609A1 (en) * 2019-02-08 2020-08-12 Safran Aero Boosters SA Measurement of total pressure and total temperature in a turbine engine
BE1027043B1 (en) * 2019-02-08 2020-09-08 Safran Aero Boosters Sa TOTAL PRESSURE AND TOTAL TEMPERATURE MEASUREMENT IN A TURBOMACHINE
US11408907B2 (en) 2019-02-08 2022-08-09 Safran Aero Boosters Sa Total pressure and total temperature measurement in a turbomachine

Similar Documents

Publication Publication Date Title
US8567207B2 (en) Compressor control system using a variable geometry diffuser
US10539353B2 (en) Refrigerating apparatus and control device for refrigerating machine
KR101630178B1 (en) Control system
US9797640B2 (en) Refrigerating apparatus and corresponding control device
JP4952822B2 (en) Heat source side heat exchanger fan control method and air conditioner
US7905102B2 (en) Control system
US6663349B1 (en) System and method for controlling pump cavitation and blockage
US5123256A (en) Method of compressor staging for a multi-compressor refrigeration system
JP6454564B2 (en) Turbo refrigerator
US4807150A (en) Constraint control for a compressor system
JPS6248999A (en) Method for operating compressor
CN109654762B (en) Centrifugal refrigerator
CN113944650B (en) Control method and control device of compressor and heat exchange system
EP4109014A1 (en) Surge prevention in a chiller with centrifugal compressor
CN112050349A (en) Anti-freezing control method, device and equipment and air conditioner
JP5931774B2 (en) Turbo chiller maximum load factor calculation device and method, heat source system and number control method thereof
CN111854203B (en) Refrigerator equipment, refrigerating system and control method of refrigerating system
CN113945020A (en) Control method for centrifugal refrigeration equipment, device and medium
WO2022113666A1 (en) Control device, control method, and program
EP3891396B1 (en) Apparatus and process for controlling a compressor assembly lubrication status and refrigerating machine comprising said apparatus
JP2024500295A (en) Compressor device, heat recovery system, and compressor device control method
JPS599719A (en) Operation controlling method of pump
CN118310219A (en) Control method and device for magnetic suspension water chilling unit, water chilling unit and medium
CN117663555A (en) Method and device for controlling air conditioning unit, air conditioning unit and storage medium
JPH05223375A (en) Air cycle air conditioner