JPH03100398A - Surging preventing apparatus for turbo compressor - Google Patents

Surging preventing apparatus for turbo compressor

Info

Publication number
JPH03100398A
JPH03100398A JP1236261A JP23626189A JPH03100398A JP H03100398 A JPH03100398 A JP H03100398A JP 1236261 A JP1236261 A JP 1236261A JP 23626189 A JP23626189 A JP 23626189A JP H03100398 A JPH03100398 A JP H03100398A
Authority
JP
Japan
Prior art keywords
compressor
compression ratio
surging
detector
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1236261A
Other languages
Japanese (ja)
Inventor
Hirobumi Iida
博文 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1236261A priority Critical patent/JPH03100398A/en
Publication of JPH03100398A publication Critical patent/JPH03100398A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve accuracy in preventing surging by providing a detector of pressure and flow in a compressor outlet, a detector of pressure and temperature of intake air to the compressor, a compression ratio calculator, a surging limit-compression ratio calculator and a comparator. CONSTITUTION:During the running of a turbo compressor 2, compressor outlet pressure P1 detected by a pressure detector 22 and intake air pressure P2 detected by compressor intake air pressure detector 23 are sent to a compression ratio calculator 25 to calculate compression ratio gamma. Also, compressor outlet flow F1 detected by a flow detector 21, compressor intake air temperature T2 by an intake air temperature detector 24 and the compressor intake air pressure P2 are sent to a correction flow calculator 26 to calculate correction flow Wc which is inputted in a surge tank limit compression ratio calculator 27 in which the surging limit compression ratio gammac is obtained. The compression ratio gamma and surging limit compression ratio gammac are inputted in a comparator 28, and when gamma>gammac, assuming the surging region is reached a signal is outputted to an output device 30 to open further an atmospheric air opening valve 16.

Description

【発明の詳細な説明】 [産業上の利用分野〕 この発明は例えば燃料電池発電システムの燃料電池に圧
縮空気を供給するターボコンブレラ10サージング防止
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a surging prevention device for a turbocombbrer 10 that supplies compressed air to a fuel cell of a fuel cell power generation system, for example.

[従来の技術] 第2図は例えば特開昭61−79820号公報・特開昭
61−80765号公報等に示された従来のターボコン
プレッサのシステムを示す系統図であり、図において、
(1)は例えば燃料電池、改質系を含むシステム、(2
)はターボコンプレッサ、(2m)はタービン(2b)
はコンプレッサ、(3)はコンプレッサ(2b)の給気
ライン、(4)は給気ライン(3)に設けられた給気弁
である。(5)はコンプレッサ(2b)とシステム(1
) &つなぐコンプレッサ出口フィン、(6)ハコ77
” vッサ出ロフィン(5)に設けられたシステム供給
空気流量調節弁、(7)はシステム(1)とタービン(
2a)をっなぐ排ガヌフィン、(8)は補助燃焼器、(
9)は補助燃焼器(8)の燃焼空気供給ライン、(10
)は燃焼空気供給フィン(9)に設けられた燃焼空気流
量調節弁であり、また(21)、  (22)はそれぞ
れコンプレッサ出ロライン(5)に設置された流量検出
器および圧力検出器、更に(12)は起動用空気プロワ
、(13)は起動用空気プロワ(12)とコンプレッサ
給気フィン(3)をつなぐ起動用空気供給ライン、(1
4)は起動用空気供給ライン(13)に設けられた起動
用空気供給弁、(15)はコンプレッサ出口と大気をつ
なぐ大気開放ライン、(16)は大気開放ライン(15
)に設けられた大気開放弁、 (17)はシステム(1
)のバイパスフィン、(18)ハシステムバイパスライ
ン(17)に設ケラれたシステムバイパスラインである
[Prior Art] FIG. 2 is a system diagram showing a conventional turbo compressor system disclosed in, for example, Japanese Patent Laid-Open No. 61-79820 and Japanese Patent Laid-open No. 61-80765.
(1) is, for example, a system including a fuel cell and a reforming system, (2)
) is the turbo compressor, (2m) is the turbine (2b)
is a compressor, (3) is an air supply line of the compressor (2b), and (4) is an air supply valve provided in the air supply line (3). (5) is the compressor (2b) and the system (1
) & connecting compressor outlet fin, (6) box 77
” The system supply air flow rate control valve (7) installed in the turbine (5) is connected to the system (1) and the turbine (
2a) Exhaust ganuffin, (8) is an auxiliary combustor, (
9) is the combustion air supply line of the auxiliary combustor (8), (10
) is a combustion air flow rate control valve provided on the combustion air supply fin (9), and (21) and (22) are a flow rate detector and a pressure detector respectively installed on the compressor outlet line (5), and (12) is a startup air blower, (13) is a startup air supply line that connects the startup air blower (12) and the compressor air supply fin (3), (1
4) is a startup air supply valve installed in the startup air supply line (13), (15) is an atmosphere release line connecting the compressor outlet and the atmosphere, and (16) is an atmosphere release line (15).
), (17) is the system (1
) bypass fin, (18) system bypass line installed in (17).

第3図はコンプレッサ(2b)の特性図で、(40)は
修正流量軸、(41)は圧縮比軸、(42)は等速度曲
線および(43)はサージング限界曲線である。
FIG. 3 is a characteristic diagram of the compressor (2b), in which (40) is a modified flow rate axis, (41) is a compression ratio axis, (42) is a constant velocity curve, and (43) is a surging limit curve.

次に動作について説明する。ターボコンプレッサ(2)
を運転してシステム(1)に空気を送気中は、コンプレ
ッサ出口の圧力を圧力検出器(22)で、コンプレッサ
出口の流量を流量検出器(21)で検出する。
Next, the operation will be explained. Turbo compressor (2)
While operating the system (1) to supply air, the pressure at the compressor outlet is detected by the pressure detector (22), and the flow rate at the compressor outlet is detected by the flow rate detector (21).

コンプレッサ(2b)のサージングは、第3図のコンプ
レッサ特性図上の運転点が、サージング管理曲線の左上
側に入った場合に発生するが、従来は、ターボコンプレ
ッサC)のコンプレッサ(2b)が定圧定流量運転時に
限り、コンプレッサ出口圧力P1が規定値以上、または
コンプレッサ出口流量F1が規定値以下となった場合に
サージング領域に入ったことを検出してサージング防止
のため例えば大気開放弁(16)を動作させる方法をと
っていた。
Compressor (2b) surging occurs when the operating point on the compressor characteristic diagram in Figure 3 falls on the upper left side of the surging control curve, but conventionally, compressor (2b) of turbo compressor C) Only during constant flow operation, if the compressor outlet pressure P1 is above a specified value or the compressor outlet flow rate F1 is below a specified value, it is detected that the surging region has entered, and an air release valve (16), for example, is installed to prevent surging. I took a method to make it work.

[発明が解決しようとする課題] 従来のターボコンプレッサのサージング防止装置は以上
のように構成されているので、コンプレッサの定圧定風
量運転時のみのサージング防止となり、起動時、負荷変
動時を含めた圧力、風量が変化する場合のサージングの
防止は不可能であった。
[Problem to be solved by the invention] Since the conventional surging prevention device for a turbo compressor is configured as described above, surging can be prevented only when the compressor is operated at a constant pressure and a constant air volume, and it can prevent surging even when the compressor is operating at a constant pressure and a constant air volume. It has been impossible to prevent surging when pressure and air volume change.

特に燃料電池発電システムによく用いられる2軸2段の
ターボコンプレッサの場合は定圧定風量運転時において
も、高圧段のコンプレッサの給気温度が変化する等によ
り高圧段コンプレッサの圧縮比が変化するため、サージ
ング防止の精度を欠くなどの問題があった。
In particular, in the case of a two-shaft, two-stage turbo compressor that is often used in fuel cell power generation systems, even during constant-pressure, constant-airflow operation, the compression ratio of the high-pressure stage compressor changes due to changes in the air supply temperature of the high-pressure stage compressor, etc. , there were problems such as a lack of precision in preventing surging.

この発明は上記のような課題を解決するためになされた
もので、高精度のターボコンプレッサのサージング防止
装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and an object thereof is to obtain a highly accurate surging prevention device for a turbo compressor.

〔課題を解決するための手段J この発明に係るターボコンプレッサのサージング防止装
置は、コンプレッサ出口の圧力、流量の検出器およびコ
ンプレッサ給気の圧力、温度の検出器を設け、同圧力検
出器出力を入力とする圧縮比演算器と、流量検出器出力
と給気圧力検出器出力と給気温度検出器出力を入力とす
る修正流量演算器および修正流量演算器の出力を入力と
するサージング限界圧縮比演算器、さらに圧縮比演算器
出力とサージング限界圧縮比演算器出力を入力とし、サ
ージング領域を検出する比較器を設けたものである。
[Means for Solving the Problems J] The surging prevention device for a turbo compressor according to the present invention is provided with a pressure and flow rate detector at a compressor outlet and a pressure and temperature detector for compressor supply air, and the output of the pressure detector is Compression ratio calculator as input, corrected flow rate calculator as inputs of flow rate detector output, supply air pressure detector output, and supply air temperature detector output, and surging limit compression ratio as input of the output of the corrected flow rate calculator. It is provided with a comparator, and a comparator which receives the output of the compression ratio calculator and the output of the surging limit compression ratio calculator as input, and detects the surging region.

〔作用〕[Effect]

この発明におけるターボコンプレッサのサージング防止
装置は、コンプレッサの出口圧力、流量およびl&気圧
力、温度を検出し、これらの値からコンプレッサの修正
流量、圧縮比を算出し、更に得られた修正流量に対する
サージング限界圧縮比を求め、サージング限界圧縮比以
上となった場合にサージング領域に入ったことを検出し
、サージング防止措置をとるう 〔発明の実施例〕 以下、この発明の一実施例を図について説明する。第1
図において(1)は燃料電池、改質系を含むシステム、
伐)はターボコンプレッサ、(2a)はタービン、  
(2b)はコンプレッサである。(5) aコンプレッ
サ出ロライン、(6)はシステム供給空気調節弁、(7
)は排ガスフィン、(15)はコンプレッサ(2b)O
出口で分岐され、大気につながる大気開放ライン、(1
6)は大気開放ライン(15)に設けられた大気開放弁
である。 (17)はシステム(1)のバイパスライン
、(18)はシステムバイパスライン(17)に設置ら
れたシステムバイパスラインである。 (21)、  
I’22)はコンプレッサ(2b)の出口に設けられた
それぞれコンプレッサ出口流を検出器、コンプレッサ出
口圧力検出器、(23) 、  (24)はコンプレッ
サ(2b)の給気口に設けらnたそれぞれコンプレッサ
給気圧力検出器、コンプレッサ給気温度検出器である。
The turbo compressor surging prevention device according to the present invention detects the compressor outlet pressure, flow rate, l&atmospheric pressure, and temperature, calculates the corrected flow rate and compression ratio of the compressor from these values, and further prevents surging for the obtained corrected flow rate. The critical compression ratio is determined, and when the surging critical compression ratio is exceeded, it is detected that the surging region has entered, and surging prevention measures are taken. do. 1st
In the figure, (1) is a system including a fuel cell and a reforming system;
(2a) is a turbo compressor, (2a) is a turbine,
(2b) is a compressor. (5) a Compressor output line, (6) system supply air control valve, (7
) is the exhaust gas fin, (15) is the compressor (2b) O
Atmospheric release line that branches at the exit and connects to the atmosphere (1
6) is an atmosphere release valve provided in the atmosphere release line (15). (17) is a bypass line of the system (1), and (18) is a system bypass line installed in the system bypass line (17). (21),
I'22) is a compressor outlet flow detector and compressor outlet pressure detector provided at the outlet of the compressor (2b), and (23) and (24) are provided at the air supply port of the compressor (2b), respectively. They are a compressor supply air pressure detector and a compressor supply air temperature detector, respectively.

(25)けコンプレッサ出口圧力検出器(22)の出力
およびコンプレッサ給気圧力検出器(23)の出力を入
力とする圧縮比演算器、(26)はコンプレッサ出口流
量検出器(21)の出力、コンプレッサ給気圧力検出器
(23)の出力および、コンプレッサ給気温度検出器(
24)の出力を入力とする修正流量演算器である。
(25) a compression ratio calculator which receives the output of the compressor outlet pressure detector (22) and the output of the compressor supply air pressure detector (23); (26) is the output of the compressor outlet flow rate detector (21); The output of the compressor supply air pressure detector (23) and the compressor supply air temperature detector (23)
This is a corrected flow rate calculator which receives the output of 24) as input.

(27)は修正流量演算器(26)の出力を入力とする
サージング限界圧縮比演算器、(28)は圧縮比演算器
(25)の出力およびサージング限界圧縮比演算器(2
7)の出力を入力とし、サージング領域を検出する比較
器である。(30)は比較器(28)の出力信号(29
)を入力とする出力装置、(31)は出力装置(30)
から大気開放弁(16)への弁操作信号である。
(27) is a surging limit compression ratio calculator which inputs the output of the corrected flow rate calculator (26), and (28) is the output of the compression ratio calculator (25) and the surging limit compression ratio calculator (2).
This is a comparator that takes the output of 7) as input and detects the surging area. (30) is the output signal (29) of the comparator (28)
) is the output device, (31) is the output device (30)
This is a valve operation signal from the air release valve (16) to the atmosphere release valve (16).

次に動作について説明する。ターボコンプレッサ運転中
、コンプレッサ出口の圧力検出器(22)によるコンプ
レッサ出口圧力PI(’Qt/ciP>およびコンプレ
ッサ給気圧力検出器(23)によるコンプレッサ給気圧
力P2 (Kg/ad?)が圧縮比演算器(25)に送
られ、次の式により圧縮比Tを算出する。
Next, the operation will be explained. During turbo compressor operation, the compressor outlet pressure PI ('Qt/ciP>) measured by the pressure detector (22) at the compressor outlet and the compressor supply air pressure P2 (Kg/ad?) measured by the compressor supply air pressure detector (23) are determined as the compression ratio. The signal is sent to the arithmetic unit (25), and the compression ratio T is calculated using the following formula.

Pl+1.033 P2+1.033 また、コンプレッサ出口流量検出器(21)によるコン
プレッサ出口流量Ii″+(覇/h)、コンプレッサ給
気温度検出器(24ンによるコンプレッサ給気温度T2
(C)および前述のコンプレッサ給気圧力P2 (*/
df/)が、修正流量演算器(26)に送られ、次の式
によ上記のように得られた修正流量WCは修正流量とサ
ージング限界圧縮比の関係を記憶するサージング限界圧
縮比演算器(27)に入力される。
Pl+1.033 P2+1.033 In addition, the compressor outlet flow rate Ii''+ (h/h) is determined by the compressor outlet flow rate detector (21), and the compressor supply air temperature T2 is determined by the compressor supply air temperature detector (24).
(C) and the compressor supply air pressure P2 (*/
df/) is sent to the corrected flow rate calculator (26), and the corrected flow rate WC obtained as above according to the following equation is sent to the surging limit compression ratio calculator which stores the relationship between the corrected flow rate and the surging limit compression ratio. (27) is input.

第3図は横軸に修正流量WC1縦軸に圧縮比Tをとるコ
ンプレッサ特性曲線である。コンプレッサの運転点がサ
ージング限界曲線(43)の左上部にある場合にコンプ
レッサはサージング領域に入る。
FIG. 3 is a compressor characteristic curve with the corrected flow rate WC on the horizontal axis and the compression ratio T on the vertical axis. The compressor enters the surging region when the operating point of the compressor is at the upper left of the surging limit curve (43).

サージング限界圧縮比演算器(27)にはサージング限
界曲線(43)を予め1し正流量とサージング限界圧縮
比の関係式として記憶させておく。サージング限界圧縮
比TCは修正流量WCが与えられればサージング限界圧
縮比演算器(27)により一義的に求まる。
The surging limit curve (43) is set to 1 in advance and stored in the surging limit compression ratio calculator (27) as a relational expression between the positive flow rate and the surging limit compression ratio. The surging limit compression ratio TC is uniquely determined by the surging limit compression ratio calculator (27) if the corrected flow rate WC is given.

圧縮比演算器(25)で得られた圧縮比Tとサージング
限界圧縮比演算器(27)で得られたアージング限界圧
縮比Tcを比較器(28)に入力する。圧縮比がサージ
ング限界圧縮比以上の場合、比較器(28)からの出力
信号(29)によりサージング領域に入ったことを示す
信号を出力装置(30)に送り、更に出力装置(30)
から大気開放弁(16)に弁操作信号(31)を送り大
気開放弁(16)を開く。
The compression ratio T obtained by the compression ratio calculator (25) and the surging limit compression ratio Tc obtained by the surging limit compression ratio calculator (27) are input to the comparator (28). When the compression ratio is equal to or higher than the surging limit compression ratio, the output signal (29) from the comparator (28) sends a signal indicating that the surging region has been entered to the output device (30), and the output device (30)
A valve operation signal (31) is sent from the air release valve (16) to the air release valve (16) to open the air release valve (16).

大気開放弁(16)が開くと、コンプレッサ出口流量F
l (Nn’/h)は増加し、コンプレッサの特性から
コンプレッサ出口圧力P+ (K9/W)が低下する。
When the atmosphere release valve (16) opens, the compressor outlet flow rate F
l (Nn'/h) increases, and the compressor outlet pressure P+ (K9/W) decreases due to the characteristics of the compressor.

以上により修正流量W C(zb/m)は増加し、サー
ジング限界圧縮比Tcは増加、圧縮比Tは低下するため
、コンプレッサはサージング領域から脱出できる。
As described above, the corrected flow rate W C (zb/m) increases, the surging limit compression ratio Tc increases, and the compression ratio T decreases, so that the compressor can escape from the surging region.

なお、上記実施例では、サージング防止のだめの弁に大
気放出弁(16)を使用したが、パイノ(ス調節弁(1
8)を使用してもよい。
In the above embodiment, the atmosphere release valve (16) was used as the surging prevention valve, but the pinosu adjustment valve (16) was used as the surging prevention valve.
8) may also be used.

また、上記実施例では、燃料電池発電システムのターボ
コンプレッサの場合について説明したが、電動駆動やエ
ンジン駆動のコンプレッサ、プロワであってもよく、更
に燃料電池発電システム以外の一般用のコンプレッサ、
ブロワであってもよい。
Further, in the above embodiment, the case of a turbo compressor of a fuel cell power generation system was explained, but it may be an electric drive or engine driven compressor or blower, and furthermore, a general compressor other than a fuel cell power generation system,
It may also be a blower.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、コンプレッサ前後の
圧力、流量、温度から、圧縮比およびサージング限界圧
縮比を求め、それを比較してサージング領域に入ったこ
とを検出するように構成したので、検出範囲が広く、精
度の高いものが得られる効果がある。
As described above, according to the present invention, the compression ratio and the surging limit compression ratio are determined from the pressure, flow rate, and temperature before and after the compressor, and by comparing them, it is detected that the surging region has entered. , the detection range is wide and high accuracy can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるターボコンプレッサ
のサージング防止装置を示す系統図、第2図は従来のタ
ーボコンプレッサのサージング防止装置を示す系統図、
第3図はターボコンプレッサの特性を示す特性図である
。 図において、(2b)はコンプレッサ、(21)はコン
プレッサ出口流量検出器、(22)はコングンツサ出ロ
圧力検出器、(23)はコンプレッサ給気圧力検出器、
(24)はコンプレッサ給気温度検出器、(25)は圧
縮比演算器、(26)は修正流量演算器、(27)はサ
ージング限界圧縮比演算器、(28)は比較器である。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a system diagram showing a surging prevention device for a turbo compressor according to an embodiment of the present invention, FIG. 2 is a system diagram showing a conventional surging prevention device for a turbo compressor,
FIG. 3 is a characteristic diagram showing the characteristics of the turbo compressor. In the figure, (2b) is the compressor, (21) is the compressor outlet flow rate detector, (22) is the conguntusa outlet pressure detector, (23) is the compressor supply air pressure detector,
(24) is a compressor supply air temperature detector, (25) is a compression ratio calculator, (26) is a correction flow rate calculator, (27) is a surging limit compression ratio calculator, and (28) is a comparator. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  コンプレッサの出口側圧力を検出する出口圧力検出器
と、上記コンプレツサの出口側流量を検出する出口流量
検出器と、上記コンプレッサの給気側圧力を検出する給
気圧力検出器と、上記コンプレツサの給気側温度を検出
する給気温度検出器と、上記出口圧力検出器と上記給気
圧力検出器からの検出信号を入力とする圧縮比演算器と
、上記出口流量検出器と上記給気圧力検出器と上記給気
温度検出器からの検出信号を入力とする修正流量演算器
と、上記修正流量演算器からの修正流量を入力とするサ
ージング限界圧縮比演算器と、上記圧縮比演算器からの
圧縮比と上記サージング限界圧縮比演算器からのサージ
ング限界圧縮比を入力とし、サージング領域を検出する
比較器とを備えたターボコンプレツサのサージング防止
装置。
an outlet pressure detector for detecting the pressure on the outlet side of the compressor; an outlet flow rate detector for detecting the flow rate on the outlet side of the compressor; a supply pressure detector for detecting the pressure on the supply side of the compressor; a supply air temperature detector that detects the air side temperature; a compression ratio calculator that receives the detection signals from the outlet pressure detector and the supply air pressure detector; and the outlet flow rate detector and the supply air pressure detector. a corrected flow rate calculator which receives the detection signal from the supply air temperature detector as input; a surging limit compression ratio calculator which receives the corrected flow rate from the corrected flow rate calculator as input; A surging prevention device for a turbo compressor, comprising a comparator that receives a compression ratio and a surging limit compression ratio from the surging limit compression ratio calculator and detects a surging region.
JP1236261A 1989-09-12 1989-09-12 Surging preventing apparatus for turbo compressor Pending JPH03100398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1236261A JPH03100398A (en) 1989-09-12 1989-09-12 Surging preventing apparatus for turbo compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1236261A JPH03100398A (en) 1989-09-12 1989-09-12 Surging preventing apparatus for turbo compressor

Publications (1)

Publication Number Publication Date
JPH03100398A true JPH03100398A (en) 1991-04-25

Family

ID=16998162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1236261A Pending JPH03100398A (en) 1989-09-12 1989-09-12 Surging preventing apparatus for turbo compressor

Country Status (1)

Country Link
JP (1) JPH03100398A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506512B1 (en) * 1999-09-28 2003-01-14 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Compression regenerative machine for fuel cell
US6653010B2 (en) * 2000-03-31 2003-11-25 Ballard Power Systems Ag Fuel cell system
US6990814B2 (en) * 2003-12-18 2006-01-31 Caterpillar Inc. Engine turbocharger control management system
JP2007005257A (en) * 2005-06-27 2007-01-11 Matsushita Electric Works Ltd Lighting system
FR2921698A1 (en) * 2007-10-02 2009-04-03 Peugeot Citroen Automobiles Sa THERMAL MOTOR EQUIPPED WITH A TURBOCHARGER AND METHOD FOR CONTROLLING THE PUMPING OF THE TURBOCHARGER
US8191369B2 (en) * 2003-11-12 2012-06-05 Mack Trucks, Inc. Turbo-charger surge detection
JP2014011090A (en) * 2012-07-02 2014-01-20 Honda Motor Co Ltd Fuel cell system
US9722261B2 (en) 2014-11-05 2017-08-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system
GB2550469A (en) * 2016-04-01 2017-11-22 Fisher Rosemount Systems Inc Methods and apparatus for detecting and preventing compressor surge
CN110176614A (en) * 2018-02-21 2019-08-27 丰田自动车株式会社 The control method of fuel cell system and fuel cell system
US10480521B2 (en) 2016-04-01 2019-11-19 Fisher-Rosemount Systems, Inc. Methods and apparatus for detecting and preventing compressor surge

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5452308A (en) * 1977-09-14 1979-04-24 Sundstrand Corp Surge adjusting device for air compressor
JPS5453308A (en) * 1977-09-14 1979-04-26 Sundstrand Corp Surge adjusting device for air compressor
JPS6179820A (en) * 1984-09-26 1986-04-23 Mitsubishi Electric Corp Starting method of turbo-compressor system
JPS6248999A (en) * 1985-08-27 1987-03-03 Idemitsu Petrochem Co Ltd Method for operating compressor
JPS62195492A (en) * 1986-02-21 1987-08-28 Hitachi Ltd Surging preventing device for turbocompressor
JPS64394A (en) * 1987-06-23 1989-01-05 Hitachi Ltd Device for preventing surging in compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5452308A (en) * 1977-09-14 1979-04-24 Sundstrand Corp Surge adjusting device for air compressor
JPS5453308A (en) * 1977-09-14 1979-04-26 Sundstrand Corp Surge adjusting device for air compressor
JPS6179820A (en) * 1984-09-26 1986-04-23 Mitsubishi Electric Corp Starting method of turbo-compressor system
JPS6248999A (en) * 1985-08-27 1987-03-03 Idemitsu Petrochem Co Ltd Method for operating compressor
JPS62195492A (en) * 1986-02-21 1987-08-28 Hitachi Ltd Surging preventing device for turbocompressor
JPS64394A (en) * 1987-06-23 1989-01-05 Hitachi Ltd Device for preventing surging in compressor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506512B1 (en) * 1999-09-28 2003-01-14 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Compression regenerative machine for fuel cell
US6653010B2 (en) * 2000-03-31 2003-11-25 Ballard Power Systems Ag Fuel cell system
US8191369B2 (en) * 2003-11-12 2012-06-05 Mack Trucks, Inc. Turbo-charger surge detection
US6990814B2 (en) * 2003-12-18 2006-01-31 Caterpillar Inc. Engine turbocharger control management system
JP2007005257A (en) * 2005-06-27 2007-01-11 Matsushita Electric Works Ltd Lighting system
EP2045455A1 (en) * 2007-10-02 2009-04-08 Peugeot Citroën Automobiles S.A. Heat engine equipped with a turbocharger and method for fighting against the pumping of the turbocharger
FR2921698A1 (en) * 2007-10-02 2009-04-03 Peugeot Citroen Automobiles Sa THERMAL MOTOR EQUIPPED WITH A TURBOCHARGER AND METHOD FOR CONTROLLING THE PUMPING OF THE TURBOCHARGER
JP2014011090A (en) * 2012-07-02 2014-01-20 Honda Motor Co Ltd Fuel cell system
US9722261B2 (en) 2014-11-05 2017-08-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system
GB2550469A (en) * 2016-04-01 2017-11-22 Fisher Rosemount Systems Inc Methods and apparatus for detecting and preventing compressor surge
US10480521B2 (en) 2016-04-01 2019-11-19 Fisher-Rosemount Systems, Inc. Methods and apparatus for detecting and preventing compressor surge
GB2550469B (en) * 2016-04-01 2021-10-20 Fisher Rosemount Systems Inc Methods and apparatus for detecting and preventing compressor surge
CN110176614A (en) * 2018-02-21 2019-08-27 丰田自动车株式会社 The control method of fuel cell system and fuel cell system
CN110176614B (en) * 2018-02-21 2022-02-25 丰田自动车株式会社 Fuel cell system and control method for fuel cell system

Similar Documents

Publication Publication Date Title
EP1639248B1 (en) Gas turbine and a method for controlling a gas turbine
US4767259A (en) Cooling air flow controlling apparatus for gas turbine
US5609016A (en) Gas turbine apparatus and method of operating same on gaseous fuel
JPH03100398A (en) Surging preventing apparatus for turbo compressor
US20090113896A1 (en) Control apparatus and method for gas-turbine engine
US20020166322A1 (en) Process for control of boost pressure limitation of a turbocharger in an internal combustion engine as a function of the density of ambient air
JP2011102548A (en) Gas turbine control device
JP2644785B2 (en) Gas turbine engine controller
EP2937540B1 (en) Multi-stage supercharging system, and device and method for controlling same
JPH0835433A (en) Method and equipment for correcting output fluctuation of internal combustion engine by altitude
CN1035159A (en) Gas turbine engine systems and control the method for this system
US5447023A (en) Synthesized fuel flow rate and metering valve position
JPS62195492A (en) Surging preventing device for turbocompressor
CN113090413A (en) Open type variable thrust rocket engine, rocket and control method
US6314733B1 (en) Control method
JP2003307151A (en) Presuming method for atmospheric pressure and exhaust gas temperature
JPH02227522A (en) Supercharging pressure control device
JP3783527B2 (en) Two-stage turbocharging system
CN214741725U (en) Open type variable thrust rocket engine and rocket
EP4279729A1 (en) Engine pre turbine pressure monitoring system
CN103282626B (en) For the system and method for motor vehicles explosive motor being controlled in transition state
JPS5939936A (en) Suction device for gas turbine
JPS6128711A (en) Automatic control device of charging temperature
JPH0719989A (en) Pressure control device for blowout type wind tunnel
JPS61197793A (en) Cooling method in multi-stage root type vacuum pump