JPS6248883B2 - - Google Patents

Info

Publication number
JPS6248883B2
JPS6248883B2 JP55095130A JP9513080A JPS6248883B2 JP S6248883 B2 JPS6248883 B2 JP S6248883B2 JP 55095130 A JP55095130 A JP 55095130A JP 9513080 A JP9513080 A JP 9513080A JP S6248883 B2 JPS6248883 B2 JP S6248883B2
Authority
JP
Japan
Prior art keywords
alloy
magnetic
present
thin plate
magnetic permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55095130A
Other languages
Japanese (ja)
Other versions
JPS5720415A (en
Inventor
Nobuhiro Tsukagoshi
Hiroshi Ito
Kyohide Ogasawara
Kaoru Kasugai
Tooru Namiki
Kenji Suzuki
Yutaka Takasu
Hajime Nomura
Takamasa Yoshikawa
Masayasu Yamaguchi
Saburo Aso
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP9513080A priority Critical patent/JPS5720415A/en
Publication of JPS5720415A publication Critical patent/JPS5720415A/en
Publication of JPS6248883B2 publication Critical patent/JPS6248883B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、消費電力が小さく小型化が容易な消
磁器に関する。 磁化された物質や磁気記録材の消磁には、直流
消去および交流消去の両方式が用いられるが、従
来の消磁用装置に用いられる磁性材料はパーマロ
イが主体であつた。しかし、これは硬度が低く加
工し易い利点がある反面、飽和磁束密度が低く、
消電電力が大きくなり、装置が稍大型化するとい
う欠点があつた。 本発明はこのような欠点を改善するためになさ
れたもので、Fe−Co−Si系合金を超急冷し、薄
帯化する処理により、飽和磁束密度が高く、しか
も加工性の優れた高透磁性合金薄板が得られるこ
とを見い出し、本発明に至つた。 このFeを主成分とするFe−Co−Si系合金は、
既に軟磁性材料として研究、提案されており、第
1図に示す如く、重量Co10〜22%、Si8〜16%、
残部をFeとする組成範囲に最大透磁率のピーク
があるが、従来の組成及び溶解鋳造条件では、軟
磁気特性が十分でなく、また極め硬くて脆いため
著しく加工が困難で実用に供せられなかつたが、
本発明はこれを解決したものである。 即ち、本発明の消磁器はその鉄心材料をFeを
主成分とし、重量で8〜16%のSiを含有するFe
−Co−Si系合金を溶融した状態から高速回転す
るツインロール又はシングルロール上に噴出させ
て超急冷し、薄帯化して成る高透磁率合金薄板で
形成した点に特徴がある。 本発明によれば、従来のパーマロイ等の磁性材
料で鉄心を形成したものと比べ、小電流で消磁が
可能となり、小型化することができる。また、磁
界の変化に対する応答が速く、短時間で消磁する
ことができ、飽和磁束密度が高いので、強磁性体
の消磁も容易となるほかに、加工性が優れている
ので所望の形状に成形することができる。 以下、本発明を図面を参照しながら説明する
と、第2図において、1は消磁器の鉄心、2はコ
イルであり、3は消磁しようとする磁性体であ
る。そして、直流消去においては、鉄心1の磁化
が飽和に達する迄コイル2に電流を流し、また、
交流消去においては、鉄心1に交流磁界を発生さ
せ、磁性体3を徐々に遠ざけてゆくか、減衰して
いく交流磁界をかけるのである。 以上は従来と同様の構成であるが、本発明にあ
つては、鉄心1をFe−Co−Si系高透磁率薄板合
金で形成してある。 第3図は本発明による高透磁率合金薄板を得る
装置の一例を示すもので、11は加熱管11aお
よびヒータ11bより成る加熱装置、12a,1
2bはツインロール、13はガス導入口13aを
有するガスガイド管であり、加熱管11aはヒー
タ11b内で昇降自在であり、またガスガイド管
13は加熱管11aに套装してある。 先ず、加熱管11aを上昇位置におき、管11
a内を真空にした状態又はガス導入口11dおよ
び13aからArガスその他酸化防止用ガスを導
入した状態で、重量比でCo10〜22%、Si8〜16%
および残部をFeと不可避の不純物とよりなる合
金母材14をヒータ11bにより加熱溶解する。 この合金母材とし一旦溶解鋳造されたビレツト
を使用することは勿論差支えなく、また得られる
合金の電気抵抗や機械強度加工性等を向上するた
め、副成分としてV,Nb,Cr,Mo,W,Cu、
Ge,Ni,Mn,Sn,Sb,Beの一種又は二種以上
を必要に応じで添加することができる。 次に、第3図に示す如く、加熱管11aをロー
ル12a,12bに接近するように下降させ、加
熱管11a内のガス圧を上げて溶融した母材14
を高速回転するロール12a,12b間にノズル
11cより噴出させ、ロール12a,12bによ
り急冷圧延して合金薄板14′を得る。即ち、溶
融した合金母材を超急冷法によつて薄帯化する。 このようにして得られた薄板を、水素或いは
Arガス等の非酸化性雰囲気で再結晶温度以上融
点以下の温度で加熱し、適当な速度で冷却する方
法で熱処理することにより、同一組成の合金母材
(Co10〜22%、Si8〜16%、残部Fe)を単に溶解
鋳造等して得られる従来品と比較して、最大透磁
率、保磁力等の軟磁気特性が著しく改善され、さ
らに硬度(ビツカース硬度)が十分高いにも拘ら
ず、180゜の折り曲げにも耐える極めて加工性の
優れたものが得られる。 第4図は本発明による合金薄板の熱処理条件を
示すグラフであり、図のように台形型温度制御方
式により、処理時間t1および処理温度T1を変えて
処理条件の軟磁気特性に及ぼす効果を説明する。
なお、温度の上昇および降下速度は歪が生じない
程度にすればよく、例えば1℃/mm〜10℃/min
が適当である。 即ち、第5図はCo13%、Si10%および残部Fe
よりなる本発明合金薄板の処理時間t1を100分と
した場合における処理温度に対する保磁力Hcお
よび初透磁率μoとの関係を示すものであり、
1100〜1200℃にピークを有する。 第6図は第5図と同一の場合における処理温度
に対する最小曲げ半径との関係を示すものであ
る。こゝで、最小曲げ半径は薄板の巻き付け可能
な棒の半径によつて表わし、数値が小なる程フレ
シプルであることを示す。 第7図は同じく処理温度T1を1150℃一定とし
た場合における処理時間に対する保磁力Hcおよ
び初透磁率μoとの関係を示すものである。 第5図乃至第7図から明らかなように、本発明
による合金薄板の熱処理条件としては、合金組成
の違いにより異なるが、処理温度800〜1300℃、
処理時間10分〜24時間の範囲で磁気特性および加
工性の優れたものが得られる。 また、熱処理に際し、合金薄板を2枚のAl2O3
板で挟持した状態で、水素ガス雰囲気又は真空
(0.01〜1Torr)中で処理すると飽和透磁率Bsが
14000から20000に変わり、40%程度向上すること
が確認されている。 次に本発明に係る高透磁率合金の一例を挙げれ
ば原料として、純度99.9%のSi,FeおよびCoを
用い、重量組成でCo18%、Si11%、残部Feより
成る合金母材1.5Kgをマグネシアルツボに容れ、
真空中で高周波電気炉によつて溶解した後、撹拌
し均一な合金とし、第3図と同様に超急冷法によ
つて、厚さ約50μの薄板に成形した。この薄板を
水素雰囲気中で1050℃、100分の熱処理を行な
い、その磁気特性および電気特性を調べた。 その結果を従来のパーマロイと比較し表−1に
示した。
The present invention relates to a demagnetizer that consumes little power and is easily miniaturized. Both direct current erasing and alternating current erasing methods are used to demagnetize magnetized substances and magnetic recording materials, but permalloy has been the main magnetic material used in conventional demagnetizing devices. However, while this has the advantage of low hardness and easy processing, it has a low saturation magnetic flux density,
The drawbacks were that the power consumed increased and the device became slightly larger. The present invention was made to improve these drawbacks, and by ultra-quenching the Fe-Co-Si alloy and forming it into a thin ribbon, it has a high saturation magnetic flux density and high permeability with excellent workability. It was discovered that a magnetic alloy thin plate can be obtained, leading to the present invention. This Fe-Co-Si alloy whose main component is Fe is
It has already been researched and proposed as a soft magnetic material, and as shown in Figure 1, the weight of Co is 10 to 22%, Si is 8 to 16%,
The maximum magnetic permeability peaks in the composition range where the balance is Fe, but with conventional compositions and melting and casting conditions, it does not have sufficient soft magnetic properties and is extremely hard and brittle, making it extremely difficult to process and put into practical use. Nakatsuta, but
The present invention solves this problem. That is, the demagnetizer of the present invention has an iron core material mainly composed of Fe and containing 8 to 16% Si by weight.
- It is characterized in that it is formed from a high magnetic permeability alloy thin plate made by jetting a molten Co-Si alloy onto a twin roll or single roll rotating at high speed and ultra-quenching it into a thin ribbon. According to the present invention, demagnetization can be performed with a small current compared to conventional iron cores formed of magnetic materials such as permalloy, and the size can be reduced. In addition, it has a fast response to changes in the magnetic field, can be demagnetized in a short time, and has a high saturation magnetic flux density, making it easy to demagnetize ferromagnetic materials. can do. The present invention will be described below with reference to the drawings. In FIG. 2, 1 is an iron core of a demagnetizer, 2 is a coil, and 3 is a magnetic body to be demagnetized. In DC erasure, a current is passed through the coil 2 until the magnetization of the iron core 1 reaches saturation, and
In alternating current erasure, an alternating magnetic field is generated in the iron core 1, and the magnetic body 3 is gradually moved away or attenuated. The above configuration is the same as the conventional one, but in the present invention, the iron core 1 is formed of a Fe--Co--Si based high magnetic permeability thin plate alloy. FIG. 3 shows an example of an apparatus for obtaining a high magnetic permeability alloy thin plate according to the present invention, in which 11 is a heating device consisting of a heating tube 11a and a heater 11b;
2b is a twin roll; 13 is a gas guide tube having a gas inlet 13a; the heating tube 11a is movable up and down within the heater 11b, and the gas guide tube 13 is wrapped around the heating tube 11a. First, the heating tube 11a is placed in the raised position, and the tube 11
Co 10 to 22% and Si 8 to 16% by weight when the inside of a is evacuated or Ar gas and other antioxidant gases are introduced from the gas inlets 11d and 13a.
The alloy base material 14, the remainder of which is Fe and unavoidable impurities, is heated and melted by the heater 11b. It is of course possible to use a billet that has been melted and cast as the alloy base material, and in order to improve the electrical resistance, mechanical strength, and workability of the resulting alloy, V, Nb, Cr, Mo, and W can be added as subcomponents. ,Cu,
One or more of Ge, Ni, Mn, Sn, Sb, and Be can be added as necessary. Next, as shown in FIG. 3, the heating tube 11a is lowered so as to approach the rolls 12a and 12b, and the gas pressure inside the heating tube 11a is increased to melt the base material 14.
is ejected from a nozzle 11c between rolls 12a and 12b rotating at high speed, and rapidly rolled by the rolls 12a and 12b to obtain a thin alloy plate 14'. That is, the molten alloy base material is turned into a thin ribbon by an ultra-quenching method. The thin plate obtained in this way is heated with hydrogen or
By heating at a temperature above the recrystallization temperature and below the melting point in a non-oxidizing atmosphere such as Ar gas, and cooling at an appropriate rate, the alloy base material of the same composition (10 to 22% Co, 8 to 16% Si) is heated. , the remainder Fe), the soft magnetic properties such as maximum magnetic permeability and coercive force are significantly improved, and the hardness (Vickers hardness) is sufficiently high. A product with extremely excellent workability that can withstand bending of 180° can be obtained. FIG. 4 is a graph showing the heat treatment conditions for the thin alloy plate according to the present invention. As shown in the figure, the trapezoidal temperature control method is used to change the treatment time t1 and the treatment temperature T1 , and the effect of the treatment conditions on the soft magnetic properties. Explain.
Note that the rate of temperature rise and fall may be set to a level that does not cause distortion, for example, 1°C/mm to 10°C/min.
is appropriate. That is, Figure 5 shows 13% Co, 10% Si, and the balance Fe.
This shows the relationship between the coercive force Hc and the initial magnetic permeability μo with respect to the processing temperature when the processing time t 1 is 100 minutes for a thin sheet of the alloy of the present invention consisting of:
It has a peak at 1100-1200℃. FIG. 6 shows the relationship between the minimum bending radius and the processing temperature in the same case as FIG. 5. Here, the minimum bending radius is expressed by the radius of the rod around which the thin plate can be wound, and the smaller the value, the more flexible it is. FIG. 7 similarly shows the relationship between the coercive force Hc and the initial magnetic permeability μo with respect to the processing time when the processing temperature T1 is kept constant at 1150°C. As is clear from FIGS. 5 to 7, the heat treatment conditions for the alloy thin plate according to the present invention vary depending on the alloy composition, but the treatment temperature is 800 to 1300°C,
Products with excellent magnetic properties and workability can be obtained within a treatment time range of 10 minutes to 24 hours. In addition, during heat treatment, the alloy thin plate is treated with two Al 2 O 3
When sandwiched between plates and treated in a hydrogen gas atmosphere or vacuum (0.01 to 1 Torr), the saturated magnetic permeability Bs decreases.
It has been confirmed that it will change from 14,000 to 20,000, an improvement of about 40%. Next, to give an example of a high magnetic permeability alloy according to the present invention, Si, Fe and Co with a purity of 99.9% are used as raw materials, and 1.5 kg of an alloy base material consisting of 18% Co, 11% Si, and the balance Fe is mixed with magnesia. put it in a crucible,
After melting in vacuum in a high-frequency electric furnace, the mixture was stirred to form a uniform alloy, and formed into a thin plate of approximately 50 μm in thickness by ultra-quenching as shown in FIG. This thin plate was heat treated at 1050°C for 100 minutes in a hydrogen atmosphere, and its magnetic and electrical properties were investigated. The results are shown in Table 1 in comparison with conventional permalloy.

【表】 本発明は以上説明したようになるから、消費電
力が少なく、小型化の容易な消磁器を提供するこ
とができる。また、飽和磁束密度が高いため、強
磁性体の消磁も容易に行うことができるほか、加
工性に優れているので、その成形加工も容易で、
Si含有量が多いので、相対的にCo含有量が減少
することとあいまつて安価に製造することができ
る。
[Table] Since the present invention is as explained above, it is possible to provide a demagnetizer that consumes less power and is easily miniaturized. In addition, due to its high saturation magnetic flux density, it is easy to demagnetize ferromagnetic materials, and its excellent workability makes it easy to mold.
Since the Si content is high, the Co content is relatively reduced, and it can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のFe−Co−Si系合金の組成と最
大透磁率との関係を示す立体グラフ、第2図は本
発明の一実施例を示す消磁器の断面図、第3図は
本発明による合金薄板を製造する装置の一例を示
す説明図、第4図はその熱処理条件を示すグラ
フ、第5図はCo13%、Si10%および残部Feより
なる本発明による合金薄板の熱処理時間を一定と
した場合における処理温度一保磁力、初透磁率の
関係を示すグラフ、第6図は第5図と同一の場合
における処理温度−最小曲げ半径との関係を示す
グラフ、第7図は同じく熱処理温度を一定とした
場合における処理時間一保磁力、初透磁率の関係
を示すグラフである。
Figure 1 is a three-dimensional graph showing the relationship between the composition and maximum permeability of a conventional Fe-Co-Si alloy, Figure 2 is a cross-sectional view of a demagnetizer showing an embodiment of the present invention, and Figure 3 is a diagram showing the relationship between the composition and maximum permeability of a conventional Fe-Co-Si alloy. An explanatory diagram showing an example of the apparatus for producing the thin alloy sheet according to the invention, FIG. 4 is a graph showing the heat treatment conditions, and FIG. 5 is a graph showing the heat treatment time of the thin alloy sheet according to the invention consisting of 13% Co, 10% Si, and the balance Fe. Figure 6 is a graph showing the relationship between treatment temperature and coercive force and initial magnetic permeability in the same case as Figure 5. Figure 7 is a graph showing the relationship between treatment temperature and minimum bending radius in the same case as Figure 5. It is a graph showing the relationship between processing time, coercive force, and initial magnetic permeability when the temperature is kept constant.

Claims (1)

【特許請求の範囲】[Claims] 1 Feを主成分とし、重量で8〜16%のSiを含
有するFe−Co−Si系合金を溶融した状態から高
速回転するツインロール又はシングルロール上に
噴出させて超急冷し、薄帯化して成る高透磁率合
金薄板で鉄心材料を形成したことを特徴とする消
磁器。
1 A Fe-Co-Si alloy containing Fe as the main component and 8 to 16% Si by weight is spouted from a molten state onto a high-speed rotating twin roll or single roll, super-quenched, and turned into a thin ribbon. A demagnetizer characterized by having an iron core material made of a high magnetic permeability alloy thin plate.
JP9513080A 1980-07-14 1980-07-14 Magnetic eraser Granted JPS5720415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9513080A JPS5720415A (en) 1980-07-14 1980-07-14 Magnetic eraser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9513080A JPS5720415A (en) 1980-07-14 1980-07-14 Magnetic eraser

Publications (2)

Publication Number Publication Date
JPS5720415A JPS5720415A (en) 1982-02-02
JPS6248883B2 true JPS6248883B2 (en) 1987-10-16

Family

ID=14129234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9513080A Granted JPS5720415A (en) 1980-07-14 1980-07-14 Magnetic eraser

Country Status (1)

Country Link
JP (1) JPS5720415A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4897726A (en) * 1972-02-22 1973-12-12
JPS5493500A (en) * 1977-12-30 1979-07-24 Noboru Tsuya Magnetic alloy thin band and its preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4897726A (en) * 1972-02-22 1973-12-12
JPS5493500A (en) * 1977-12-30 1979-07-24 Noboru Tsuya Magnetic alloy thin band and its preparation

Also Published As

Publication number Publication date
JPS5720415A (en) 1982-02-02

Similar Documents

Publication Publication Date Title
JPS5929644B2 (en) Method for modifying magnetic properties of high magnetic permeability amorphous alloy
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JPWO2008133301A1 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JP2018123424A (en) Fe-BASED AMORPHOUS ALLOY AND Fe-BASED AMORPHOUS ALLOY THIN STRIP HAVING EXCELLENT SOFT MAGNETIC PROPERTIES
JP2016145373A (en) MANUFACTURING METHOD OF Fe-BASED NANOCRYSTAL ALLOY
JP2008231534A5 (en)
JPS6293342A (en) Soft magnetic material
JP2001295005A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JPS6248883B2 (en)
JPS581183B2 (en) High magnetic permeability amorphous alloy with high magnetic flux density and large squareness ratio
JP4217038B2 (en) Soft magnetic alloy
JPS6396252A (en) Heat treatment of toroidal amorphous magnetic core
JPH01261803A (en) Manufacture of rare-earth permanent magnet
JP4212820B2 (en) Fe-based soft magnetic alloy and manufacturing method thereof
JPS5824924B2 (en) Stork
JPS627261B2 (en)
JPS5942069B2 (en) Method for manufacturing amorphous alloy with high effective magnetic permeability
JPH0480523B2 (en)
JPS5853694B2 (en) Method for manufacturing in-plane non-oriented high silicon steel ribbon with excellent magnetic properties
JPS6057686B2 (en) Permanent magnetic ribbon and its manufacturing method
JPH1092619A (en) Fe-based soft magnetic metallic glass sintered body and its manufacture
JPS6358361B2 (en)
JPS6115940B2 (en)