JPS6248763B2 - - Google Patents

Info

Publication number
JPS6248763B2
JPS6248763B2 JP56130299A JP13029981A JPS6248763B2 JP S6248763 B2 JPS6248763 B2 JP S6248763B2 JP 56130299 A JP56130299 A JP 56130299A JP 13029981 A JP13029981 A JP 13029981A JP S6248763 B2 JPS6248763 B2 JP S6248763B2
Authority
JP
Japan
Prior art keywords
flow rate
water supply
output signal
steam generator
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56130299A
Other languages
Japanese (ja)
Other versions
JPS5833002A (en
Inventor
Taku Oomori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56130299A priority Critical patent/JPS5833002A/en
Publication of JPS5833002A publication Critical patent/JPS5833002A/en
Publication of JPS6248763B2 publication Critical patent/JPS6248763B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、蒸気発生器の給水制御装置に係り、
特に沸騰水型原子炉プラントに適用するのに好適
な蒸気発生器の給水制御装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a water supply control device for a steam generator,
In particular, the present invention relates to a water supply control device for a steam generator suitable for application to a boiling water reactor plant.

〔発明の背景〕[Background of the invention]

従来の蒸気発生器の給水制御装置は、PID演算
機能を有する給水制御器の出力が、タービン駆動
給水ポンプを駆動するタービンの速度制御器設定
値及びモータ駆動給水ポンプの流量調節弁に同時
に与えられる。そして、給水制御器の入力信号と
して、原子炉(ボイラ)水位と目標水位の偏差信
号のみを用いる場合を一要素制御器、給水制御器
の入力信号としてこの偏差信号に主蒸気流量と給
水流量の偏差を加算した信号を用いる場合を三要
素制御と称している。このように一要素制御と三
要素制御との切換えが行える蒸気発生器の給水制
御装置の例としては、特開昭52―104603号公報に
示されるものがある。一般に、従来の蒸気発生器
の給水制御装置は、低出力時には一要素給水制御
系として使用されるが、中または高出力時には主
蒸気流量と給水流量のミスマツチ信号を加算して
なる三要素給水制御系として使用されている。三
要素給水制御系は、主蒸気流量や、給水流量が変
動する場合に原子炉(ボイラ)水位の変動を抑制
する効果があるが、実際には給水制御器の積分演
算動作遅れのためにその効果が発揮されていない
のが現状である。原子炉(ボイラ)水位に変動を
及ぼす過渡変化事象としては、以下のものがあ
る。
In a conventional steam generator feedwater control device, the output of a feedwater controller with a PID calculation function is simultaneously applied to the speed controller setting value of the turbine that drives the turbine-driven feedwater pump and the flow rate control valve of the motor-driven feedwater pump. . When only the deviation signal between the reactor (boiler) water level and the target water level is used as the input signal for the feedwater controller, a one-element controller is used as the input signal for the feedwater controller. The case where a signal with added deviations is used is called three-element control. An example of a water supply control device for a steam generator capable of switching between one-element control and three-element control in this manner is disclosed in Japanese Patent Application Laid-Open No. 104603/1983. In general, conventional steam generator feed water control systems are used as a one-element feed water control system at low output, but at medium or high output, three-element feed water control is performed by adding mismatch signals between the main steam flow rate and the feed water flow rate. used as a system. The three-element feedwater control system has the effect of suppressing fluctuations in the reactor (boiler) water level when the main steam flow rate or feedwater flow rate fluctuates, but in reality, the delay in the integral calculation operation of the feedwater controller The current situation is that it is not effective. Transient change events that cause fluctuations in reactor (boiler) water level include the following:

(1) 給水流量が先行して変化する事象 a.給水ポンプトリツプ b.給水ポンプ切替制御 (2) 主蒸気流量が先行して変化する事象 a.負荷追従制御 b.原子炉再循環ポンプトリツプ c.負荷しや断 d.プラントトリツプ(スクラム) 原子力プラント特に沸騰水型原子炉(BWR)
の場合、上記(1)の事象では、通常プラント出力を
変化させないので、給水流量自体を制御して原子
炉(ボイラ)水位を確保している。また、(2)の事
象では主蒸気流量のみでなくBWRでは炉心内ボ
イドが変動するため、水位変動が複雑となるが、
やはり、給水流量を制御して水位の確保を図つて
いる。従来の三要素給水制御系では、水位設定点
変更に対する原子炉水位の応答性が最適となる様
に給水制御器の制御定数が決定されるが、このと
きの給水制御器の積分時定数は1分程度に選ばれ
る。しかるに、主蒸気流量が急速に変化する(2)の
事象では、このような制御定数では主蒸気流量と
給水流量とのミスマツチが大きく水位の確保が特
に重要なBWRでは警報が発生し、さらに警報レ
ベルを超えると、プラントトリツプに至るおそれ
もある。
(1) Events in which the feed water flow rate changes in advance a. Feed water pump trip b. Feed water pump switching control (2) Events in which the main steam flow rate changes in advance a. Load following control b. Reactor recirculation pump trip c. Load Plant trip (scram) Nuclear plants, especially boiling water reactors (BWR)
In the case of (1) above, the plant output is usually not changed, so the water supply flow rate itself is controlled to ensure the reactor (boiler) water level. In addition, in event (2), not only the main steam flow rate but also the void in the core changes in BWR, making the water level fluctuation complicated.
As expected, the water level is maintained by controlling the water supply flow rate. In the conventional three-element feedwater control system, the control constant of the feedwater controller is determined to optimize the responsiveness of the reactor water level to changes in the water level set point, but the integral time constant of the feedwater controller at this time is 1. Selected in minutes. However, in the event (2) where the main steam flow rate changes rapidly, with such control constants, there is a large mismatch between the main steam flow rate and the feed water flow rate, and in BWRs where securing the water level is particularly important, an alarm will be generated, and an alarm will be issued. If the level is exceeded, there is a risk of plant tripping.

これに対し主蒸気流量と給水流量のミスマツチ
信号に進み/遅れ補償を行つて給水制御器の入力
側に加算する方法もあるが、進み時定数(TL
≫遅れ時定数(TR)となるように進み時定数及
び遅れ時定数を選定しなければ、即応性の改善を
図ることが困難である。実際には信号ノイズ処理
の目的でTL<TRとして使用されている。したが
つてTL≫TRに選定することは、制御系の安定性
の面から好ましくない。
On the other hand, there is a method of performing lead/delay compensation on the mismatch signal between the main steam flow rate and the feed water flow rate and adding it to the input side of the feed water controller, but the lead time constant (T L )
≫ Unless the lead time constant and the lag time constant are selected so as to satisfy the delay time constant (T R ), it is difficult to improve the immediate response. Actually, it is used for the purpose of signal noise processing as T L < TR . Therefore, it is not preferable to select T L >>T R from the viewpoint of stability of the control system.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、蒸気発生器の水位、給水流量
及び蒸気流量に基づく三要素制御時において蒸気
流量と給水流量とのミスマツチに対して即応性が
ある蒸気発生器の給水制御装置を提供することに
ある。
An object of the present invention is to provide a water supply control device for a steam generator that can quickly respond to a mismatch between the steam flow rate and the feed water flow rate during three-element control based on the water level, feed water flow rate, and steam flow rate of the steam generator. It is in.

本発明の他の目的は、前述の目的が達成できる
と共に蒸気発生器を有するプラントのトリツプ時
に容易に一要素制御に移行できる単純な構成の蒸
気発生装置の給水制御装置を提供することにあ
る。
Another object of the present invention is to provide a feed water control system for a steam generator that can achieve the above-mentioned objects and has a simple configuration that allows for easy transition to one-element control when a plant having a steam generator is tripped.

〔発明の概要〕[Summary of the invention]

最初の目的を達成する本発明の第1の特徴は、
水位検出手段の出力信号と水位設定信号との偏差
を求める第1加算手段と、第1加算手段の出力信
号を入力して積分演算を行う給水制御器と、給水
流量検出手段の出力信号と蒸気流量検出手段の出
力信号との偏差を求める第2加算手段と、第2加
算手段の出力信号の進み遅れ補償を行う補償手段
と、補償手段の出力信号と前記給水制御器の出力
信号とを加算する第3加算手段と、第3加算手段
の出力信号に基づいて給水流量を調節する手段と
を備えたことにある。
The first feature of the invention that achieves the first objective is:
a first addition means for calculating the deviation between the output signal of the water level detection means and the water level setting signal; a water supply controller that inputs the output signal of the first addition means and performs an integral calculation; and an output signal of the water supply flow rate detection means and the steam a second addition means for determining the deviation from the output signal of the flow rate detection means; a compensation means for compensating for the lead/lag of the output signal of the second addition means; and an output signal of the compensation means and an output signal of the water supply controller are added together. and a means for adjusting the water supply flow rate based on the output signal of the third addition means.

後の目的を達成する本発明の第2の特徴は、前
述の第1の特徴の要件の他に、蒸気発生器を有す
るプラントのトリツプ時に第2加算手段の出力信
号の第3加算手段への入力を阻止するしや断手段
を設けたものである。
A second feature of the invention which achieves the latter object is, in addition to the requirements of the first feature mentioned above, that the output signal of the second summing means is transferred to the third summing means during a trip of a plant having a steam generator. It is equipped with a cutting means to prevent input.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の具体的な一実施例である蒸気
発生器の給水制御装置を示す。ここではBWRを
例にとり挙げている。原子炉1で発生した蒸気は
主蒸気管2により蒸気加減弁3を経てタービン4
に導かれ、タービン4に連結された発電機(図示
せず)を回す。タービン4から排気された蒸気
は、復水器5にて凝縮される。この凝縮にて得ら
れた水は、復水ポンプ6、タービン駆動給水ポン
プ(T―RFP)7及びモータ駆動給水ポンプ
(M―RFP)8により昇圧されて、給水配管9を
介して再び原子炉1へ供給される。次に、原子炉
1の水位は水位検出器13により検出される。加
算器14は、水位検出器13にて測定された水位
信号と、水位設定信号(Lset)を求める。得ら
れた偏差信号が給水制御器18に入力される。給
水制御器18は、PID演算機能を有している。給
水制御器18の出力は、加算器22を経て、T―
RFPのタービン速度制御器23及びM―RFPの
流量調整弁12に与えられる。以上の構成は、加
算器22を設けた点を除けば前述した従来技術の
一要素給水制御系と同じである。
FIG. 1 shows a water supply control device for a steam generator, which is a specific embodiment of the present invention. Here we use BWR as an example. The steam generated in the reactor 1 passes through the steam control valve 3 through the main steam pipe 2 to the turbine 4.
, which turns a generator (not shown) connected to the turbine 4. Steam exhausted from the turbine 4 is condensed in a condenser 5. The water obtained by this condensation is pressurized by a condensate pump 6, a turbine-driven water pump (T-RFP) 7, and a motor-driven water pump (M-RFP) 8, and is then returned to the nuclear reactor via a water supply pipe 9. 1. Next, the water level of the nuclear reactor 1 is detected by the water level detector 13. The adder 14 obtains the water level signal measured by the water level detector 13 and the water level setting signal (Lset). The obtained deviation signal is input to the water supply controller 18. The water supply controller 18 has a PID calculation function. The output of the water supply controller 18 passes through an adder 22 and is then outputted to T-
It is applied to the turbine speed controller 23 of the RFP and the flow rate regulating valve 12 of the M-RFP. The above configuration is the same as the one-element water supply control system of the prior art described above, except that the adder 22 is provided.

原子炉1から吐出された主蒸気流量は蒸気流量
検出器15により、原子炉1に供給される給水流
量は給水流量検出器16によりそれぞれ検出され
る。検出された蒸気流量と給水流量との偏差信号
は加算器17で求められ、切替接点19を経て補
償器20に入力される。補償器20の出力信号
は、加算器22で給水制御器18の出力信号と加
算される。ここで、切替接点19は制御棒スクラ
ム検出器24でスクラムが検出されると接点を切
離すように動作する。すなわち、負荷しや断、タ
ービントリツプに併つて、スクラムが発生する。
このとき、主蒸気流量が急激に減少するが、原子
炉1内のボイドが消滅するために原子炉水位は急
激に減少するので、給水流量はむしろ最大限に供
給しなければならない。よつてスクラムが発生し
た場合には、前述の切替切点19の切離により主
蒸気流量と給水流量のミスマツチ信号を加算器2
2に入力しないようにしている。これによつて、
本実施例の給水制御装置は、原子炉水位、主蒸気
流量及び給水流量による三要素制御から、原子炉
水位を入力する給水制御器18による一要素制御
に移行する。また、補償器20は進み/遅れ補償
器であつてもよく、PI制御器でも良い。
The main steam flow rate discharged from the nuclear reactor 1 is detected by a steam flow rate detector 15, and the feed water flow rate supplied to the nuclear reactor 1 is detected by a feed water flow rate detector 16. A deviation signal between the detected steam flow rate and the feed water flow rate is obtained by an adder 17 and inputted to a compensator 20 via a switching contact 19. The output signal of compensator 20 is added to the output signal of water supply controller 18 in adder 22 . Here, the switching contact 19 operates to disconnect the contact when a scram is detected by the control rod scram detector 24. In other words, a scram occurs along with load shedding and turbine tripping.
At this time, the main steam flow rate decreases rapidly, but the reactor water level decreases rapidly as the voids within the reactor 1 disappear, so the feed water flow rate must be supplied at its maximum. Therefore, if a scram occurs, the mismatch signal between the main steam flow rate and the feed water flow rate is output to the adder 2 by disconnecting the switching point 19 described above.
I try not to input it to 2. By this,
The feedwater control device of this embodiment shifts from three-element control using the reactor water level, main steam flow rate, and feedwater flow rate to one-element control using the feedwater controller 18 that inputs the reactor water level. Further, the compensator 20 may be a lead/lag compensator or a PI controller.

次に、本実施例の効果について述べる。BWR
プラントで、原子炉出力を60%から95%へ約40
%/minで変更する負荷追従制御を行つた場合、
原子炉水位、主蒸気流量及び給水流量を給水制御
器に入力する従来の三要素給水制御方式での応答
性を第2図に示す。主蒸気流量の変化に対して、
給水流量の応答が遅れており、このため、原子炉
水位が最大20cmほど低下し、警報レベル(−15
cm)を越える。一方、本実施例により、補償器2
0に進み/遅れ要素を適用して進み時定数(TL
>遅れ時定数(TR)に選定することにより、主
蒸気流量に対する給水流量の応答性が改善され
る。従つて、本実施例では第3図のように原子炉
水位が約10cmの低下に抑制され、原子炉水位が警
報レベルを越えない。
Next, the effects of this embodiment will be described. BWR
At the plant, the reactor power was increased from 60% to 95% by approximately 40%.
When performing load following control that changes at a rate of %/min,
Figure 2 shows the responsiveness of a conventional three-element feedwater control system in which the reactor water level, main steam flow rate, and feedwater flow rate are input to the feedwater controller. For changes in main steam flow rate,
The response of the water supply flow rate is delayed, and as a result, the reactor water level drops by up to 20 cm, reaching the alarm level (-15
cm). On the other hand, according to this embodiment, the compensator 2
0 by applying the lead/lag element to the lead time constant (T L
>By selecting the delay time constant ( TR ), the responsiveness of the feed water flow rate to the main steam flow rate is improved. Therefore, in this embodiment, as shown in FIG. 3, the reactor water level is suppressed to a drop of about 10 cm, and the reactor water level does not exceed the alarm level.

このように主蒸気流量変化に対する給水流量の
応答性が改善されるので、本実施例では原子炉再
循環ポンプトリツプ時にも原子炉水位の変動が緩
和される。
Since the responsiveness of the feed water flow rate to changes in the main steam flow rate is improved in this way, in this embodiment, fluctuations in the reactor water level are alleviated even when the reactor recirculation pump trips.

このような本実施例によれば、原子炉水位に基
づく給水制御器の出力信号に、主蒸気流量と給水
流量との偏差信号であつて進み遅れ補償を行つた
偏差信号を加算しているので、三要素制御時にお
いて主蒸気流量と給水流量との間でミスマツチが
生じる場合であつても主蒸気流量の変化に対する
給水流量の応答性が著しく良くなり、即応性が著
しく向上、原子炉水位の著しい低下が抑制され
る。このように、給水制御の即応性が著じるしく
向上するので、三要素制御信号における主蒸気流
量と給水流量とのミスマツチに起因する原子炉
(蒸気発生器)1の運転停止が解消され、BWRプ
ラントの稼動率を向上できる。
According to this embodiment, a deviation signal between the main steam flow rate and the feed water flow rate, which is a deviation signal with lead/lag compensation, is added to the output signal of the feed water controller based on the reactor water level. Even if there is a mismatch between the main steam flow rate and the feed water flow rate during three-element control, the responsiveness of the feed water flow rate to changes in the main steam flow rate is significantly improved, the immediate response is significantly improved, and the reactor water level is improved. Significant decline is suppressed. In this way, the responsiveness of feed water control is significantly improved, so that the shutdown of the nuclear reactor (steam generator) 1 caused by a mismatch between the main steam flow rate and the feed water flow rate in the three-element control signal is eliminated. It can improve the operation rate of BWR plants.

更に、本実施例は、上記の機能を保持し、
BWRプラントがトリツプする場合には、切替接
点19を切離すだけで容易に三要素制御から原子
炉水位に基づく一要素制御に移行することができ
る。また、本実施例は、特開昭52―104603号公報
の給水制御装置のように一要素制御器及び三要素
制御器を有していなくしかも原子炉水位を一要素
及び三要素の各制御器に入力するようなことをし
ていなく、単純な構成で一要素制御及び三要素制
御に基づく給水制御を実施できる。
Furthermore, this embodiment retains the above functions,
If the BWR plant trips, it is possible to easily shift from three-element control to one-element control based on the reactor water level by simply disconnecting the switching contact 19. Furthermore, this embodiment does not have a one-element controller and a three-element controller like the water supply control device disclosed in JP-A-52-104603, and moreover, the reactor water level is controlled by each of the one-element and three-element controllers. Water supply control based on one-element control and three-element control can be implemented with a simple configuration.

本発明は、沸騰水型原子炉における蒸気発生
器、すなわち原子炉圧力容器への給水制御だけで
なく、加圧水型原子炉および高速増殖炉の蒸気発
生器への給水制御さらにはボイラへの給水制御に
も適用することができる。
The present invention is applicable not only to water supply control to steam generators in boiling water reactors, that is, to reactor pressure vessels, but also to water supply control to steam generators in pressurized water reactors and fast breeder reactors, and further to boiler water supply control. It can also be applied to

〔発明の効果〕〔Effect of the invention〕

本発明の第1の特徴によれば、三要素制御時に
おける蒸気流量と給水流量とのミスマツチに対す
る即応性が向上するので、蒸気発生器の運転を停
止させることなく、プラントの稼動率を向上でき
る即応性のある給水制御を行なうことができる。
According to the first feature of the present invention, the quick response to a mismatch between the steam flow rate and the feed water flow rate during three-element control is improved, so the operating rate of the plant can be improved without stopping the operation of the steam generator. Water supply control can be performed with immediate response.

本発明の第2の特徴によれば、上記の効果が得
られると共に、蒸気発生器を有するプラントのト
リツプ時に容易に三要素制御から一要素制御に移
行できる単純な構成の蒸気発生器の給水制御装置
を得ることができる。
According to the second feature of the present invention, the above-mentioned effects are obtained, and the feed water control for a steam generator has a simple configuration that allows easy transition from three-element control to one-element control when a plant having a steam generator is tripped. You can get the equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すブロツク図、第
2図は従来技術によるプラント負荷変更時のプロ
セス応答を示す図、第3図は、本発明による同一
条件でのプロセス応答を示す図である。 1……原子炉、2……主蒸気管、7……タービ
ン駆動給水ポンプ、8……モータ駆動給水ポン
プ、9……給水配管、13……水位検出器、1
4,17,22……加算器、15……主蒸気流量
検出器、16……給水流量検出器、18……給水
制御器、19……切替接点、20……補償器、2
3……タービン速度制御器。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing a process response when a plant load is changed according to the prior art, and FIG. 3 is a diagram showing a process response under the same conditions according to the present invention. be. DESCRIPTION OF SYMBOLS 1... Nuclear reactor, 2... Main steam pipe, 7... Turbine driven water supply pump, 8... Motor driven water supply pump, 9... Water supply piping, 13... Water level detector, 1
4, 17, 22... Adder, 15... Main steam flow rate detector, 16... Feed water flow rate detector, 18... Water supply controller, 19... Switching contact, 20... Compensator, 2
3...Turbine speed controller.

Claims (1)

【特許請求の範囲】 1 蒸気発生器内の水位を検出する手段と、前記
蒸気発生器に供給される給水流量を検出する手段
と、前記蒸気発生器より流出する蒸気流量を検出
する手段と、前記水位検出手段の出力信号と水位
設定信号との偏差を求める第1加算手段と、前記
第1加算手段の出力信号を入力して積分演算を行
う給水制御器と、前記給水流量検出手段の出力信
号と前記蒸気流量検出手段の出力信号との偏差を
求める第2加算手段と、前記第2加算手段の出力
信号の進み遅れ補償を行う補償手段と、前記補償
手段の出力信号と前記給水制御器の出力信号とを
加算する第3加算手段と、前記第3加算手段の出
力信号に基づいて給水流量を調節する手段とを備
えたことを特徴とする蒸気発生器の給水制御装
置。 2 前記補償手段は進み時定数TL及び遅れ時定
数TRがTL>TRの関係に選定されているもので
ある特許請求の範囲第1項記載の蒸気発生器の給
水制御装置。 3 蒸気発生器内の水位を検出する手段と、前記
蒸気発生器に供給される給水流量を検出する手段
と、前記蒸気発生器より流出する蒸気流量を検出
する手段と、前記水位検出手段の出力信号と水位
設定信号との偏差を求める第1加算手段と、前記
第1加算手段の出力信号を入力して積分演算を行
う給水制御器と、前記給水流量検出手段の出力信
号と前記蒸気流量検出手段の出力信号との偏差を
求める第2加算手段と、前記第2加算手段の出力
信号の進み遅れ補償を行う補償手段と、前記補償
手段の出力信号と前記給水制御器の出力信号とを
加算する第3加算手段と、前記蒸気発生器を有す
るプラントのトリツプ時に前記第2加算手段の出
力信号の前記第3加算手段への入力を阻止するし
や断手段と、前記第3加算手段の出力信号に基づ
いて給水流量を調節する手段とを備えたことを特
徴とする蒸気発生器の給水制御装置。 4 前記補償手段は進み時定数TL及び遅れ時定
数TRがTL>TRの関係に選定されているもので
ある特許請求の範囲第3項記載の蒸気発生器の給
水制御装置。
[Scope of Claims] 1. means for detecting the water level within the steam generator, means for detecting the flow rate of feed water supplied to the steam generator, and means for detecting the flow rate of steam flowing out from the steam generator; a first addition means for calculating the deviation between the output signal of the water level detection means and the water level setting signal; a water supply controller that inputs the output signal of the first addition means and performs an integral calculation; and an output of the water supply flow rate detection means. a second addition means for calculating a deviation between the signal and the output signal of the steam flow rate detection means; a compensation means for compensating for the lead/lag of the output signal of the second addition means; and an output signal of the compensation means and the water supply controller. A water supply control device for a steam generator, comprising: a third addition means for adding an output signal of the third addition means; and a means for adjusting a water supply flow rate based on the output signal of the third addition means. 2. The water supply control device for a steam generator according to claim 1, wherein the compensating means has a lead time constant T L and a lag time constant T R selected such that T L >T R. 3 means for detecting the water level in the steam generator, means for detecting the flow rate of feed water supplied to the steam generator, means for detecting the flow rate of steam flowing out from the steam generator, and the output of the water level detecting means. a first addition means for calculating the deviation between the signal and the water level setting signal; a water supply controller for inputting the output signal of the first addition means and performing an integral calculation; and detection of the output signal of the water supply flow rate detection means and the steam flow rate. a second addition means for calculating a deviation from an output signal of the second addition means; a compensation means for compensating for a lead/lag of the output signal of the second addition means; and an output signal of the compensation means and an output signal of the water supply controller. a third adding means for adding a signal to the third adding means; a damping means for blocking an output signal of the second adding means from being input to the third adding means when a plant having the steam generator is tripped; and an output of the third adding means. 1. A water supply control device for a steam generator, comprising means for adjusting the flow rate of water supply based on a signal. 4. The water supply control device for a steam generator according to claim 3, wherein the compensating means has a lead time constant T L and a lag time constant T R selected such that T L >T R.
JP56130299A 1981-08-21 1981-08-21 Controller for feedwater of steam generator Granted JPS5833002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56130299A JPS5833002A (en) 1981-08-21 1981-08-21 Controller for feedwater of steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56130299A JPS5833002A (en) 1981-08-21 1981-08-21 Controller for feedwater of steam generator

Publications (2)

Publication Number Publication Date
JPS5833002A JPS5833002A (en) 1983-02-26
JPS6248763B2 true JPS6248763B2 (en) 1987-10-15

Family

ID=15030990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56130299A Granted JPS5833002A (en) 1981-08-21 1981-08-21 Controller for feedwater of steam generator

Country Status (1)

Country Link
JP (1) JPS5833002A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100897A (en) * 1982-12-01 1984-06-11 株式会社東芝 Reactor water level control device
US5782983A (en) * 1991-08-30 1998-07-21 Kabushiki Kaisha Toshiba Dewatering cleaning method, dewatering cleaning apparatus, and concentration type filter for use therein
JP4506353B2 (en) 2004-08-25 2010-07-21 株式会社日立製作所 Water supply control device for steam generator in power plant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104603A (en) * 1976-02-27 1977-09-02 Hitachi Ltd Fast cut back controlling system in natural circulation boiler
JPS55134207A (en) * 1979-04-05 1980-10-18 Tokyo Shibaura Electric Co Boiler drum level controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104603A (en) * 1976-02-27 1977-09-02 Hitachi Ltd Fast cut back controlling system in natural circulation boiler
JPS55134207A (en) * 1979-04-05 1980-10-18 Tokyo Shibaura Electric Co Boiler drum level controller

Also Published As

Publication number Publication date
JPS5833002A (en) 1983-02-26

Similar Documents

Publication Publication Date Title
US4440715A (en) Method of controlling nuclear power plant
US4290850A (en) Method and apparatus for controlling feedwater flow to steam generating device
US4832898A (en) Variable delay reactor protection system
JPS6248763B2 (en)
JPS6146799B2 (en)
JPH0513600B2 (en)
Pollmann et al. Stability measurements in the German nuclear power plant Wuergassen during cycle 14
JP2627524B2 (en) Water supply control device for nuclear power plant
JPS6180095A (en) Controller for water level of nuclear reactor
JPS61295401A (en) Controller for feed pump
JPS6217121B2 (en)
JPS6390605A (en) Control device for steam generating plant
JPS5819606A (en) Controller for liquid level of drain tank of moisture separator for steam generating plant
JP3114448B2 (en) Water supply control device for steam generation plant
JPH0339599B2 (en)
JPH0339279B2 (en)
JPH01180500A (en) Feed water control device for atomic power plant
JPS6176993A (en) Method and device for controlling feed water to nuclear reactor
Collett et al. Control and transient performance of the dresden nucl ear power station
JPS63241498A (en) Nuclear-reactor feedwater controller
JPS63277804A (en) Turbine control device for steam generating plant
JPS60117002A (en) Controller for feedwater to nuclear reactor
JPS61190202A (en) Controller for drum level
Yun et al. A Study on Improvement of PWR Steam Generator Water Level Control at Low Power Operation
JPH0566557B2 (en)