JPS63241498A - Nuclear-reactor feedwater controller - Google Patents

Nuclear-reactor feedwater controller

Info

Publication number
JPS63241498A
JPS63241498A JP62077298A JP7729887A JPS63241498A JP S63241498 A JPS63241498 A JP S63241498A JP 62077298 A JP62077298 A JP 62077298A JP 7729887 A JP7729887 A JP 7729887A JP S63241498 A JPS63241498 A JP S63241498A
Authority
JP
Japan
Prior art keywords
signal
water
reactor
flow rate
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62077298A
Other languages
Japanese (ja)
Inventor
小西 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP62077298A priority Critical patent/JPS63241498A/en
Publication of JPS63241498A publication Critical patent/JPS63241498A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Absorbent Articles And Supports Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は沸騰水型原子力発電所に配置される原子炉給水
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a nuclear reactor feed water control device disposed in a boiling water nuclear power plant.

(従来の技術) 一般に、沸騰水型原子力発電所(以下BWRという)は
、第3図に示すように構成されている。
(Prior Art) Generally, a boiling water nuclear power plant (hereinafter referred to as BWR) is configured as shown in FIG.

すなわち、炉心1は圧力容器2内に収容されており、炉
心1で加熱され発生した蒸気は気相部2aに集められ、
主蒸気管3によりタービン4へ送られる。タービン4を
介して発電機5を回転させ発 −電を行った蒸気は、復
水器6により水に戻され、復水器6の水は給水ポンプ7
により給水管8を通り圧力容器2の液相部2bへ送られ
る。
That is, the reactor core 1 is housed in a pressure vessel 2, and steam generated by heating in the reactor core 1 is collected in a gas phase part 2a,
It is sent to the turbine 4 through the main steam pipe 3. The steam generated by rotating the generator 5 via the turbine 4 is returned to water by the condenser 6, and the water in the condenser 6 is fed to the water supply pump 7.
The water is sent to the liquid phase part 2b of the pressure vessel 2 through the water supply pipe 8.

また、BWRには、圧力容器2内の水位を一定に保つた
めに給水制御装置9が配置されている。
Further, a water supply control device 9 is disposed in the BWR in order to keep the water level in the pressure vessel 2 constant.

従来の給水制御装置9は、原子炉水位信号10を入力し
水位の変化を補償する給水制御信号11により給水ポン
プ7の速度を制御し、給水流量を変化させる。さらに水
位は、圧力容器2がら流出する主蒸気流量から、圧力容
器2へ流入する給水流量を減算したミスマツチ流量に基
づいて変化するので、主蒸気流量信号12および給水流
量信号13も入力して水位変化を予測し、給水制御を行
っている。
A conventional water supply control device 9 receives a reactor water level signal 10 and controls the speed of the water supply pump 7 using a water supply control signal 11 that compensates for changes in water level, thereby changing the water supply flow rate. Furthermore, since the water level changes based on the mismatch flow rate obtained by subtracting the feed water flow rate flowing into the pressure vessel 2 from the main steam flow rate flowing out of the pressure vessel 2, the main steam flow rate signal 12 and the feed water flow rate signal 13 are also input to determine the water level. Predicts changes and controls water supply.

上記のBWRプラントにおいて、発電機5の負荷遮断が
生じるとタービン4のオーバスピードを防止するため、
蒸気加減弁14が急閉される。同時に、バイパス弁15
を開き余剰蒸気を復水器6に直接放出する。さらにこの
時、炉心1に制御棒を挿入するか、再循環流量を減少さ
せるかにより、原子炉の熱出力を下げて原子炉−での蒸
気発生量を減少させる。
In the above BWR plant, in order to prevent the turbine 4 from overspeeding when the load of the generator 5 occurs,
The steam control valve 14 is suddenly closed. At the same time, bypass valve 15
is opened to release excess steam directly to the condenser 6. Further, at this time, by inserting a control rod into the reactor core 1 or reducing the recirculation flow rate, the thermal output of the reactor is lowered and the amount of steam generated in the reactor is reduced.

このようにして、原子炉の低出力運転を行い、電力系統
の復旧後、出力を上昇させ、発電機5を再併入して送電
を開始する。
In this way, the reactor is operated at low output, and after the power system is restored, the output is increased, and the generator 5 is reconnected to start power transmission.

縦軸を各原子炉パラメータ、横軸を時間とした第4図の
グラフは、従来の給水制御装置9を配置されたBWRに
おいて発電機負荷遮断が発生した場合の原子炉状態の′
応答を示している。
The graph in FIG. 4, where the vertical axis is each reactor parameter and the horizontal axis is time, shows the reactor state when generator load shedding occurs in a BWR equipped with the conventional water supply control device 9.
Showing response.

このグラフに示されるように、炉心入口流量の低下は炉
出力の低下を生じさせ、圧力の低下を生じさせて、水面
下の蒸気体積を増加させるので、水位が上昇する。一方
、出力の低下は、炉心の蒸気発生を減少させ、水位が低
下する。出力の低下により主蒸気流量は減少し、これに
より給水も減少するが、定常に落着くまでに上記の炉心
流量、圧力、出力の急激な変化を受け、原子炉水位は大
幅に変動する。
As shown in this graph, a decrease in core inlet flow rate causes a decrease in reactor power, which causes a decrease in pressure and increases the steam volume below the water surface, causing the water level to rise. On the other hand, a reduction in power reduces the steam generation in the core and the water level falls. As the power decreases, the main steam flow rate decreases, and the water supply decreases accordingly, but before it stabilizes, the reactor water level undergoes significant changes due to the rapid changes in the core flow rate, pressure, and power output.

(発明が解決しようとする問題点) 上記説明のように、従来の給水制御装置を一装置されな
りWRでは、発電機負荷遮断が発生した場合、原子炉水
位が大幅に変動する。
(Problems to be Solved by the Invention) As explained above, in a WR equipped with a conventional water supply control device, when a generator load cutoff occurs, the reactor water level fluctuates significantly.

しかしながら、水位が大幅に上昇するとタービン側へ送
られる蒸気の条件が悪化するので、原子炉は緊急停止(
スクラム)される、一方、水位が大幅に低下すると、炉
心の露出を防止するなめにスクラムされる。
However, if the water level rises significantly, the conditions for the steam sent to the turbine side will deteriorate, causing the reactor to undergo an emergency shutdown (
However, if the water level drops significantly, it will be scrammed to prevent core exposure.

したがって、原子炉水位の変動は最小限にすることが望
ましいが、従来の給水制御装置では、上記のように流量
、圧力、出力が急変する事象では、このような水位の制
御は困難であるという問題があった。
Therefore, it is desirable to minimize fluctuations in the reactor water level, but with conventional water supply control equipment, it is difficult to control the water level in the event of sudden changes in flow rate, pressure, and output as described above. There was a problem.

本発明はかかる従来の事情に対処してなされたもので、
発電機負荷遮断時のような急変時にも一定の水位を維持
することのできる給水制御装置を提供しようとするもの
である。
The present invention has been made in response to such conventional circumstances,
The present invention aims to provide a water supply control device that can maintain a constant water level even during sudden changes such as when a generator load is cut off.

[発明の構成] (問題点を解決するための手段) 本発明の給水制御装置は、原子炉水位信号、主蒸気流量
信号、給水流量信号を入力し、これらの信号に応じた給
水制御信号を出力して圧力容器内の水位を一定範囲内に
保つよう給水ポンプの制御を行う原子炉給水制御装置に
おいて、原子炉圧力信号、循環流量信号、給水温度信号
および中性子束信号を入力して炉心部のボイド率変化を
算出し、このボイド率変化から水面下の蒸気量変化を推
定して前記圧力容器内の水位変化を予測し、この水位変
化を補償する給水流量に応じた給水制御補正信号を出力
して前記給水制御信号を補正する手段を備えたことを特
徴とする。
[Structure of the Invention] (Means for Solving Problems) The feed water control device of the present invention inputs a reactor water level signal, a main steam flow rate signal, and a feed water flow rate signal, and generates a feed water control signal according to these signals. In the reactor feed water control system, which controls the feed water pump to maintain the water level in the pressure vessel within a certain range, the reactor pressure signal, circulating flow rate signal, feed water temperature signal, and neutron flux signal are input to the reactor core. A change in the void ratio is calculated, a change in the amount of steam under the water surface is estimated from this change in the void ratio, a change in the water level in the pressure vessel is predicted, and a water supply control correction signal is generated in accordance with the water supply flow rate to compensate for this water level change. It is characterized by comprising means for outputting and correcting the water supply control signal.

(作用) 本発明の給水制御装置においては、原子炉圧力信号、循
環流量信号、給水温度信号および中性子束信号を入力し
て炉心部のボイド率変化を算出し、このボイド率変化か
ら水面下の蒸気量変化を推定して前記圧力容器内の水位
変化を予測し、この水位変化を補償する給水流量に応じ
た給水制御補正信号を出力して前記給水制御信号を補正
する手段を備えている。
(Function) In the feedwater control device of the present invention, the reactor pressure signal, circulation flow rate signal, feedwater temperature signal, and neutron flux signal are inputted to calculate the void ratio change in the reactor core, and from this void ratio change, the Means is provided for estimating a change in the amount of steam, predicting a change in water level in the pressure vessel, and correcting the water supply control signal by outputting a water supply control correction signal in accordance with a feed water flow rate that compensates for this water level change.

したがって、発電機の負荷遮断時のように炉心流量、圧
力、出力が急激に変動する事態にあっても、原子炉水位
の変動を最小限に抑えることができる。
Therefore, even in a situation where the reactor core flow rate, pressure, and output fluctuate rapidly, such as when the generator load is cut off, fluctuations in the reactor water level can be minimized.

(実施例) 以下、図面に示す一実施例について本発明の詳細な説明
する。
(Example) Hereinafter, the present invention will be described in detail with regard to an example shown in the drawings.

第1図は本発明の一実施例の給水制御装置を配置された
BWR示すもので、前述の第3図に示したBWRと同一
部分には同一符号を付して重複した説明は省略する。
FIG. 1 shows a BWR in which a water supply control device according to an embodiment of the present invention is installed, and the same parts as in the BWR shown in FIG.

この実施例の給水制御装置は、原子炉圧力信号21、循
環流量信号22、給水温度信号23、中性子束信号24
が入力され、水面下の蒸気量変化を推定し、これを水位
変化に換算してこの水位変化を補償する給水流量を算出
し、給水制御補正信号25を出力する水面下蒸気量変化
推定装置26と、原子炉水位信号10、主蒸気流量信号
12、給水流量信号13が入力され水位変化を予測する
とともに、給水制御補正信号25が入力され、水面下の
蒸気量変化による水位変化を考慮した給水制御信号27
を給水ポンプ7に出力する制御装置28とで構成されて
いる。
The feed water control device of this embodiment includes a reactor pressure signal 21, a circulation flow rate signal 22, a feed water temperature signal 23, and a neutron flux signal 24.
is input, estimates the change in the amount of steam below the water surface, converts this into a water level change, calculates the water supply flow rate to compensate for this water level change, and outputs the water supply control correction signal 25. Then, the reactor water level signal 10, main steam flow rate signal 12, and feed water flow rate signal 13 are input to predict the water level change, and the feed water control correction signal 25 is input to predict the water supply considering the water level change due to the change in the amount of steam below the water surface. control signal 27
and a control device 28 that outputs the water to the water supply pump 7.

上記構成の給水制御装置の作用について次に説明する。Next, the operation of the water supply control device having the above configuration will be explained.

水面下蒸気量変化推定装置26は、まず炉心部のボイド
率(蒸気体積率)変化を求めるが、これは炉心部のボイ
ド率変化αが炉心圧力P、炉心入口流量W、炉心入口エ
ンタルピーh、炉心熱出力Qによって非線型関数fによ
り、 α=f (P、W、h、Q) のように表されることを利用する。すなわち、これらの
各ファクターを計測可能な値より推定するために、原子
炉圧力信号21、循環流量信号22、給水温度信号23
、中性子束信号24を用いて、炉心部のボイド率変化α
を上式と類似の式により算出し、このボイド率変化と炉
心および水面までの炉内構造より水面下の蒸気量変化を
推定する。
The subsurface steam amount change estimating device 26 first calculates the void fraction (steam volume fraction) change in the reactor core. It utilizes the fact that core thermal output Q is expressed by a nonlinear function f as α=f (P, W, h, Q). That is, in order to estimate each of these factors from measurable values, the reactor pressure signal 21, circulating flow rate signal 22, and feed water temperature signal 23 are used.
, using the neutron flux signal 24, the void fraction change α in the reactor core
is calculated using a formula similar to the above formula, and the change in the amount of steam below the water surface is estimated from this void fraction change and the reactor internal structure up to the core and water surface.

このようにして水面下の蒸気量変化が求まると、これを
水位変化に換算することは容易であり、この水位変化を
補償する給水流量を算出して給水制御補正信号25を制
御装置28に出力する。
Once the change in the amount of steam under the water surface is determined in this way, it is easy to convert it into a change in water level, calculate the feed water flow rate to compensate for this change in water level, and output the feed water control correction signal 25 to the control device 28. do.

制御装置28は原子炉水位信号10、主蒸気流量信号1
2および給水流量信号13を入力して従来の主蒸気流量
と給水流量とのミスマツチ流量による水位変化を補償す
る給水流量を算出し、これに水面下蒸気量変化推定装置
26からの給水制御補正信号25を加えた新たな給水制
御信号27を給水ポンプ7に出力し、圧力容器2に流入
する給水流量を制御する。
The control device 28 receives a reactor water level signal 10 and a main steam flow rate signal 1.
2 and the feed water flow rate signal 13 are inputted to calculate the feed water flow rate that compensates for water level changes due to mismatch flow rates between the conventional main steam flow rate and the feed water flow rate, and in addition to this, the feed water control correction signal from the subsurface steam amount change estimation device 26 is calculated. A new water supply control signal 27 in which 25 is added is output to the water supply pump 7 to control the flow rate of water supply flowing into the pressure vessel 2.

縦軸を各原子炉パラメータ、横軸を時間とした第2図の
グラフは、本実施例の給水制御装置を配置されたBWR
において発電機負荷遮断が発生した場合の原子炉状態の
応答を示している。
The graph in Figure 2, where the vertical axis is each reactor parameter and the horizontal axis is time, shows the BWR in which the water supply control device of this embodiment is installed.
The figure shows the response of the reactor state when generator load shedding occurs.

このグラフからも明らかなように、この実施例の給水制
御装置を配置されたBWRにおいては、炉心流量、圧力
、中性子束が急激にかつ複雑に変動するような事態にあ
っても、原子炉水位の変動を従来に比べて小幅に抑制す
ることができる。
As is clear from this graph, in a BWR equipped with the water supply control system of this embodiment, even in situations where the reactor core flow rate, pressure, and neutron flux fluctuate rapidly and in a complex manner, the reactor water level fluctuations can be suppressed to a smaller extent than in the past.

[発明の効果] 以上の説明からも明らかなように、本発明の給水制御装
置は、発電機負荷遮断発生時等の炉心流量、原子炉圧力
、および出力が急激に変動するような事象に対しても、
原子炉水位の変動を従来に比べて小幅に抑制することが
でき、不必要な原子炉停止を避け、原子炉の運転効率を
上げて発電の経済性に寄与することができる。
[Effects of the Invention] As is clear from the above description, the water supply control device of the present invention is effective against sudden fluctuations in core flow rate, reactor pressure, and output, such as when generator load interruption occurs. Even though
Fluctuations in the reactor water level can be suppressed to a smaller extent than in the past, avoiding unnecessary reactor shutdowns, increasing the operating efficiency of the reactor, and contributing to the economic efficiency of power generation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の給水制御装置を配したBW
Rプラントの概略系統図、第2図は第1図に示す給水制
御装置を配したBWRプラントにおける負荷遮断時の状
態を説明するためのグラフ、第3図は従来の給水制御装
置を配したB W RプランI・の概略系統図、第4図
は第3図に示す給水制御装置を配したBWRプラントに
おける負荷遮断時の状態を説明するためのグラフである
。 1・・・・・・・・・・・・炉心 2・・・・・・・・・・・・圧力容器 7・・・・・・・・・・・・給水ポンプ10・・・・・
・・・・原子炉水位信号12・・・・・・・・・主蒸気
流量信号21・・・・・・・・・原子炉圧力信号22・
・・・・・・・・循環流量信号 23・・・・・・・・・給水温度信号 24・・・・・・・・・中性子束信号 25・・・・・・・・・給水制御補正信号26・・・・
・・・・・水面下蒸気量変化推定装置27・・・・・・
・・・給水制御信号 28・・・・・・・・・制御装置 出願人      日本原子力事業株式会社出願人  
    株式会社 東芝 代理人 弁理士  須 111  佐 −第3図 第4図
Figure 1 shows a BW equipped with a water supply control device according to an embodiment of the present invention.
A schematic system diagram of the R plant; Fig. 2 is a graph for explaining the state during load shedding in the BWR plant equipped with the water supply control device shown in Fig. 1; and Fig. 3 is a diagram of the BWR plant equipped with the conventional water supply control device. FIG. 4, a schematic system diagram of WR Plan I, is a graph for explaining the state at load shedding in a BWR plant equipped with the water supply control device shown in FIG. 3. 1......Core 2...Pressure vessel 7...Water pump 10...
...Reactor water level signal 12...Main steam flow rate signal 21...Reactor pressure signal 22.
...... Circulating flow rate signal 23 ...... Feed water temperature signal 24 ...... Neutron flux signal 25 ...... Water supply control correction Signal 26...
.....Subsurface steam amount change estimation device 27...
...Water supply control signal 28...Control device applicant Japan Atomic Energy Corporation applicant
Toshiba Corporation Agent Patent Attorney Su 111 - Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)原子炉水位信号、主蒸気流量信号、給水流量信号
を入力し、これらの信号に応じた給水制御信号を出力し
て圧力容器内の水位を一定範囲内に保つよう給水ポンプ
の制御を行う原子炉給水制御装置において、原子炉圧力
信号、循環流量信号、給水温度信号および中性子束信号
を入力して炉心部のボイド率変化を算出し、このボイド
率変化から水面下の蒸気量変化を推定して前記圧力容器
内の水位変化を予測し、この水位変化を補償する給水流
量に応じた給水制御補正信号を出力して前記給水制御信
号を補正する手段を備えたことを特徴とする原子炉給水
制御装置。
(1) Input the reactor water level signal, main steam flow rate signal, and feed water flow rate signal, and output the feed water control signal according to these signals to control the feed water pump to maintain the water level in the pressure vessel within a certain range. In the reactor feedwater control system, the reactor pressure signal, circulation flow rate signal, feedwater temperature signal, and neutron flux signal are input to calculate the void ratio change in the reactor core, and from this void ratio change, the change in the amount of steam below the water surface is calculated. Atom characterized by comprising means for correcting the water supply control signal by estimating and predicting a water level change in the pressure vessel, and outputting a water supply control correction signal according to a water supply flow rate that compensates for this water level change. Reactor water supply control device.
JP62077298A 1987-03-30 1987-03-30 Nuclear-reactor feedwater controller Pending JPS63241498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62077298A JPS63241498A (en) 1987-03-30 1987-03-30 Nuclear-reactor feedwater controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62077298A JPS63241498A (en) 1987-03-30 1987-03-30 Nuclear-reactor feedwater controller

Publications (1)

Publication Number Publication Date
JPS63241498A true JPS63241498A (en) 1988-10-06

Family

ID=13629986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62077298A Pending JPS63241498A (en) 1987-03-30 1987-03-30 Nuclear-reactor feedwater controller

Country Status (1)

Country Link
JP (1) JPS63241498A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051940A (en) * 2005-08-18 2007-03-01 Hitachi Ltd Feed water control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051940A (en) * 2005-08-18 2007-03-01 Hitachi Ltd Feed water control system

Similar Documents

Publication Publication Date Title
US6198786B1 (en) Methods of reactor system pressure control by reactor core power modulation
JPS61161496A (en) Method and device for controlling operation of pressurized water type reactor
US6697447B1 (en) Maximum extended load line limit analysis for a boiling water nuclear reactor
JPH01167699A (en) Variable delay apparatus for nuclear reactor trip
JPS63241498A (en) Nuclear-reactor feedwater controller
Andraws et al. Performance of receding horizon predictive controller for research reactors
JPH0480358B2 (en)
JPS6140591A (en) Controller for recirculation flow rate of nuclear reactor
JPH0429921B2 (en)
JP4504889B2 (en) Water supply control device
JPH0511092A (en) Method of protecting nuclear reactor
EP1395996A1 (en) Method for increasing power output of boiling water reactors
JPS6248763B2 (en)
JPS6390605A (en) Control device for steam generating plant
JPS6180095A (en) Controller for water level of nuclear reactor
JPS6176993A (en) Method and device for controlling feed water to nuclear reactor
JPH0441800B2 (en)
JPS59128494A (en) Power control device for atomic power plant
JPH0241720B2 (en)
JPS59137898A (en) Power control device of atomic power plant
JPS63279199A (en) Load follow-up control of boiling water type nuclear power generation plant
JPS62206496A (en) Pressure controller for nuclear reactor
JPS5824898A (en) Atomic power plant control device
JPS5896283A (en) Reactor stability control device
JPS63235898A (en) Multivariable control method and device for nuclear power plant