JPS6247702B2 - - Google Patents
Info
- Publication number
- JPS6247702B2 JPS6247702B2 JP56023579A JP2357981A JPS6247702B2 JP S6247702 B2 JPS6247702 B2 JP S6247702B2 JP 56023579 A JP56023579 A JP 56023579A JP 2357981 A JP2357981 A JP 2357981A JP S6247702 B2 JPS6247702 B2 JP S6247702B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- socket
- core mold
- rubber ring
- temperature zone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004033 plastic Substances 0.000 claims description 20
- 229920003023 plastic Polymers 0.000 claims description 20
- 238000001746 injection moulding Methods 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 12
- 238000000465 moulding Methods 0.000 claims description 12
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 238000004080 punching Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/26—Moulds
- B29C45/261—Moulds having tubular mould cavities
- B29C45/2612—Moulds having tubular mould cavities for manufacturing tubular articles with an annular groove
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C37/00—Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
- B29C37/0003—Discharging moulded articles from the mould
- B29C37/0014—Discharging moulded articles from the mould by flexibly or permanently deforming undercut portions of the articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/40—Removing or ejecting moulded articles
- B29C45/44—Removing or ejecting moulded articles for undercut articles
- B29C45/4407—Removing or ejecting moulded articles for undercut articles by flexible movement of undercut portions of the articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/24—Pipe joints or couplings
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
Description
【発明の詳細な説明】
本発明はプラスチツク製管継手の製造方法の改
良に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the manufacturing method of plastic pipe fittings.
ゴムリング装着用溝を備えた受口を有するプラ
スチツク製管継手の製造方法には、射出成形法、
並びに二次加工法(プラスチツク管端部を受口成
形金型に圧入成形する方法)があり、何れの方法
においても、中子金型の脱出時、受口のアンダカ
ツトにさからつて、中子金型を無理に引き抜く、
いわゆる無理抜き法を本発明者等は既に提案して
いる。 Manufacturing methods for plastic pipe fittings with sockets equipped with grooves for attaching rubber rings include injection molding,
There is also a secondary processing method (a method in which the end of the plastic tube is press-fitted into the socket molding mold).In either method, when the core mold escapes, the core is removed from the undercut of the socket. Forcibly pull out the mold,
The present inventors have already proposed a so-called forced removal method.
第1図A乃至第1図Dは、射出成形の場合の無
理抜きを示している。 1A to 1D show forced punching in the case of injection molding.
第1図Aにおいて、1′は外金型であり、ゴム
リング装着用溝に対応する位置において高温部材
11′と低温部材12′とに分けられている。2′
は中子金型であり、ゴムリング装着用溝に対応す
る位置において高温部材21′と低温部材22′と
に分けられている。而して、射出成形されたプラ
スチツク継手P′において、ゴムリング装着用溝
A′並びにその近傍部分は外金型1′の高温部材1
1′並びに中子金型2′の高温部材21′のため
に、弾性を有する適度の熱軟化状態にある。 In FIG. 1A, 1' is an outer mold, which is divided into a high-temperature member 11' and a low-temperature member 12' at a position corresponding to a rubber ring mounting groove. 2'
is a core mold, which is divided into a high-temperature member 21' and a low-temperature member 22' at a position corresponding to a groove for attaching a rubber ring. Therefore, in the injection molded plastic joint P′, there is a groove for attaching the rubber ring.
A′ and its vicinity are the high-temperature member 1 of the outer mold 1′.
1' and the high-temperature member 21' of the core mold 2', it is in an appropriately thermally softened state with elasticity.
射出成形後は、第1図Bに示すように、外金型
が両部材11′,12′とも脱型され、次いで、第
1図Cに示すように中子金型2′の高温部材2
1′が脱出移動される。この場合、ゴムリング装
着用溝A′並びにその近傍部分は上記した通り弾
性状態にあるから、中子金型2′の高温部材2
1′の無理抜きにもかゝわらず、ほゞもとの形状
に弾性的に復元する。 After injection molding, as shown in FIG. 1B, both members 11' and 12' of the outer mold are demolded, and then, as shown in FIG. 1C, the high temperature member 2 of the core mold 2' is removed.
1' is moved out. In this case, since the rubber ring mounting groove A' and its vicinity are in an elastic state as described above, the high-temperature member 2 of the core mold 2'
1', it elastically returns to its original shape.
上記中子金型2′の高温部材21′の脱出移動後
は、第1図Dに示すように、中子金型2′全体が
脱出される。 After the high-temperature member 21' of the core mold 2' is removed, the entire core mold 2' is removed, as shown in FIG. 1D.
上記射出成形の場合の無理抜きの初期において
は、中子金型2′の高温部材21′を低温部材2
2′に対して独立的に移動させなければならず、
高温部材21′と低温部材22′との異なる温度制
御以外に、中子金型2′の高温部材21′と中子金
型2′全体のそれぞれの脱出移動に時間差を設け
なければならない2段階脱出操作が必要になるの
で、中子金型2′の構造、脱出操作の複雑化が避
けられない。 In the initial stage of forced punching in the case of injection molding, the high-temperature member 21' of the core mold 2' is replaced with the low-temperature member 21'.
must be moved independently with respect to 2′,
In addition to different temperature controls for the high-temperature member 21' and the low-temperature member 22', there is a two-step process in which a time difference must be provided for the escape movement of the high-temperature member 21' of the core mold 2' and the entire core mold 2'. Since an evacuation operation is required, it is inevitable that the structure of the core mold 2' and the evacuation operation become complicated.
第2図A乃至第2図Dは、二次加工の場合の無
理抜きを示している。 FIGS. 2A to 2D show forced punching in the case of secondary processing.
第2図Aにおいて、1″は外金型であり、高温
部材11″と低温部材12″とに分けられている。
2″は中子金型であり、高温ゾーン21″と低温ゾ
ーン22″とから構成されている。P″はプラスチ
ツク管であり、その加熱端部が外金型1″と中子
金型2″との間に圧入され、受口に成形されてい
る。この場合、ゴムリング装着用溝部分A′は、
外金型1″の高温部材11″並びに中子金型2″の
高温ゾーン21″のために弾性を有する適度の熱
軟化状態におかれる。 In FIG. 2A, 1'' is an outer mold, which is divided into a high-temperature member 11'' and a low-temperature member 12''.
2'' is a core mold, which is composed of a high temperature zone 21'' and a low temperature zone 22''.P'' is a plastic tube whose heating end is connected to the outer mold 1'' and the core mold 2. '' and is molded into the socket. In this case, the groove part A′ for attaching the rubber ring is
The high-temperature member 11'' of the outer mold 1'' and the high-temperature zone 21'' of the core mold 2'' are placed in a moderate thermally softened state with elasticity.
受口成形後は、第2図Bに示すように、外金型
の高温部材11″が脱出移動されると共に中子金
型2″が脱出移動される。この場合、ゴムリング
装着用溝A′並びにその近傍部分は上述した通り
弾性状態にあるから、中子金型2″の無理抜きに
もかゝわらず、第2図Cに示すように、二次加工
直後のもとの形状に復元する。 After socket molding, as shown in FIG. 2B, the high temperature member 11'' of the outer mold is moved out and the core mold 2'' is moved out. In this case, since the rubber ring mounting groove A' and its vicinity are in an elastic state as described above, despite the forcible removal of the core mold 2'', as shown in FIG. Restores to the original shape immediately after next processing.
第2図Cにおいて、受口先端B′は中子金型2″
の低温ゾーン22″に接している。この場合、受
口先端B′は原管P″の径R′よりも拡径されてお
り、受口先端B′には引張フープストレスが残留し
ているから、受口先端B′は中子金型2″の低温ゾ
ーン22″に充分な面圧で接触し、ゴムリング装
着用溝A′並びにその近傍の冷却を効率よく行い
得る。 In Fig. 2C, the socket tip B' is the core mold 2''
In this case, the diameter of the socket tip B' is larger than the diameter R' of the original pipe P'', and tensile hoop stress remains at the socket tip B'. Therefore, the socket tip B' comes into contact with the low temperature zone 22'' of the core mold 2'' with sufficient surface pressure, and the rubber ring mounting groove A' and its vicinity can be efficiently cooled.
受口先端の冷却後は、第2図Dに示すように、
補助金型3″で受口先端部が整形される。 After cooling the tip of the socket, as shown in Figure 2D,
The tip of the socket is shaped using the auxiliary mold 3''.
上記二次加工の場合の無理抜きにおいては、中
子金型2″に高温ゾーン21″と低温ゾーン22″
とを設ければよく、第1図A乃至第1図Dで示し
た射出成形の場合の無理抜きのように高温部材2
1′と低温部材22′とに分ける必要がなく、従つ
て、これら別部材の時差的脱出が不要なこと等か
ら、中子金型の構造、操作の簡易化が可能であり
有利である。 In the case of forced punching in the case of the above-mentioned secondary processing, the core mold 2'' has a high temperature zone 21'' and a low temperature zone 22''.
The high-temperature member 2 may be
Since there is no need to separate the core mold into the low-temperature member 22' and the low-temperature member 22', and there is no need to separate these separate members at different times, it is possible to simplify the structure and operation of the core mold, which is advantageous.
而して、第2図A乃至第2図Dに示す無理抜き
を射出成形の場合に適用できれば有利である。 Therefore, it would be advantageous if the forced punching shown in FIGS. 2A to 2D could be applied to injection molding.
而るに、第1図Aに示す受口の二次加工に対応
して、射出成形を想定した場合、二次加工の受口
には、その強制的拡径のために引張りフープスト
レスの残留があるが、射出成形の受口にはかゝる
ストレスの残留がないという物性的な異同があ
る。そして、二次加工の場合は、第2図Cに示す
無理抜き直後の段階において、上記残留引張フー
プストレスのために、受口先端B′が中子金型2″
の低温ゾーン22″に充分な面圧で接触するが、
射出成形の場合では、残留引張フープストレスが
存在せず、従つて、受口先端と中子金型の低温ゾ
ーンとの間の面圧発生はあり得ず、むしろ、無理
抜きのために受けた拡径の弾性的復元が、その弾
性が完全弾性でないために不完全であり、受口先
端と中子金型低温ゾーンとの間には微小であつて
も間隙の発生が懸念される。 However, when injection molding is assumed to correspond to the secondary processing of the socket shown in Figure 1A, tensile hoop stress remains in the secondary processing socket due to its forced diameter expansion. However, there is a physical difference in that there is no residual stress in the socket of injection molding. In the case of secondary processing, at the stage immediately after forced punching shown in Fig. 2C, due to the residual tensile hoop stress, the socket tip B'
contact with the low temperature zone 22'' with sufficient surface pressure,
In the case of injection molding, there is no residual tensile hoop stress and therefore there can be no surface pressure between the socket tip and the cold zone of the core mold, rather the The elastic recovery of the diameter expansion is incomplete because the elasticity is not perfect, and there is a concern that a gap may occur between the tip of the socket and the low temperature zone of the core mold, even if it is minute.
従つて、第2図A乃至第2図Dに示す二次加工
の場合の無理抜きを射出成形の場合に単に転用し
ても、第2図Cに示す段階での受口先端B′の中子
金型低温ゾーン22″による冷却を満足に行い難
く、工業性がない。 Therefore, even if the forced punching in the secondary processing shown in FIGS. 2A to 2D is simply applied to injection molding, the inside of the socket tip B' at the stage shown in FIG. It is difficult to achieve satisfactory cooling by the child mold low temperature zone 22'', and it is not industrially viable.
本発明に係るプラスチツク製管継手は、上記し
た二次加工の場合の無理抜き法を射出成形用に適
用可能なように改良した方法であり、ゴムリング
装着用溝を備えた受口を有するプラスチツク製管
継手を射出成形するための金型を、中子金型並び
に外金型とも、上記ゴムリング装着用溝に対応す
る位置を境にして、受口先端部成形側は高温ゾー
ンに、残部側は低温ゾーンにそれぞれ保ち、プラ
スチツクの射出後は、外金型を脱型し、次いで、
中子金型を脱出移動させる方法において、上記受
口におけるゴムリング装着用溝と受口先端との間
の受口前方部の内径を、ゴムリング装着用溝と受
口奥端との間の受口後方部の内径よりも小とする
ように金型を構成し、かつ、外金型の高温ゾーン
は加熱金型片により、低温ゾーンは低温金型片に
よりそれぞれ構成し、上記の中子金型の脱出移動
時、上記受口後方部の成形部である中子金型部分
の低温ゾーンで上記受口前方部を強制的に拡開し
つつ中子金型を脱出移動させ、上記外金型の加熱
金型片は、上記脱型後に所定温度に冷却し、この
金型片で、上記中子金型の脱出移動直後、受口前
方部をゴムリング装着用溝と共に整形することを
特徴とする方法である。 The plastic pipe joint according to the present invention is a plastic pipe joint having a socket with a groove for installing a rubber ring. The mold for injection molding the pipe fitting is placed in both the core mold and the outer mold, with the molding side of the tip of the socket in the high temperature zone and the rest of the mold, with the position corresponding to the groove for installing the rubber ring as the border. Both sides are kept in the low temperature zone, and after the plastic injection, the outer mold is demolded, and then
In the method of ejecting and moving the core mold, the inner diameter of the front part of the socket between the groove for rubber ring installation and the tip of the socket is the same as the inner diameter of the front part of the socket between the groove for rubber ring installation and the back end of the socket. The mold is constructed so that the inner diameter is smaller than the inner diameter of the rear part of the socket, and the high-temperature zone of the outer mold is composed of a heating mold piece, and the low-temperature zone is composed of a low-temperature mold piece. When the mold is moved to escape, the front part of the socket is forcibly expanded in the low temperature zone of the core mold part which is the molding part at the rear of the socket, and the core mold is moved to escape. The heated mold piece of the mold is cooled to a predetermined temperature after the demolding, and this mold piece is used to shape the front part of the socket together with the rubber ring mounting groove immediately after the core mold is moved out. This method is characterized by
本発明において、金型の高温部の温度は、射出
直後のプラスチツクを、弾性領域に保持できる温
度であり、塩化ビニルの場合では80〜100℃であ
る。一方、金型の低温部の温度は、射出直後のプ
ラスチツクを、脱型可能な硬度に冷却固化できる
温度であり、通常は40〜60℃である。 In the present invention, the temperature of the high temperature part of the mold is such that the plastic can be maintained in an elastic region immediately after injection, and in the case of vinyl chloride, it is 80 to 100°C. On the other hand, the temperature of the low-temperature part of the mold is such that the plastic immediately after injection can be cooled and solidified to a hardness that allows it to be removed from the mold, and is usually 40 to 60°C.
以下、図面により本発明を説明する。 The present invention will be explained below with reference to the drawings.
第3図は本発明において使用する金型装置を示
している。 FIG. 3 shows a mold apparatus used in the present invention.
第3図において、Pは本発明によつて製造され
る塩化ビニル製管継手であり、ゴムリング装着用
溝Aを備えた受口を有し、受口先端とゴムリング
装着用溝との間の受口前方部Bの内径は、受口奥
端とゴムリング装着用溝との間の受口後方部Cの
内径R2よりも小さくされている。又、受口奥端
部Dの内径R3は受口前方部Bの内径R1にほゞ等
しくされている。 In FIG. 3, P is a vinyl chloride pipe joint manufactured according to the present invention, which has a socket equipped with a groove A for attaching a rubber ring, and has a gap between the tip of the socket and the groove for attaching the rubber ring. The inner diameter of the front part B of the socket is smaller than the inner diameter R2 of the rear part C of the socket between the back end of the socket and the rubber ring mounting groove. Further, the inner diameter R 3 of the rear end portion D of the socket is approximately equal to the inner diameter R 1 of the front portion B of the socket.
1は外金型であり、上記受口のゴムリング装着
用溝を境にして、受口先端部成形側の加熱金型片
11と残部成形側の低温金型片12とに分割さ
れ、低温金型片12は上下に分割121,122
されている。加熱金型片11はヒータを内蔵し、
加熱温度は80〜100℃である。低温金型片12の
温度は40〜60℃である。13は加熱金型片11を
移動させるためのシリンダーである。14は低温
金型片12の上型121に設けた射出ランナーで
ある。15は低温金型片12に取付けたピンであ
り、加熱金型片11がこのピンに係止されてい
る。 Reference numeral 1 designates an outer mold, which is divided into a heating mold piece 11 on the molding side of the tip of the socket and a low-temperature mold piece 12 on the molding side of the remaining part, with the rubber ring mounting groove of the socket as a border. The mold piece 12 is divided into upper and lower parts 121 and 122
has been done. The heating mold piece 11 has a built-in heater,
Heating temperature is 80-100°C. The temperature of the low temperature mold piece 12 is 40 to 60°C. 13 is a cylinder for moving the heating mold piece 11. 14 is an injection runner provided on the upper mold 121 of the low-temperature mold piece 12. 15 is a pin attached to the low temperature mold piece 12, and the heating mold piece 11 is locked to this pin.
2は中子金型であり、受口のゴムリング装着用
溝の位置を境にして、受口先端部成形側の高温ゾ
ーン21と残部成形側の低温ゾーン22に分けら
れている。高温ゾーン21はヒータを内蔵してお
り、その加熱温度は80〜100℃である。低温ゾー
ン22の温度は40〜60℃である。23は中子金型
2を移動させるための油圧シリンダーである。 Reference numeral 2 denotes a core mold, which is divided into a high temperature zone 21 on the molding side of the tip of the socket and a low temperature zone 22 on the side of molding the remaining portion, with the position of the groove for installing the rubber ring in the socket as a boundary. The high temperature zone 21 has a built-in heater, and its heating temperature is 80 to 100°C. The temperature of the low temperature zone 22 is 40 to 60°C. 23 is a hydraulic cylinder for moving the core mold 2.
本発明によつてプラスチツク製管継手を製造す
るには、プラスチツクを約180℃の温度で射出成
形する。この成形体Pにおいて、受口のゴムリン
グ装着用溝A並びに受口前方部Bは外金型1の加
熱金型片11と中子金型2の高温ゾーン21のた
めにほゞ80〜100℃に保たれ、かなりの弾性を有
する。 To produce plastic pipe fittings according to the invention, plastic is injection molded at a temperature of about 180°C. In this molded body P, the groove A for attaching the rubber ring of the socket and the front part B of the socket are approximately 80 to 100 degrees thick due to the heating mold piece 11 of the outer mold 1 and the high temperature zone 21 of the core mold 2. ℃ and has considerable elasticity.
射出成形後は、第4図Aに示すように、外金型
の低温金型片12を脱型し、次いで油圧シリンダ
ー13の操作により、外金型の加熱金型片11を
脱出移動させ、同時に加熱金型片11のヒータの
通電を遮断し、この金型片11を冷却させる。 After injection molding, as shown in FIG. 4A, the cold mold piece 12 of the outer mold is demolded, and then the heated mold piece 11 of the outer mold is moved out by operating the hydraulic cylinder 13. At the same time, the power supply to the heater of the heating mold piece 11 is cut off, and this mold piece 11 is cooled.
金型片の脱出移動後は、第4図Bに示すよう
に、油圧シリンダー23の操作により、中子金型
2を脱出移動させる。この中子金型2の脱出移動
により、中子金型2が第4図Bに示すように、弾
性のあるゴムリング装着用溝Aからの無理抜き段
階を経て、第4図Cに示すように、低温ゾーン2
2と受口前方部Bとの摺動接触を保ちつつ、継手
成形体Pから脱出する。 After the mold pieces have been moved to escape, the core mold 2 is moved to escape by operating the hydraulic cylinder 23, as shown in FIG. 4B. Due to this evacuation movement of the core mold 2, the core mold 2 goes through a stage of forced removal from the elastic rubber ring mounting groove A as shown in FIG. 4B, and then as shown in FIG. 4C. , low temperature zone 2
2 and the front part B of the socket, it escapes from the joint molded body P.
上記第4図Bの状態において、受口前方部Bが
拡径され、この場合、受口前方部Bは完全弾性で
ないために、ある程度の永久変形を受けるが、第
4図Cの状態においては、中子金型2の低温ゾー
ン22の外径R2が受口前方部Bのもとの内径
(第3図におけるR1)よりも大であるから、受口
前方部Bを強制的に拡開状態としながら、中子金
型2の低温ゾーン22が受口前方部B内を移動す
る。 In the state shown in FIG. 4B above, the diameter of the socket front part B is expanded, and in this case, since the socket front part B is not perfectly elastic, it undergoes some degree of permanent deformation, but in the state shown in FIG. 4C, , since the outer diameter R 2 of the low temperature zone 22 of the core mold 2 is larger than the original inner diameter of the socket front part B (R 1 in FIG. 3), the socket front part B is forcibly closed. While in the expanded state, the low temperature zone 22 of the core mold 2 moves within the front part B of the socket.
従つて、受口前方部Bと中子金型2の低温ゾー
ン22との間に充分な面圧の発生があり、この間
の強い密接状態が保たれつつ中子金型2が移動す
るから、この中子金型2の移動中に、受口前方部
B並びにこれに隣接するゴムリング装着用溝Aを
効率よく冷却できる。 Therefore, sufficient surface pressure is generated between the socket front part B and the low temperature zone 22 of the core mold 2, and the core mold 2 moves while maintaining a strong close contact between them. During this movement of the core mold 2, the socket front part B and the adjacent rubber ring mounting groove A can be efficiently cooled.
中子金型の脱出移動が進み、中子金型の奥端部
が受口前方部に達すると、第4図Dに示すように
中子金型2を停止し、外金型の金型片11を油圧
シリンダー13の操作により復帰移動させ、受口
前方部B並びにゴムリング装着用溝Aを整形す
る。この場合、中子金型2の奥端部20の外径
R3と受口前方部Bの内径とがほゞ等しく、この
奥端部20の温度が40〜60℃であり、かつ金型片
11も既述した通りヒータの通電遮断により充分
に冷却されているから、上記整形は良好に行い得
る。 When the escape movement of the core mold progresses and the back end of the core mold reaches the front part of the socket, the core mold 2 is stopped as shown in FIG. 4D, and the mold of the outer mold is removed. The piece 11 is moved back by operating the hydraulic cylinder 13, and the front part B of the socket and the groove A for attaching the rubber ring are shaped. In this case, the outer diameter of the inner end 20 of the core mold 2
R 3 and the inner diameter of the front part B of the socket are approximately equal, the temperature of this rear end part 20 is 40 to 60°C, and the mold piece 11 is also sufficiently cooled by cutting off the power to the heater as described above. Therefore, the above-mentioned shaping can be performed well.
本発明においては、上記のように中子金型の低
温ゾーン22が受口先端の径小口部B内を拡開状
態で通過する間に径小口部Bの内面から熱を奪
い、受口先端部(A並びにBからなる部分)が冷
却されていく。この場合、中子金型の引抜き速度
を遅くすれば、冷却効果の向上に有利であるが、
作業速度の低下をきたすので、2cm/sec以上と
することが必要であり、従つて、かゝる中子金型
の高速引抜き下で、上記径小口部内面での奪熱効
率を高めることが必要である。 In the present invention, as described above, while the low temperature zone 22 of the core mold passes through the small diameter part B of the socket tip in an expanded state, heat is removed from the inner surface of the small diameter part B, and the socket tip The part (the part consisting of A and B) is being cooled. In this case, it is advantageous to improve the cooling effect by slowing down the withdrawal speed of the core mold, but
It is necessary to set the speed to 2 cm/sec or more as this will reduce the working speed, and therefore, it is necessary to increase the heat removal efficiency on the inner surface of the small diameter part under such high-speed drawing of the core mold. It is.
この奪熱効率の向上に寄与する要素は、中子金
型の低温ゾーンが径小口部内面を通過する際の両
者間の密接状態と径小口部内面の長さLである。 Factors that contribute to this improvement in heat removal efficiency are the close contact between the low-temperature zone of the core mold and the inner surface of the small-diameter portion when the two pass through the inner surface of the small-diameter portion, and the length L of the inner surface of the small-diameter portion.
密接状態の確保のために、受口先端の径小口部
の内径R1を中子金型の低温ゾーンの外径R2より
も小としており、R1/R2は通常0.85〜0.95であ
る。径小口部Bを中子金型の低温ゾーンが通過す
る際、径小口部Bは僅かではあるが、塑性的に周
方向伸びを示し、0.95以上では、充分な接触圧力
下での前記密接状態の確保が困難になり、一方、
0.85以下では、径小口部Bの薄肉化と長手方向伸
びが顕著となり、中子金型引抜き後に行う受口先
端部3の整形が困難になるし、又、第4図Cに示
すように、径小口部Bの内面に作用する摩擦力F
が大となり、中子金型引抜き中にゴムリング装着
用溝に作用する曲げモーメントMが大となつて、
ゴムリング装着用溝の変形が顕著化し、前記整形
によるも正規のゴムリング装着用溝形状への復元
が困難になる。 To ensure close contact, the inner diameter R1 of the small diameter portion at the tip of the socket is made smaller than the outer diameter R2 of the low temperature zone of the core mold, and R1 / R2 is usually 0.85 to 0.95. . When the low-temperature zone of the core mold passes through the small diameter part B, the small diameter part B shows plastic elongation in the circumferential direction, although it is slight, and at 0.95 or more, the above-mentioned close state under sufficient contact pressure On the other hand, it becomes difficult to secure
If it is less than 0.85, the thinning of the small diameter part B and the elongation in the longitudinal direction become noticeable, making it difficult to shape the socket tip part 3 after drawing out the core mold, and as shown in FIG. 4C, Frictional force F acting on the inner surface of the small diameter part B
becomes large, and the bending moment M acting on the rubber ring mounting groove during the core mold withdrawal becomes large.
The deformation of the rubber ring mounting groove becomes noticeable, and it becomes difficult to restore the rubber ring mounting groove to its normal shape even with the above-mentioned shaping.
本発明において、中子金型引抜き中、受口のゴ
ムリング装着用溝は、先端径小口部Bの内面の上
記奪熱に伴い冷却されていき、その径小口部内面
での奪熱量が大であるほど、従つて径小口部Bの
内面の長さLが長いほど、ゴムリング装着用溝を
効果的に冷却できゴムリング装着用溝の長さL′と
径小口部の内面長さLとの比L/L′は0.5以上と
することが望ましく、0.5以下では、ゴムリング
装着用溝を充分に冷却し難い。一方、径小口部の
内面長さLを余り長くすると、径小口部を中子金
型の低温ゾーンが通過する際に、既述した場合と
同様、その径小口部の内面に作用する摩擦力Fが
大となり、この摩擦力によつてゴムリング装着用
溝に作用する曲げモーメントMが大となつて、ゴ
ムリング装着用溝の変形が顕著となるので、L/
L′は0.8以下とすることが望ましい。 In the present invention, while the core mold is being pulled out, the rubber ring mounting groove of the socket is cooled as the heat is removed from the inner surface of the small tip diameter portion B, and the amount of heat absorbed by the inner surface of the small diameter portion B is large. Therefore, the longer the length L of the inner surface of the small diameter opening B, the more effectively the rubber ring mounting groove can be cooled. It is desirable that the ratio L/L' be 0.5 or more; if it is less than 0.5, it will be difficult to sufficiently cool the rubber ring mounting groove. On the other hand, if the inner length L of the small diameter opening is too long, when the low temperature zone of the core mold passes through the small diameter opening, frictional force will be applied to the inner surface of the small diameter opening, as in the case described above. As F increases, the bending moment M acting on the rubber ring mounting groove due to this frictional force increases, and the deformation of the rubber ring mounting groove becomes significant.
It is desirable that L' be 0.8 or less.
上述した通り、本発明に係るプラスチツク製継
手の射出成形法による製造方法によれば、中子金
型の脱出移動時、その受口前方部を中子金型の低
温ゾーンに充分な面圧で接触させ得、中子金型の
脱出移動中に受口前方部並びにこれに隣接せるゴ
ムリング装着用溝を効率よく冷却できる。而し
て、中子金型を一挙に脱出でき、前述した射出成
形の場合の中子金型の2段階脱出に較べ、中子金
型の構造並びに脱出操作とも簡易化できる。 As mentioned above, according to the injection molding manufacturing method of the plastic joint according to the present invention, when the core mold is moved out, the front part of the socket is placed in the low temperature zone of the core mold with sufficient surface pressure. The front part of the socket and the groove for attaching the rubber ring adjacent thereto can be efficiently cooled during the escape movement of the core mold. Thus, the core mold can be escaped at once, and the structure of the core mold and the evacuation operation can be simplified compared to the two-stage evacuation of the core mold in the case of injection molding described above.
更に、受口前方部並びにゴムリング装着用溝の
整形を、外金型における受口先端側成形用金型片
の復帰移動により行い得るから、整形のための金
型を別途必要とせず、かゝる面からも金型全体の
構造、操作の簡易化を図り得る。 Furthermore, since the front part of the socket and the groove for installing the rubber ring can be shaped by returning the mold piece for molding the front end of the socket in the outer mold, there is no need for a separate mold for shaping. From this point of view, the structure and operation of the entire mold can be simplified.
第1図A、第1図B、第1図C並びに第1図D
はプラスチツク製管継手を射出成形する場合の従
来の無理抜きを示す説明図、第2図A、第2図
B、第2図C並びに第2図Dはプラスチツク製管
継手を二次加工法により成形する場合の従来の無
理抜きを示す説明図、第3図は本発明において使
用する金型装置を示す説明図、第4図A、第4図
B、第4図C並びに第4図Dは本発明に係るプラ
スチツク製管継手の製造方法を示す説明図であ
る。
図において、Pはプラスチツク製管継手、Aは
ゴムリング装着用溝、Bは受口前方部、Cは受口
後方部、1は外金型、11は外金型の加熱金型
片、12は外金型の低温金型片、2は中子金型、
21は中子金型の高温ゾーン、22は中子金型の
低温ゾーンである。
Figure 1A, Figure 1B, Figure 1C, and Figure 1D
2 is an explanatory diagram showing conventional forced punching when plastic pipe fittings are injection molded, and Fig. 2A, Fig. 2B, Fig. 2C, and Fig. 2D are explanatory diagrams showing plastic pipe fittings made by secondary processing. FIG. 3 is an explanatory diagram showing the conventional forced punching in the case of molding, FIG. 3 is an explanatory diagram showing the mold device used in the present invention, FIG. 4A, FIG. 4B, FIG. FIG. 3 is an explanatory diagram showing a method of manufacturing a plastic pipe joint according to the present invention. In the figure, P is a plastic pipe joint, A is a groove for installing a rubber ring, B is a front part of the socket, C is a rear part of a socket, 1 is an outer mold, 11 is a heating mold piece of the outer mold, 12 2 is the low temperature mold piece of the outer mold, 2 is the core mold,
21 is a high temperature zone of the core mold, and 22 is a low temperature zone of the core mold.
Claims (1)
ラスチツク製管継手を射出成形するための金型
を、中子金型並びに外金型とも、上記ゴムリング
装着用溝に対応する位置を境にして、受口先端部
成形側は高温ゾーンに、残部側は低温ゾーンにそ
れぞれ保ち、プラスチツクの射出後は、外金型を
脱型し、次いで、中子金型を脱出移動させる方法
において、上記受口におけるゴムリング装着用溝
と受口先端との間の受口前方部の内径を、ゴムリ
ング装着用溝と受口奥端との間の受口後方部の内
径よりも小とするように金型を構成し、かつ、外
金型の高温ゾーンは加熱金型片により、低温ゾー
ンは低温金型片によりそれぞれ構成し、上記の中
子金型の脱出移動時、上記受口後方部の成形部で
ある中子金型部分の低温ゾーンで上記受口前方部
を強制的に拡開しつつ中子金型を脱出移動させ、
上記外金型の加熱金型片は、上記脱型後に所定温
度に冷却し、この金型片で、上記中子金型の脱出
移動直後、受口前方部をゴムリング装着用溝と共
に整形することを特徴とするプラスチツク製管継
手の製造方法。1. A mold for injection molding a plastic pipe joint having a socket with a groove for installing a rubber ring, both the core mold and the outer mold, are placed at the position corresponding to the groove for installing the rubber ring. The molding side of the tip of the socket is kept in a high temperature zone, and the remaining side is kept in a low temperature zone. After injection of plastic, the outer mold is demolded, and then the core mold is removed and moved. The inner diameter of the front part of the socket between the rubber ring mounting groove and the socket tip is made smaller than the inner diameter of the rear part of the socket between the rubber ring mounting groove and the back end of the socket. The high temperature zone of the outer mold is formed by a heating mold piece, and the low temperature zone is formed by a low temperature mold piece, and when the core mold moves out, the rear part of the socket In the low temperature zone of the core mold part, which is the molding part, the front part of the socket is forcibly expanded and the core mold is moved to escape,
The heated mold piece of the outer mold is cooled to a predetermined temperature after the demolding, and the front part of the socket is shaped with the rubber ring mounting groove immediately after the core mold is moved out. A method of manufacturing a plastic pipe joint, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56023579A JPS57137112A (en) | 1981-02-18 | 1981-02-18 | Manufacture of plastic pipe joint |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56023579A JPS57137112A (en) | 1981-02-18 | 1981-02-18 | Manufacture of plastic pipe joint |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57137112A JPS57137112A (en) | 1982-08-24 |
JPS6247702B2 true JPS6247702B2 (en) | 1987-10-09 |
Family
ID=12114464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56023579A Granted JPS57137112A (en) | 1981-02-18 | 1981-02-18 | Manufacture of plastic pipe joint |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57137112A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1189758B (en) * | 1986-05-26 | 1988-02-04 | Fip Formatura Inienzione Poli | DEVICE FOR THE FORMING OF THERMOPLASTIC PRODUCTS EQUIPPED WITH UNDER TEAM |
JP6895091B2 (en) * | 2015-01-30 | 2021-06-30 | 株式会社オンダ製作所 | Manufacturing method of pipe fittings |
-
1981
- 1981-02-18 JP JP56023579A patent/JPS57137112A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57137112A (en) | 1982-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6247702B2 (en) | ||
JPS6247701B2 (en) | ||
JP4801987B2 (en) | Molding method and molding apparatus | |
CN113478760A (en) | Earphone shell mould convenient to drawing of patterns | |
CN113752485A (en) | Injection mold slider drive is loosed core and is taken off back-off mechanism | |
JPH01216819A (en) | Method of bending plastic sheet | |
JP5114280B2 (en) | Molding method of molding material | |
CN202805626U (en) | Drain pipe processing device | |
JP3198935B2 (en) | Manufacturing method and manufacturing apparatus for skin-integrated molded product | |
TWI721733B (en) | Formation method of a thermoplastic material | |
JP2964242B1 (en) | Ultrasonic core hole forming method for plastic spectacle modern and ultrasonic core hole forming apparatus used therefor | |
JPS58138614A (en) | Molding of plastic tube end socket | |
JPH08142186A (en) | Reception port-forming method for crystalline resin tube | |
JP2001088137A (en) | Mold for molding ring-like rubber component | |
JP4846996B2 (en) | Mold piston molding method | |
JP2006110927A (en) | Hot runner mold | |
JP2003191276A (en) | Method for manufacturing injection-molded object having thin-walled part and mold | |
JPH0370619B2 (en) | ||
JP3364019B2 (en) | Mold opening method of synthetic resin foam molding machine | |
JPS6260968B2 (en) | ||
JPS62211126A (en) | Molding of rubber ring type socket | |
JPS62225322A (en) | Molding of rubber ring type socket | |
CN204413093U (en) | A kind of die casting block assembly | |
JPS6350332A (en) | Method for molding glass lens | |
CN116118053A (en) | Adjustable mould for tyre |