JPS6246784B2 - - Google Patents

Info

Publication number
JPS6246784B2
JPS6246784B2 JP5179581A JP5179581A JPS6246784B2 JP S6246784 B2 JPS6246784 B2 JP S6246784B2 JP 5179581 A JP5179581 A JP 5179581A JP 5179581 A JP5179581 A JP 5179581A JP S6246784 B2 JPS6246784 B2 JP S6246784B2
Authority
JP
Japan
Prior art keywords
temperature
gas
expansion turbine
air
bearing expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5179581A
Other languages
Japanese (ja)
Other versions
JPS57166451A (en
Inventor
Kazuo Okamoto
Teruo Oota
Kazuo Ihara
Yasuo Nakatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5179581A priority Critical patent/JPS57166451A/en
Publication of JPS57166451A publication Critical patent/JPS57166451A/en
Publication of JPS6246784B2 publication Critical patent/JPS6246784B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 本発明は深冷空気分離装置、ヘリウムガスや水
素ガスなどの液化装置で寒冷発生源として採用さ
れている膨張タービンで特に気体軸受膨張タービ
ン入口温度の制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the inlet temperature of a gas bearing expansion turbine in an expansion turbine used as a cold generation source in a cryogenic air separation device or a device for liquefying helium gas, hydrogen gas, etc. be.

第1図は、従来の気体軸受膨張タービンを寒冷
発生源とした深冷空気分離装置の気体軸受膨張タ
ービンまわりの系統図である。
FIG. 1 is a system diagram around a gas bearing expansion turbine of a cryogenic air separation device using a conventional gas bearing expansion turbine as a cold generation source.

凝縮器1の上部から蒸発した飽和温度の空気を
抜き出し、気液分離器2を通し、さらに空気熱交
3を通して温度回復させた後、気体軸受膨張ター
ビン(以下、膨張タービンと略)4へ送給し、膨
張タービン4で断熱膨張させ温度を低下させた
後、再び空気熱交3を通し熱交換させる。また、
膨張タービン4のインターロツクとしては、ター
ビン回転数を回転計発振器5で検出しオーバース
ピードになると膨張タービン4の入口配管に設け
た危急遮断弁6を閉じるものと、膨張タービン4
の入口配管に設けた温度検出計7により、処理空
気の膨張タービン入口温度が設定値(処理空気が
膨張タービン内部で液化しない最適な膨張タービ
ン入口温度)以下になると危急遮断弁6が閉じる
ものがある。特に、気体軸受膨張タービンの場
合、軸受負荷容量が比較的小さいため、入口温度
の低下によつてその内部で処理空気が凝縮すると
回転体にアンバランスを生じ軸受焼損事故を起し
易い。また、凝縮液を同伴した空気が入つても同
様である。このため上記のようなインターロツク
が設けられ、例えば、膨張タービン4の入口温度
を監視し上記の設定値以下になると膨張タービン
4入口の危急遮断弁6を閉じ、膨張タービン4の
回転を停止させるが、この場合、膨張タービン4
の回転は完全に停止するので再起動に多くの時間
を費す。また、膨張タービン4の入口温度の制御
は、空気熱交3の温度バランス運転、あるいは、
凝縮器1の凝縮液液面を十分下げることにより凝
縮器1の上部から抜出す蒸発空気中のミストの同
伴率を下げる運転を行うことで可能であるが、こ
れは凝縮器1の能力低下をきたし、また、このよ
うな操作はプラント全体の熱バランスをとるのに
多くの時間を要するといつた欠点があつた。
The evaporated air at the saturation temperature is extracted from the upper part of the condenser 1, passed through a gas-liquid separator 2, and then passed through an air heat exchanger 3 to recover its temperature, and then sent to a gas bearing expansion turbine (hereinafter referred to as expansion turbine) 4. The air is then adiabatically expanded in the expansion turbine 4 to lower its temperature, and then passed through the air heat exchanger 3 again for heat exchange. Also,
The interlock for the expansion turbine 4 includes one that detects the turbine rotational speed with a tachometer oscillator 5 and closes an emergency shutoff valve 6 provided at the inlet pipe of the expansion turbine 4 when overspeed occurs.
The emergency shutoff valve 6 closes when the temperature at the expansion turbine inlet of the processed air falls below a set value (the optimal expansion turbine inlet temperature at which the processed air does not liquefy inside the expansion turbine) using a temperature detector 7 installed in the inlet piping. be. In particular, in the case of a gas bearing expansion turbine, since the bearing load capacity is relatively small, if the processing air condenses inside the turbine due to a drop in the inlet temperature, the rotor will become unbalanced and the bearing burnout is likely to occur. The same applies if air accompanied by condensed liquid enters. For this reason, the above-mentioned interlock is provided, and for example, the inlet temperature of the expansion turbine 4 is monitored, and when the temperature falls below the above-mentioned set value, the emergency shutoff valve 6 at the inlet of the expansion turbine 4 is closed, and the rotation of the expansion turbine 4 is stopped. However, in this case, the expansion turbine 4
Since the rotation stops completely, it takes a lot of time to restart it. Further, the inlet temperature of the expansion turbine 4 can be controlled by temperature balance operation of the air heat exchanger 3, or by
This can be done by lowering the condensate liquid level in the condenser 1 sufficiently to reduce the entrainment rate of mist in the evaporated air extracted from the upper part of the condenser 1, but this will reduce the capacity of the condenser 1. However, this type of operation also had the disadvantage that it took a lot of time to balance the heat of the entire plant.

本発明は、上記従来技術の欠点の除去を目的と
したもので、気体軸受膨張タービンの入口温度を
温度調節三方弁で調整し、気体軸受膨張タービン
内部で処理空気が液化しない最適の温度に制御す
る方法を提供するものである。
The present invention is aimed at eliminating the drawbacks of the above-mentioned conventional technology.The inlet temperature of the gas bearing expansion turbine is adjusted using a three-way temperature control valve, and the temperature is controlled to the optimum temperature so that the processed air does not liquefy inside the gas bearing expansion turbine. This provides a method to do so.

本発明の一実施例を第2図を用いて説明する
と、図で、気液分離器2より送給された空気の一
部を空気熱交3で温度回復させ温度調節三方弁8
へ、また、他の一部をバイパス回路9で同様に温
度調節三方弁8へ送給し、その後、危急遮断弁6
を介し気体軸受膨張タービン(以下、膨張タービ
ンと略)4に供給される。供給された処理空気
は、膨張タービン4で断熱膨張し温度を低下させ
た後に再び空気熱交3を通し熱交換させる。な
お、温度調節三方弁8は、温度検出計7からの信
号により作動する。
One embodiment of the present invention will be described with reference to FIG. 2. In the figure, a part of the air fed from the gas-liquid separator 2 is temperature-recovered by an air heat exchanger 3 and a temperature control three-way valve 8
In addition, the other part is similarly supplied to the temperature control three-way valve 8 through the bypass circuit 9, and then the emergency cutoff valve 6
The gas is supplied to a gas bearing expansion turbine (hereinafter abbreviated as expansion turbine) 4 through the gas bearing expansion turbine. The supplied processing air undergoes adiabatic expansion in the expansion turbine 4 to lower its temperature, and then passes through the air heat exchanger 3 again for heat exchange. Note that the temperature control three-way valve 8 is operated by a signal from the temperature detector 7.

空気熱交3において、タービン処理空気ライン
10の伝熱面積を従来のものより大きくし、これ
により空気熱交3から膨張タービン4に供給され
る空気の温度を設定値(処理空気が膨張タービン
内部で液化しない最適膨張タービン入口温度)以
上に常に保持する。したがつて、このままでは膨
張タービン4入口温度は、この場合、設定値以上
となるため温度検出計7からの信号により温度調
節三方弁8を制御、作動させ、バイパス回路10
から送給される低温の空気量を調節しながらこの
空気を空気熱交3から送給される空気に混入さ
せ、膨張タービン4入口温度が常に設定値となる
ように調節する。
In the air heat exchanger 3, the heat transfer area of the turbine processing air line 10 is made larger than that of the conventional one. Always maintain the temperature above the optimum expansion turbine inlet temperature (at which no liquefaction occurs). Therefore, in this case, the inlet temperature of the expansion turbine 4 will exceed the set value, so the temperature control three-way valve 8 is controlled and operated by the signal from the temperature detector 7, and the bypass circuit 10 is activated.
This air is mixed with the air fed from the air heat exchanger 3 while adjusting the amount of low-temperature air fed from the air heat exchanger 3, so that the inlet temperature of the expansion turbine 4 is always adjusted to the set value.

以上説明したように、本発明は、空気熱交のタ
ービン処理空気ラインの伝熱面積を大きくし、気
体軸受膨張タービンの入口温度を温度調節三方弁
で適正温度に調節するということで、気体軸受膨
張タービンの危急停止および軸受焼付き事故を防
止でき、深冷空気分離装置等の連続運転性および
信頼性が向上するといつた効果がある。
As explained above, the present invention increases the heat transfer area of the air heat exchanger turbine processing air line and adjusts the inlet temperature of the gas bearing expansion turbine to an appropriate temperature using a three-way temperature control valve. It is possible to prevent an emergency stop of the expansion turbine and a bearing seizure accident, and it has the effect of improving the continuous operability and reliability of cryogenic air separation equipment, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の深冷空気分離装置の気体軸受
膨張タービン廻りの系統図、第2図は、本発明に
よる一実施例の深冷空気分離装置の気体軸受膨張
タービン廻りの系統図である。 1……凝縮器、2……気液分離器、3……空気
熱交、4……気体軸受膨張タービン、5……回転
計発振器、6……危急遮断弁、7……温度検出
計、8……温度調節三方弁、9……バイパス回
路、10……タービン処理空気ライン。
FIG. 1 is a system diagram around a gas bearing expansion turbine in a conventional cryogenic air separation device, and FIG. 2 is a system diagram around a gas bearing expansion turbine in an embodiment of a cryogenic air separation device according to the present invention. . 1... Condenser, 2... Gas-liquid separator, 3... Air heat exchanger, 4... Gas bearing expansion turbine, 5... Tachometer oscillator, 6... Emergency shutoff valve, 7... Temperature detector, 8...Temperature control three-way valve, 9...Bypass circuit, 10...Turbine processing air line.

Claims (1)

【特許請求の範囲】[Claims] 1 深冷空気分離装置等で使用される気体軸受膨
張タービンにおいて、気液分離器からの低温ガス
を熱交換器にて前記気体軸受膨張タービン内部で
液化しない温度以上に温度回復させた処理ガス
と、前記気液分離器からの低温ガスとを前記気体
軸受膨張タービン入口温度検出計からの信号で作
動する温度調節三方弁で適正に混合させ前記気体
軸受膨張タービンの内部で処理ガスが液化しない
最適の温度に調節することを特徴とした気体軸受
膨張タービン入口温度の制御方法。
1. In a gas bearing expansion turbine used in a cryogenic air separation device, etc., the low temperature gas from the gas-liquid separator is recovered in a heat exchanger to a temperature above which it will not liquefy inside the gas bearing expansion turbine. , the low-temperature gas from the gas-liquid separator is appropriately mixed with a temperature control three-way valve operated by a signal from the gas-bearing expansion turbine inlet temperature detector, so that the process gas is optimally prevented from liquefying inside the gas-bearing expansion turbine. A method for controlling the inlet temperature of a gas bearing expansion turbine, characterized in that the temperature is adjusted to a temperature of .
JP5179581A 1981-04-08 1981-04-08 Control of inlet temperature for gas bearing expansion turbine Granted JPS57166451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5179581A JPS57166451A (en) 1981-04-08 1981-04-08 Control of inlet temperature for gas bearing expansion turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5179581A JPS57166451A (en) 1981-04-08 1981-04-08 Control of inlet temperature for gas bearing expansion turbine

Publications (2)

Publication Number Publication Date
JPS57166451A JPS57166451A (en) 1982-10-13
JPS6246784B2 true JPS6246784B2 (en) 1987-10-05

Family

ID=12896865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5179581A Granted JPS57166451A (en) 1981-04-08 1981-04-08 Control of inlet temperature for gas bearing expansion turbine

Country Status (1)

Country Link
JP (1) JPS57166451A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079316B2 (en) * 1987-12-18 1995-02-01 株式会社日立製作所 Liquefaction method of helium gas using expansion turbine

Also Published As

Publication number Publication date
JPS57166451A (en) 1982-10-13

Similar Documents

Publication Publication Date Title
US3877218A (en) Brayton cycle system with refrigerated intake and condensed water injection
US3690114A (en) Refrigeration process for use in liquefication of gases
US2280383A (en) Method and apparatus for extracting an auxiliary product of rectification
CA1282604C (en) Heat pump system and a method of operating same
JPS6246784B2 (en)
JPH10300263A (en) Absorption refrigerator
US1961201A (en) Process for separating mixed gases by liquefaction
JPH05302504A (en) Low temperature power generating device using liquefied natural gas
JP2645994B2 (en) Oxygen purity control method in air liquefaction separator
JP3279029B2 (en) Absorption refrigerator
JP3072563B2 (en) Method and apparatus for collecting high-purity liquefied nitrogen
JP3026098B2 (en) Air liquefaction separation method and apparatus suitable for fluctuations in demand
JPH02622Y2 (en)
JP2791580B2 (en) Air liquefaction separation method and apparatus
JP2967427B2 (en) Air separation method and apparatus suitable for demand fluctuation
JPH0534061A (en) Air liquefaction and separation method suitable for variation in demand for oxygen and apparatus therefor
JPS5944569A (en) Method of operating nitrogen manufacturing device
JPS5816137A (en) Water cooling device for air conditioner
JPH0480558A (en) Helium liquefying refrigerator
JPH0450405A (en) Turbine main body for cryogenic expansion turbine and automatic load balance for static pressure gas feeding type thrust gas bearing of same turbine device
JPS6071882A (en) Air separator using gas bearing type expansion turbine
JPS6346352B2 (en)
JPH02251053A (en) Heat pump type hot water supplying apparatus
JPH0587449A (en) Air-liquefying and separating apparatus, and operating method therefor
JPH02242049A (en) Cooling control device for refrigerator