JPS6246769B2 - - Google Patents

Info

Publication number
JPS6246769B2
JPS6246769B2 JP54131337A JP13133779A JPS6246769B2 JP S6246769 B2 JPS6246769 B2 JP S6246769B2 JP 54131337 A JP54131337 A JP 54131337A JP 13133779 A JP13133779 A JP 13133779A JP S6246769 B2 JPS6246769 B2 JP S6246769B2
Authority
JP
Japan
Prior art keywords
heat transfer
boiler
soot
transfer surface
soot blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54131337A
Other languages
Japanese (ja)
Other versions
JPS5656503A (en
Inventor
Kazuma Kikuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP13133779A priority Critical patent/JPS5656503A/en
Publication of JPS5656503A publication Critical patent/JPS5656503A/en
Publication of JPS6246769B2 publication Critical patent/JPS6246769B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)

Description

【発明の詳細な説明】 本発明はスートブロワの制御方法に係り、特に
最適な時期に効果的なブローイングを行なうこと
のできるスートブロワの制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a soot blower control method, and more particularly to a soot blower control method that allows effective blowing to be performed at an optimal time.

ボイラ装置を運転していると、炉内にある水壁
管群などの伝熱面に煤や灰などが付着・堆積し
て、伝熱面における熱交換性能が悪くなる。その
ため適当な時期にスートブロワを運転して、伝熱
面に付着・堆積している煤や灰などを除去する必
要がある。スートブロワの設置本数は、発電所用
大型ボイラ装置では普通約50本以上、廃熱ボイラ
装置では100本前後にも達している。またパルプ
プラントの黒液回収用ボイラ装置では、多数のス
ートブロワを例えば3時間で1回程度の頻度でブ
ローイングしている。
When a boiler equipment is operated, soot, ash, etc. adhere to and accumulate on heat transfer surfaces such as water wall tubes in the furnace, deteriorating the heat exchange performance of the heat transfer surfaces. Therefore, it is necessary to operate the soot blower at an appropriate time to remove soot, ash, etc. that have adhered to and accumulated on the heat transfer surface. The number of soot blowers installed is usually around 50 or more in large boilers for power plants, and around 100 in waste heat boilers. Further, in a boiler device for black liquor recovery of a pulp plant, a large number of soot blowers are used to blow at a frequency of about once every three hours, for example.

従来このスートブロワの運転は、ボイラ運転員
がボイラ装置の排ガス温度やドラフトを常に測定
し、排ガス温度やドラフトが上昇すると、運転員
の経験と照らし合わせてブローイングの時期を判
断していた。このようなことから、判断に際して
運転員の個人差が有り、適正なスートブロワの運
転がなされないとボイラ装置の効率が低下する。
また運転員は常に排ガス温度やドラフトの変化を
監視しておく必要があり、時間的に束縛されてし
まい作業能率が悪い。
Conventionally, when operating a soot blower, a boiler operator constantly measured the exhaust gas temperature and draft of the boiler equipment, and when the exhaust gas temperature or draft rose, the operator judged the timing of blowing based on his experience. For this reason, there are individual differences among operators when making judgments, and if the soot blower is not operated properly, the efficiency of the boiler device will decrease.
In addition, operators must constantly monitor changes in exhaust gas temperature and draft, which results in time constraints and poor work efficiency.

そのため通常は、伝熱面の汚れの程度にかかわ
らず、定期的に全部のスートブロワを一定のシー
ケンスに従つて運転している。しかしこの方法で
は、汚れの少ない伝熱面までも噴射媒体(蒸気、
空気)を使用して清掃するから、噴射媒体が無駄
になる。特にボイラ装置で発生した蒸気を噴射媒
体として使用する場合、蒸気の減つた分だけそれ
を捕う必要があり燃料を余計に必要とする。また
逆にブローイングが必要であるにもかかわらず、
運転時刻になつていないため更に煤などが堆積し
て固まり、次のブローイングでは除去が困難にな
つてしまうことがある。なお、ブローイングが必
要な部分は、所定の運転時刻になつていなくても
その伝熱面に対応するスートブロワを運転員が選
択して、ブローイングする方法も採られている。
ところがこの方法では、伝熱面の汚れがひどいと
推定した部分を余計にブローイングする傾向があ
り、実質的なボイラ効率の低下を助長している。
Therefore, all soot blowers are normally operated according to a certain sequence regardless of the degree of dirt on the heat transfer surface. However, with this method, the injection medium (steam, steam,
(Air) is used for cleaning, which wastes the jetting medium. In particular, when steam generated in a boiler device is used as an injection medium, it is necessary to capture the amount of steam that is lost, which requires additional fuel. On the other hand, even though blowing is necessary,
Since the operating time has not yet arrived, more soot may accumulate and solidify, making it difficult to remove during the next blowing. Note that there is also a method in which the operator selects a soot blower corresponding to the heat transfer surface and blows the part that requires blowing even if the predetermined operation time has not arrived.
However, in this method, there is a tendency to excessively blow the portions of the heat transfer surface that are estimated to be heavily contaminated, which contributes to a substantial reduction in boiler efficiency.

本発明の目的は、上記した従来技術の欠点を除
去し、スートブロワの必要な時期に、最も効果的
なシーケンスでブローイングできるスートブロワ
の制御方法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a soot blower control method that eliminates the above-mentioned drawbacks of the prior art and allows the soot blower to blow in the most effective sequence at the required time.

この目的を達成するため、本発明は、ボイラ装
置の各伝熱面にそれぞれ対応した複数のスートブ
ロワを備えたものにおいて、前記各伝熱面の汚れ
に関係するボイラ特性を測定する測定点を複数設
定し、各測定点ごとの伝熱面汚れ許容限界を判断
するためのボイラ特性データと、スートブロワ運
転の優先順位とを予め制御装置の記憶部に記憶さ
せておき、前記各測定点でボイラ特性を測定し、
その実測値と前記ボイラ特性データとを制御装置
の比較判断部で照合して、当該伝熱面が汚れ許容
限界に達しているか否かを判断し、汚れが許容限
界に達していない伝熱面と対応しているスートブ
ロワはブローイングを停止しておき、汚れが許容
限界に達している伝熱面と対応しているスートブ
ロワは前記優先順位に従つてブローイングを行な
うことを特徴とする。
In order to achieve this object, the present invention provides a boiler system equipped with a plurality of soot blowers corresponding to each heat transfer surface, in which a plurality of measurement points are provided to measure boiler characteristics related to contamination on each heat transfer surface. The boiler characteristic data used to set and determine the heat transfer surface contamination allowable limit for each measurement point and the priority order of soot blower operation are stored in advance in the storage unit of the control device, and the boiler characteristics data at each measurement point are stored in advance in the storage unit of the control device. measure,
The comparison/judgment unit of the control device compares the measured value with the boiler characteristic data to determine whether or not the heat transfer surface has reached the allowable limit for contamination. The soot blower corresponding to the heat transfer surface stops blowing, and the soot blower corresponding to the heat transfer surface whose contamination reaches an allowable limit performs blowing according to the priority order.

次に本発明の実施例を図面とともに説明する。
第1図において1はボイラ装置で、燃焼ガスの流
れ方向に沿つて過熱器2、蒸発水管3、節炭器4
などの熱交換器が配置されている。供給燃料の燃
焼によつて生成した高温の燃焼ガスは、前記熱交
換器の中を通る間に熱回収され、煙道から集塵装
置、煙突(いずれも図示せず)を経由して放出さ
れる。なお、5は汽胴、6は水胴、7はスクリー
ン管である。
Next, embodiments of the present invention will be described with reference to the drawings.
In Fig. 1, 1 is a boiler device, which includes a superheater 2, an evaporator water pipe 3, and an economizer 4 along the flow direction of combustion gas.
A heat exchanger such as the following is installed. The high-temperature combustion gas generated by the combustion of the supplied fuel is heat-recovered while passing through the heat exchanger, and is released from the flue via a dust collector and a chimney (none of which are shown). Ru. In addition, 5 is a steam cylinder, 6 is a water cylinder, and 7 is a screen pipe.

燃焼ガスが前記熱交換器の中を通る間に、燃焼
ガス中に含まれている煤、灰、ダストなどがその
伝熱面に次第に付着・堆積して、熱交換性能が低
下する。この伝熱面の煤などによる汚れを把握す
るため、過熱器2では蒸気温度が、また蒸発水管
3ならびに節炭器4では燃焼ガス温度ならびにド
ラフト差圧が測定される。すなわち、前側過熱器
2の蒸気入口温度がTG1で、前側過熱器2の蒸気
出口温度ならびに後側過熱器2の蒸気入口温度が
TG2で、後側過熱器2の蒸気出口温度がTG3でそ
れぞれ測定される。図示していないが、蒸気流通
路の途中には流量計が設置されており、この流量
計の測定値と各測定点での蒸気温度差とによつて
前側と後側の過熱器2における熱吸収量がそれぞ
れ求められる。
While the combustion gas passes through the heat exchanger, soot, ash, dust, etc. contained in the combustion gas gradually adhere to and accumulate on the heat transfer surface, deteriorating the heat exchange performance. In order to determine whether the heat transfer surface is contaminated with soot or the like, the steam temperature is measured in the superheater 2, and the combustion gas temperature and draft differential pressure are measured in the evaporative water pipe 3 and the economizer 4. That is, the steam inlet temperature of the front superheater 2 is TG 1 , and the steam outlet temperature of the front superheater 2 and the steam inlet temperature of the rear superheater 2 are
At TG 2 , the steam outlet temperature of the rear superheater 2 is measured at TG 3 , respectively. Although not shown, a flow meter is installed in the middle of the steam flow path, and the temperature in the front and rear superheaters 2 is determined by the measured value of this flow meter and the steam temperature difference at each measurement point. The amount of absorption is determined for each.

また、蒸発水管3の燃焼ガス入口側、中間部、
燃焼ガス出口側にそれぞれ温度検出器とドラフト
測定器が設置されている。各測定点の燃焼ガス温
度がt1(入口側)、t2(中間部)、t3(出口側)と
して検出され、入口側と中間部のドラフト差圧が
ΔP1、中間部と出口側のドラフト差圧がΔP2とし
て検出される。さらに節炭器4の燃焼ガス入口
側、中間部、燃焼ガス出口側にそれぞれ温度検出
器とドラフト測定器が設置されている。各測定点
の燃焼ガス温度がt4(入口側)、t5(中間部)、t6
(出口側)として検出され、入口側と中間部のド
ラフト差圧がΔP4、中間部と出口側のドラフト差
圧がΔP5として検出される。また、前記蒸発水管
3の出口側と節炭器4の入口側のドラフト差圧が
ΔP3として検出される。
In addition, the combustion gas inlet side of the evaporative water pipe 3, the intermediate part,
A temperature detector and a draft measuring device are installed on each combustion gas outlet side. The combustion gas temperature at each measurement point is detected as t 1 (inlet side), t 2 (middle part), and t 3 (outlet side), and the draft differential pressure between the inlet side and the middle part is ΔP 1 , and the draft pressure difference between the middle part and the outlet side is The draft pressure difference of is detected as ΔP 2 . Further, a temperature detector and a draft measuring device are installed on the combustion gas inlet side, the intermediate portion, and the combustion gas outlet side of the economizer 4, respectively. The combustion gas temperature at each measurement point is t 4 (inlet side), t 5 (middle part), t 6
(exit side), the draft differential pressure between the inlet side and the intermediate portion is detected as ΔP 4 , and the draft differential pressure between the intermediate portion and the outlet side is detected as ΔP 5 . Further, the draft pressure difference between the outlet side of the evaporative water pipe 3 and the inlet side of the economizer 4 is detected as ΔP 3 .

8は前記熱交換器の伝熱面を清掃するための抜
差形スートブロワで、先端にノズルを有する噴射
管を運転時だけ炉内に挿入し、噴射管を回転させ
ながら噴射媒体(蒸気)を噴射させる機構になつ
ている。スートブロワ8のうちS1〜S3によつて前
側過熱器2の伝熱面が、S4〜S6によつて後側過熱
器2の伝熱面が、S7〜S14によつて蒸発水管3の
伝熱面が、S15〜S19によつて節炭器4の伝熱面が
それぞれ清掃されるようになつている。これらス
ートブロワ8のS1〜S19は、1本ずつあるいは小
グループずつに分けてブローイングすることがで
きる。
Reference numeral 8 designates a slide-type soot blower for cleaning the heat transfer surface of the heat exchanger; an injection pipe with a nozzle at the tip is inserted into the furnace only during operation, and the injection medium (steam) is supplied while rotating the injection pipe. It has a mechanism to spray it. In the soot blower 8, the heat transfer surface of the front superheater 2 is evaporated by S1 to S3 , the heat transfer surface of the rear superheater 2 is evaporated by S4 to S6 , and the heat transfer surface of the rear superheater 2 is evaporated by S7 to S14 . The heat transfer surface of the water tube 3 and the heat transfer surface of the economizer 4 are respectively cleaned in steps S 15 to S 19 . These soot blowers 8 S 1 to S 19 can perform blowing one by one or divided into small groups.

前述したボイラ特性の蒸気温度TG1〜TG3、燃
焼ガス温度t1〜t6、ドラフト差圧ΔP1〜ΔP5は常
時あるいは比較的短い間隔で定期的に検出され、
その検出信号が第2図に示すようにマイクロコン
ピユータなどからなる制御装置9に入力される。
The boiler characteristics described above, such as steam temperature TG 1 to TG 3 , combustion gas temperature t 1 to t 6 , and draft differential pressure ΔP 1 to ΔP 5 , are detected constantly or periodically at relatively short intervals.
The detection signal is inputted to a control device 9 consisting of a microcomputer or the like as shown in FIG.

この制御装置9の記憶部には、前記各測定点ご
との伝熱面の汚れ許容限界を判断するためのボイ
ラ特性データ(蒸気温度、燃焼ガス温度、ドラフ
ト差圧など)と、スートブロワ運転の優先順位が
予め記憶されている。なお、ボイラ特性はボイラ
負荷によつてその特性値がかなり違うため、前記
ボイラ特性データはボイラ負荷と関連づけて記憶
されている。前述のように各測定点で測定されて
制御装置9に入力された蒸気温度TG1〜TG3、燃
焼ガス温度t1〜t6、ドラフト差圧ΔP1〜ΔP5は、
制御装置9の比較判断部において前記ボイラ特性
データと照合され、当該伝熱面が汚れ許容限界に
達しているか否かを判断する。この照合判断は、
測定点毎に行なわれる。
The storage unit of this control device 9 contains boiler characteristic data (steam temperature, combustion gas temperature, draft differential pressure, etc.) for determining the allowable limit of contamination of the heat transfer surface for each measurement point, and soot blower operation priority. The ranking is stored in advance. Note that since the boiler characteristic values vary considerably depending on the boiler load, the boiler characteristic data is stored in association with the boiler load. The steam temperatures TG 1 to TG 3 , combustion gas temperatures t 1 to t 6 , and draft differential pressures ΔP 1 to ΔP 5 measured at each measurement point and input to the control device 9 as described above are as follows:
A comparison/determination section of the control device 9 compares the boiler characteristic data with the boiler characteristic data to determine whether or not the heat transfer surface has reached the contamination allowable limit. This matching judgment is
This is done at each measurement point.

その判断の結果、例えば過熱器2の全体と、蒸
発水管3の燃焼ガス入口側と中間部の伝熱面は汚
れ許容限界に達しており、蒸発水管3の燃焼ガス
出口側と節炭器4の全体の伝熱面は汚れ許容限界
に達していないという結果が出た場合、ストーブ
ロワ8のうちS1〜S12はブローイングを行ない、
S13〜S19はブローイングを行なう必要がない。ブ
ローイングするスートブロワ8が決まると、次に
記憶部に記憶されているスートブロワ運転の優先
順位に従つて優先度の高い順番に整理して、その
順位信号をスートブロワパネル盤10に送る。ス
ートブロワ運転の優先順位は、例えば異なつた測
定点において一方は燃焼ガス温度がボイラ特性デ
ータの基準値より超えており、他方はドラフト差
圧がボイラ特性データの基準値より超えていた場
合、ドラフト差圧の測定点に近い方のスートブロ
ワを優先して運転するとか、あるいはある測定点
において燃焼ガス温度がボイラ特性データの基準
値を極端に超えている場合、その測定点に近いス
ートブロワを他のスートブロワより優先して運転
するなど、それぞれの条件によつて細かく優先項
目が決められている。スートブロワパネル盤10
は制御装置9からの順位信号に従つて各スートブ
ロワ8に運転指令を出し、ブローイングを行な
う。
As a result of this judgment, for example, the entire superheater 2, the combustion gas inlet side and the intermediate heat transfer surface of the evaporative water pipe 3 have reached the allowable contamination limit, and the combustion gas outlet side of the evaporative water pipe 3 and the energy saver 4 If it is determined that the entire heat transfer surface of the stove does not reach the allowable fouling limit, blowing is performed on S 1 to S 12 of the stove blower 8.
S 13 to S 19 do not require blowing. Once the soot blower 8 to be used for blowing is determined, the soot blowers are arranged in descending order of priority according to the priority order of soot blower operation stored in the storage section, and the order signal is sent to the soot blower panel board 10. For example, the priority of soot blower operation is determined by determining the draft difference when the combustion gas temperature exceeds the reference value of the boiler characteristic data at one measurement point and the draft differential pressure exceeds the reference value of the boiler characteristic data at the other measurement point. If the soot blower closest to the pressure measurement point is operated preferentially, or if the combustion gas temperature at a certain measurement point extremely exceeds the reference value of the boiler characteristic data, the soot blower near that measurement point is operated with priority. Priority items are determined in detail depending on each condition, such as driving with higher priority. Soot blower panel board 10
issues an operating command to each soot blower 8 in accordance with the order signal from the control device 9 to perform blowing.

ボイラ特性の実測値とボイラ特性データとの照
合は常時あるいは比較的短い間隔で定期的に行な
われており、最初の照合結果その測定点に関連す
る伝熱面が汚れ許容限界に達していなかつても、
その後の実測値がボイラ特性のデータの基準値を
超えている場合は、前述と同じように処理されて
ブローイングが行なわれる。
Comparison of actual boiler characteristic measurements with boiler characteristic data is carried out constantly or periodically at relatively short intervals, and the first comparison results indicate that the heat transfer surface associated with the measurement point has not reached the allowable fouling limit. too,
If the subsequent measured value exceeds the reference value of boiler characteristic data, blowing is performed in the same manner as described above.

以上説明したように、本発明によれば、スート
ブロワの必要な時期に最も効果的なブローイング
ができ、噴射媒体の損失がない。
As explained above, according to the present invention, the soot blower can perform the most effective blowing at the required time, and there is no loss of the ejected medium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明に係るスートブロ
ワ制御方法を説明するための概略構成図および系
統図である。 1……ボイラ装置、2……過熱器、3……蒸発
水管、4……節炭器、8,S1〜S19……スートブ
ロワ、9……制御装置、TG1〜TG3……蒸気温
度、t1〜t6……燃焼ガス温度、ΔP1〜ΔP5……ド
ラフト差圧。
1 and 2 are a schematic configuration diagram and a system diagram for explaining the soot blower control method according to the present invention. 1... Boiler device, 2... Superheater, 3... Evaporative water pipe, 4... Energy saver, 8, S1 to S19 ... Soot blower, 9... Control device, TG 1 to TG 3 ... Steam Temperature, t 1 to t 6 ... Combustion gas temperature, ΔP 1 to ΔP 5 ... Draft differential pressure.

Claims (1)

【特許請求の範囲】[Claims] 1 ボイラ装置の各伝熱面にそれぞれ対応した複
数のスートブロワを備えたものにおいて、前記各
伝熱面の汚れに関係するボイラ特性を測定する測
定点を複数設定し、各測定点ごとの伝熱面汚れ許
容限界を判断するためのボイラ特性データと、ス
ートブロワ運転の優先順位とを予め制御装置の記
憶部に記憶させておき、前記各測定点でボイラ特
性を測定し、その実測値と前記ボイラ特性データ
とを制御装置の比較判断部で照合して、当該伝熱
面が汚れ許容限界に達しているか否かを判断し、
汚れが許容限界に達していない伝熱面と対応して
いるスートブロワはブローイングを停止してお
き、汚れが許容限界に達している伝熱面と対応し
ているスートブロワは前記優先順位に従つてブロ
ーイングを行なうことを特徴とするスートブロワ
の制御方法。
1. In a boiler device equipped with multiple soot blowers corresponding to each heat transfer surface, multiple measurement points are set to measure the boiler characteristics related to dirt on each heat transfer surface, and the heat transfer at each measurement point is measured. Boiler characteristic data for determining the permissible limit of surface contamination and the priority order of soot blower operation are stored in advance in the storage unit of the control device, the boiler characteristics are measured at each of the measurement points, and the actual values and the soot blower operation priority are stored in advance. The comparison judgment unit of the control device compares the characteristic data with the heat transfer surface to determine whether the contamination tolerance limit has been reached.
Soot blowers that correspond to heat transfer surfaces whose contamination has not reached the permissible limit stop blowing, and soot blowers that correspond to heat transfer surfaces whose contamination has reached the permissible limit perform blowing according to the priority order described above. A soot blower control method characterized by performing the following steps.
JP13133779A 1979-10-13 1979-10-13 Controlling system of soot blower Granted JPS5656503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13133779A JPS5656503A (en) 1979-10-13 1979-10-13 Controlling system of soot blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13133779A JPS5656503A (en) 1979-10-13 1979-10-13 Controlling system of soot blower

Publications (2)

Publication Number Publication Date
JPS5656503A JPS5656503A (en) 1981-05-18
JPS6246769B2 true JPS6246769B2 (en) 1987-10-05

Family

ID=15055575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13133779A Granted JPS5656503A (en) 1979-10-13 1979-10-13 Controlling system of soot blower

Country Status (1)

Country Link
JP (1) JPS5656503A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141505A (en) * 1981-02-25 1982-09-01 Toshiba Corp Detector for thickness of material stuck to tubular reactor
US4454840A (en) * 1983-07-14 1984-06-19 The Babcock & Wilcox Company Enhanced sootblowing system
JPS6162710A (en) * 1984-09-03 1986-03-31 Hitachi Ltd Soot blower control equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PULP AND PAPER=1979 *

Also Published As

Publication number Publication date
JPS5656503A (en) 1981-05-18

Similar Documents

Publication Publication Date Title
KR101036979B1 (en) Exhaust gas treating apparatus
US4454840A (en) Enhanced sootblowing system
EP3521748B1 (en) Dual model approach for boiler section cleanliness calculation
CN101806626A (en) Online monitoring method for flue gas temperature of hearth outlet of power station boiler
US20130192541A1 (en) Method and device for controlling the temperature of steam in a boiler
US4539840A (en) Sootblowing system with identification of model parameters
JPH0248807B2 (en) SUUTOBUROWANOSEIGYOHOHO
JPS6246769B2 (en)
JPS6246768B2 (en)
JPS5818005A (en) Control system of soot blower
CN210197322U (en) Intelligent soot blowing system for boiler furnace
CA1221284A (en) Convection section ash monitoring
JPS6018883B2 (en) Soot blower control device
JP3661068B2 (en) Exhaust gas treatment system
JPH05280703A (en) Boiller scale estimating device
JP2510580B2 (en) Soot blower control method
KR100309163B1 (en) System for controlling soot blower in boiler and method for controlling the same
JP2625501B2 (en) Soot blower control device
JP2625439B2 (en) Sootblower control device
JPS6284219A (en) Soot blower control device
JPH07117224B2 (en) Sootblower control device
JPS629113A (en) Device for controlling soot blower in furnace
JPH0454845B2 (en)
JPS613916A (en) Soot blower controlling device
JPH08338697A (en) Repair time determining method of heat exchanger for heating furnace