JPS6246477Y2 - - Google Patents

Info

Publication number
JPS6246477Y2
JPS6246477Y2 JP1981061251U JP6125181U JPS6246477Y2 JP S6246477 Y2 JPS6246477 Y2 JP S6246477Y2 JP 1981061251 U JP1981061251 U JP 1981061251U JP 6125181 U JP6125181 U JP 6125181U JP S6246477 Y2 JPS6246477 Y2 JP S6246477Y2
Authority
JP
Japan
Prior art keywords
wastewater
oxygen
filter bed
air
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981061251U
Other languages
Japanese (ja)
Other versions
JPS56168298U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981061251U priority Critical patent/JPS6246477Y2/ja
Publication of JPS56168298U publication Critical patent/JPS56168298U/ja
Application granted granted Critical
Publication of JPS6246477Y2 publication Critical patent/JPS6246477Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【考案の詳細な説明】 本考案は、微生物を担持したハニカムチユーブ
濾床を有する接触酸化塔に、強制的に酸素を含有
させた汚水を循環させる曝気循環型で、かつ接触
酸化塔内で汚水を上向きに流す上向流式の生物接
触酸化装置に関する。
[Detailed description of the invention] The present invention is an aeration circulation type in which sewage containing oxygen is forcedly circulated through a catalytic oxidation tower having a honeycomb tube filter bed carrying microorganisms. The present invention relates to an upward flow type biological catalytic oxidation device in which water flows upward.

一般に、曝気循環型の生物接触酸化装置におい
ては、汚水を乱流状態にして空気と接触させ、強
制的に汚水の含有酸素量を多くして接触酸化塔へ
送つている。しかし、汚水と共に粗大な気泡をハ
ニカムチユーブ濾床へ侵入させてしまうと、気泡
が浮力によつて上昇する際にハニカムチユーブ濾
床に付着した微生物層を剥離させてしまうことか
ら、空気と接触された汚水は、必ず接触酸化塔の
上部、即ちハニカムチユーブ濾床の上方から供給
され、水面付近で気泡を飛散させてしまつて酸素
を溶存させた汚水のみをハニカムチユーブ濾床へ
送るようになつている。従つて、従来の曝気循環
型生物接触酸化装置においては、処理水の汚泥と
の分離取水が確実である等の利点を有するにも拘
らず、上向流式のものはほとんど例がみられな
い。
Generally, in an aerated circulation type biological catalytic oxidation apparatus, wastewater is brought into a turbulent state and brought into contact with air to forcibly increase the amount of oxygen contained in the wastewater before being sent to a contact oxidation tower. However, if coarse air bubbles are allowed to enter the honeycomb tube filter bed along with sewage, when the air bubbles rise due to buoyancy, they will peel off the microbial layer attached to the honeycomb tube filter bed. The sewage is always supplied from the top of the contact oxidation tower, that is, above the honeycomb tube filter bed, and air bubbles are scattered near the water surface, so that only the sewage with dissolved oxygen is sent to the honeycomb tube filter bed. There is. Therefore, although conventional aerated circulation type biological catalytic oxidation equipment has advantages such as reliable separation of treated water from sludge, there are almost no examples of upflow type oxidation equipment. .

また、従来の曝気循環型生物接触酸化装置は、
上述のように、ハニカムチユーブ濾床に付着した
微生物への酸素の補給を汚水中の溶存酸素のみに
依存している。従つて、汚水のBOD濃度が
200ppm以上になると微生物への酸素の供給能力
の点から、汚水がチユーブの長手方向に進むにつ
れて溶存酸素が消費しつくされ、それ以上の酸素
の補給がないので、次第に酸素欠乏状態となつて
微生物の活動を維持できなくなつてしまつてハニ
カムチユーブ濾床の特徴を生かせなくなり、実質
的にハニカムチユーブ濾床の深さを1m以上にす
ることは不可能である。このため、比較的浅いハ
ニカムチユーブ濾床を並列したり、多段にするな
どしなければならず、装置の大型化や処理効率の
低下を招いている。
In addition, conventional aeration circulation type biological catalytic oxidation equipment
As mentioned above, the system relies solely on dissolved oxygen in wastewater to supply oxygen to microorganisms attached to the honeycomb tube filter bed. Therefore, the BOD concentration of wastewater is
If the concentration exceeds 200 ppm, the dissolved oxygen will be consumed as the sewage progresses along the length of the tube, and as no further oxygen can be supplied, the microorganisms will gradually become deficient in oxygen. It becomes impossible to maintain the activity of the honeycomb tube filter bed, and the characteristics of the honeycomb tube filter bed cannot be utilized, and it is practically impossible to make the depth of the honeycomb tube filter bed more than 1 m. For this reason, relatively shallow honeycomb tube filter beds must be arranged in parallel or in multiple stages, leading to an increase in the size of the device and a decrease in processing efficiency.

一方、汚水の溶存酸素量を増大させるために、
種々の曝気手段が提案されている。例えば、(1)水
面付近で高速回転羽根を回転させつつ汚水を放射
状に散布するもの、(2)噴射器により加圧して汚水
を水面へ噴射するもの、(3)エアリフト室を形成し
てそこに散気管を設置したもの、(4)別に曝気槽を
設けて曝気及び気泡の除去をしてから汚水をハニ
カムチユーブ濾床に導くもの等がある。しかし、
いずれの曝気手段も汚水を撹拌して空気との接触
面積を増やす程度でしかなく、効率が悪く、根本
的な解決手段とはなつていないばかりか、装置的
にも大掛かりになりやすい欠点がある。これに
は、気泡の易飛散性を維持して汚水がハニカムチ
ユーブ濾床に入る前に気泡を飛散除去しておかな
ければならないという従来の基本的考え方にも一
因がある。
On the other hand, in order to increase the amount of dissolved oxygen in wastewater,
Various aeration methods have been proposed. For example, (1) a method that sprays wastewater radially while rotating high-speed rotating blades near the water surface, (2) a method that pressurizes with an injector and sprays wastewater onto the water surface, and (3) a method that forms an air lift chamber and sprays the wastewater onto the water surface. (4) A separate aeration tank is installed to aerate and remove air bubbles before introducing the wastewater to a honeycomb tube filter bed. but,
All aeration methods do nothing more than agitate the wastewater and increase the contact area with air, and are not only inefficient and not a fundamental solution, but also have the disadvantage that they tend to be bulky in terms of equipment. . This is partly due to the conventional basic idea that air bubbles must be easily dispersed and removed before wastewater enters the honeycomb tube filter bed.

本考案は、以上のような従来の欠点を根本的に
解決するもので、上向流式で、かつ深いハニカム
チユーブ濾床を採り得る簡便な曝気循環型生物接
触酸化装置を提供することを目的とし、特に、気
泡による微生物層の適度な剥離は、気泡が微細な
場合にはかえつて微生物の代謝による活動の活発
化を促す、という本考案者等の研究により得られ
た知見に基づき、気泡のハニカムチユーブ濾床へ
の侵入を極力避けるという従来の常識を打破して
汚水に微細な気泡を同伴させてハニカムチユーブ
濾床へ供給するようにした点に大きな特徴を有す
るものである。
The purpose of this invention is to fundamentally solve the above-mentioned conventional drawbacks, and to provide a simple aerated circulation type biological catalytic oxidation device that is an upward flow type and can employ a deep honeycomb tube filter bed. In particular, based on the knowledge obtained through research by the present inventors that the moderate detachment of the microbial layer by air bubbles actually promotes the activation of microbial metabolic activity when the air bubbles are small, air bubbles The major feature of this system is that the wastewater is supplied to the honeycomb tube filter bed by entraining fine air bubbles with the wastewater, breaking away from the conventional wisdom of avoiding the intrusion of water into the honeycomb tube filter bed as much as possible.

即ち、本考案は、微生物を担持したハニカムチ
ユーブ濾床を一段以上充填した接触酸化塔に酸素
を多く含有させた汚水を循環させ、微生物の酸化
作用によつて汚水を浄化する循環系において、循
環系を上向流式とし、この循環系の循環配管流路
に、長方形の板を左及び右向きにひねつたらせん
状板をそれぞれ交互に複数放挿入固定して実質的
に可動部分がなくかつ空気または酸素を乳化状態
に混合させ得る管状ラインミキサーを直結し、且
つ該管状ラインミキサーに入る前の部分におい
て、汚水を導入する手段と、汚水中に空気または
酸素を導入する手段を設け、さらに管状ラインミ
キサーを出た後の空気又は酸素を超微細な気泡に
し、乳化状態に混合した汚水の配管流路を分岐
し、各濾床内を上向流に流すべくそれぞれを濾床
底部及び濾床段間隙に連通して設置したことを特
徴とする上向流式曝気循環型生物接触酸化装置を
提供するものである。
That is, the present invention provides a circulation system in which wastewater containing a large amount of oxygen is circulated through a contact oxidation tower filled with one or more stages of honeycomb tube filter beds carrying microorganisms, and the wastewater is purified by the oxidation action of the microorganisms. The system is of an upward flow type, and a plurality of rectangular plates twisted leftward and rightward are alternately inserted and fixed in the circulation piping flow path of this circulation system, so that the system has virtually no moving parts. Directly connected to a tubular line mixer capable of mixing air or oxygen into an emulsified state, and provided with means for introducing wastewater and means for introducing air or oxygen into the wastewater in a portion before entering the tubular line mixer, and further The air or oxygen after exiting the tubular line mixer is made into ultra-fine bubbles, and the piping flow path of the mixed wastewater in an emulsified state is branched, and each filter bed is connected to the bottom of the filter bed and the filter to flow upward in each filter bed. The present invention provides an upward flow aeration circulation type biological catalytic oxidation device characterized in that it is installed in communication with a bed gap.

さらに本発明を図面を用いて詳細に説明する。 Further, the present invention will be explained in detail using the drawings.

第1図は、本発明の一実施例を示す全循環系の
フローシートである。図中1は接触酸化塔で、内
部には支持台3及び3′で支持された微生物を担
持するハニカムチユーブ濾床2及び2′が濾床段
間隙4を挾んで直列に配してある。汚水導入パイ
プ7より導入された汚水は、空気または酸素導入
パイプ6より空気または酸素を供給された管状ラ
インミキサー5を通過する。管状ラインミキサー
5は、長方形の板を左及び右向きにひねつたらせ
ん状板を、各々交互に複数枚挿入固定したもので
実質的に可動部分のないものである。この管状ラ
インミキサー5に汚水と空気または酸素を通過さ
せることにより空気または酸素を超微細な気泡に
し、汚水中に乳化状態に混合する。
FIG. 1 is a flow sheet of the entire circulatory system showing one embodiment of the present invention. In the figure, reference numeral 1 denotes a contact oxidation tower, in which honeycomb tube filter beds 2 and 2' carrying microorganisms supported by supports 3 and 3' are arranged in series with a filter bed stage gap 4 in between. The wastewater introduced from the wastewater introduction pipe 7 passes through the tubular line mixer 5 which is supplied with air or oxygen from the air or oxygen introduction pipe 6. The tubular line mixer 5 has substantially no movable parts, and has a plurality of rectangular plates twisted leftward and rightward, each of which is alternately inserted and fixed in a spiral shape. By passing wastewater and air or oxygen through this tubular line mixer 5, the air or oxygen is made into ultrafine bubbles and mixed into the wastewater in an emulsified state.

第1図からも明らかなように、循環系は上向流
式となつており、管状ラインミキサー5によつて
空気又は酸素が微粒子状に混合された汚水は、分
岐弁8′及び8により適当量づつ分岐され、一部
は接触酸化塔1内のハニカムチユーブ濾床2′の
下方の濾床底部より上昇しながら、ハニカムチユ
ーブ濾床2′の内表面の微生物と接触し、浄化作
用を受けつつ濾床段間隙4に至る。更に一部は、
上段のハニカムチユーブ濾床2で微生物の浄化作
用を受くべく濾床段間隙4に供給される。ここで
前段の浄化作用を受けた循環水と一諸になつて上
段ハニカムチユーブ濾床2内を上昇しながら微生
物と接触して浄化作用を受け、ついには接触酸化
塔1内の上液面に達し溢流となつて溢流樋12に
入る。大部分は再び循環水となつて循環ポンプ9
によつて循環パイプ11中を循環される。一部は
溢流樋12部から処理水取出口10を経て系外に
取出される。
As is clear from Fig. 1, the circulation system is of an upward flow type, and the wastewater mixed with air or oxygen in the form of fine particles by the tubular line mixer 5 is appropriately distributed by the branch valves 8' and 8. A portion of the honeycomb tube filter bed 2' in the contact oxidation tower 1 is branched out in small amounts, and some of it rises from the bottom of the filter bed below the honeycomb tube filter bed 2', comes into contact with microorganisms on the inner surface of the honeycomb tube filter bed 2', and undergoes a purifying action. It then reaches the filter bed stage gap 4. Furthermore, some
It is supplied to the filter bed gap 4 to be subjected to the purification action of microorganisms in the upper honeycomb tube filter bed 2. Here, it combines with the circulating water that has undergone the purification action in the previous stage and rises within the upper honeycomb tube filter bed 2, comes into contact with microorganisms and undergoes the purification action, and finally reaches the upper liquid level in the contact oxidation tower 1. The water reaches overflow and enters overflow gutter 12. Most of the water becomes circulating water again and the circulation pump 9
It is circulated in the circulation pipe 11 by. A portion is taken out of the system from the overflow gutter 12 via the treated water outlet 10.

ここで汚水導入パイプ7は、第1図のように循
環パイプ11に接続する。汚水中に含有されてい
る汚泥は沈下し汚泥抜出パイプ13より抜出され
る。
Here, the waste water introduction pipe 7 is connected to the circulation pipe 11 as shown in FIG. The sludge contained in the sewage sinks and is extracted from the sludge extraction pipe 13.

このように、汚水の循環配管流路に管状ライン
ミキサーを直結し、且つ管状ラインミキサーに入
る前の部分において、循環パイプ内の循環汚水へ
少量の空気または酸素を導入するだけで管状ライ
ンミキサーの出口では循環汚水中に空気または酸
素が超微細な気泡となつて混合され、ほとんど乳
化状態となる。この管状ラインミキサーを通過し
た循環汚水には、溶解酸素と共に超微細な乳化状
となつた気泡状態の空気または酸素が含まれるた
めに、循環汚水への酸素の移動効率が従来の散気
板曝気方式に比べて2倍以上に達し、かつ汚水が
ハニカムチユーブ濾床内を通過する間に微生物に
より溶解酸素が消費されても、汚水中に同伴され
ている超微細な気泡から酸素の移動が間断なく行
なわれるので、供給された空気または酸素の利用
効率も大幅に向上する。従つて、循環汚水中に含
まれる溶解酸素と同伴される超微細な乳化状とな
つた気泡状の空気または酸素との相乗効果のため
に、微生物層の酸欠トラブルが防止されてハニカ
ムチユーブ濾床の深さを1m以上にでき、しかも
長期間の運転が可能となる。また、管状ラインミ
キサーは、設備的には単純かつコンパクトであ
り、空気または酸素の気泡の微細化には循環ポン
プの揚程を僅かに2〜3m増加するだけでよく、
しかも従来方式に比べて所要空気または酸素が大
幅に減少することにより、ブロアーなども極端に
小型化され、設備的にも動力経費の面からも著し
く有利である。更に、本実施例のように、ハニカ
ムチユーブ濾床を2段以上各段に間隙をおいて多
段に積層固定し、空気又は酸素を超微細な気泡に
し、乳化状態に混合した循環汚水を、濾床底部及
び濾床段間隙の少なくとも1つ以上に分割供給し
て濾床中を上向流に通過させた場合には、各濾床
段に対して溶解酸素と共に空気又は酸素が超微細
な気泡となり、ほとんど乳化状態となつて混合さ
れた循環汚水が均等に配分されて供給されるので
各濾床の微生物の活動は均一に活性化され、局部
的な不活性化による微生物の死滅が防止されるの
でハニカムチユーブ接触酸化塔全体の浄化能力が
著しく高く保たれ設置面積が少なく、かつコンパ
クトな汚水浄化装置とすることが可能となる。空
気または酸素の汚水への導入方法としてエジエク
ターの様なものを用いれば一層有利となる。
In this way, by directly connecting the tubular line mixer to the sewage circulation piping flow path and introducing a small amount of air or oxygen to the circulating sewage in the circulation pipe before entering the tubular line mixer, the tubular line mixer can be activated. At the outlet, air or oxygen is mixed into the circulating wastewater in the form of ultrafine bubbles, resulting in an almost emulsified state. The circulating sewage that has passed through this tubular line mixer contains air or oxygen in the form of ultrafine emulsified bubbles along with dissolved oxygen, so the oxygen transfer efficiency to the circulating sewage is lower than that of conventional diffuser plate aeration. Even if dissolved oxygen is consumed by microorganisms while the wastewater passes through the honeycomb tube filter bed, the movement of oxygen from the ultrafine bubbles entrained in the wastewater is interrupted. Since this process is carried out without any problems, the utilization efficiency of the supplied air or oxygen is also greatly improved. Therefore, due to the synergistic effect of the dissolved oxygen contained in the circulating wastewater and the accompanying ultrafine emulsified bubbles of air or oxygen, oxygen deficiency problems in the microorganism layer are prevented and the honeycomb tube filter is The floor depth can be increased to 1 m or more, and long-term operation is possible. In addition, the tubular line mixer is simple and compact in terms of equipment, and it is only necessary to increase the lift of the circulation pump by 2 to 3 meters to make air or oxygen bubbles fine.
Moreover, since the amount of air or oxygen required is significantly reduced compared to the conventional method, the size of the blower and the like can be extremely reduced, which is extremely advantageous in terms of equipment and power costs. Furthermore, as in this example, two or more honeycomb tube filter beds are stacked and fixed in multiple stages with gaps between each stage, and air or oxygen is made into ultrafine bubbles, and the circulating wastewater mixed in an emulsified state is filtered. When the air or oxygen is dividedly supplied to at least one of the bottom of the bed and the gap between the filter bed stages and passed through the filter bed in an upward flow, the air or oxygen together with dissolved oxygen forms ultrafine bubbles for each filter bed stage. Since the mixed circulating wastewater is almost emulsified and is evenly distributed and supplied, the microorganisms in each filter bed are uniformly activated, and the death of microorganisms due to local inactivation is prevented. Therefore, the purification capacity of the entire honeycomb tube catalytic oxidation tower can be kept extremely high, and the installation area can be reduced, making it possible to create a compact wastewater purification device. It would be even more advantageous to use something like an ejector as a method for introducing air or oxygen into wastewater.

本考案においては、従来の曝気循環型生物接触
酸化装置とは異なり、気泡が汚水と共にハニカム
チユーブ濾床へ入り込むが、気泡が微細であるた
め、かえつてこれは有益に作用する。即ち、微細
な気泡を含むために各ハニカムチユーブ内の流れ
に適度な乱れを生じさせる結果として繁殖する微
生物膜を適度な代謝による活動の活発化を促すと
共に微生物への酸素の拡散を促進する効果が得ら
れる。そして、このような微細な気泡による効果
は、上向流式とすることによつて、ハニカムチユ
ーブ濾床全体に均一に接触させ、かつ代謝された
微生物層片は気泡を付着させて浮上して塔外へ除
去されることになる。
In the present invention, unlike conventional aerated circulation type biological contact oxidation equipment, air bubbles enter the honeycomb tube filter bed together with wastewater, but since the air bubbles are fine, this has a beneficial effect. In other words, it has the effect of creating moderate turbulence in the flow within each honeycomb tube due to the inclusion of fine air bubbles, which in turn promotes the activity of the microbial membrane that propagates through moderate metabolism, and also promotes the diffusion of oxygen to the microorganisms. is obtained. The effect of such fine air bubbles can be achieved by using an upward flow system, which allows uniform contact with the entire honeycomb tube filter bed, and allows the metabolized microbial layer fragments to adhere to air bubbles and float to the surface. It will be removed from the tower.

実施例 1 第1図に示されるフローシートにおいて、管状
ラインミキサーとして内径1/2インチ(エレメ
ント数2)のものを用い、生物接触酸化塔内のハ
ニカムチユーブ濾床は1段当り1000mm深さのもの
を2段積層し、循環汚水の供給を、一部は第2段
の下(塔底)、一部は第1段目と第2段目との濾
床段間隙に分岐して、汚水循環サイクルとして30
サイクル/時の条件で行なつた。汚水のBOD濃
度210ppmに対して、BOD濃度12ppmの処理水を
得るのに要した空気量は35/時であつた。
Example 1 In the flow sheet shown in Figure 1, a tubular line mixer with an inner diameter of 1/2 inch (2 elements) was used, and the honeycomb tube filter bed in the biological catalytic oxidation tower had a depth of 1000 mm per stage. They are stacked in two stages, and the circulating sewage is supplied partly under the second stage (at the bottom of the tower) and partly to the gap between the first and second stage filter beds. 30 as a circulation cycle
The test was carried out under conditions of cycles/hour. Compared to the BOD concentration of sewage of 210 ppm, the amount of air required to obtain treated water with a BOD concentration of 12 ppm was 35/hour.

比較例 1 実施例1と同様な生物接触酸化塔を下向流式に
して用い、循環系路に深さ2mの散気管を備えた
エアリフト兼曝気塔を用いて同条件で汚水BOD
濃度250ppmを15ppmに低下せしめるのに要した
空気量は510/時であつた。
Comparative Example 1 Using the same biological catalytic oxidation tower as in Example 1 in a downward flow type, the wastewater BOD was treated under the same conditions using an air lift and aeration tower equipped with a 2 m deep aeration pipe in the circulation system.
The amount of air required to reduce the concentration from 250 ppm to 15 ppm was 510/hour.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、各々本考案の一実施例を示す全循環
系のフローシートである。 1:接触酸化塔、2,2′:ハニカムチユーブ
濾床、3,3′:支持台、4:濾床段間隙、5:
管状ラインミキサー、6:空気または酸素導入パ
イプ、7:汚水導入パイプ、8,8′:分岐弁、
9:循環ポンプ、10:処理水取出口、11:循
環パイプ、12:溢流樋、13:汚泥抜出パイ
プ。
FIG. 1 is a flow sheet of the entire circulatory system, each showing one embodiment of the present invention. 1: Catalytic oxidation tower, 2, 2': Honeycomb tube filter bed, 3, 3': Support stand, 4: Filter bed gap, 5:
Tubular line mixer, 6: Air or oxygen introduction pipe, 7: Sewage introduction pipe, 8, 8': Branch valve,
9: Circulation pump, 10: Treated water outlet, 11: Circulation pipe, 12: Overflow gutter, 13: Sludge extraction pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 微生物を担持したハニカムチユーブ濾床を一段
以上充填した接触酸化塔に酸素を多く含有させた
汚水を循環させ、微生物の酸化作用によつて汚水
を浄化する循環系において、循環系を上向流式と
し、この循環系の循環配管流路に、長方形の板を
左及び右向きにひねつたらせん状板をそれぞれ交
互に複数枚挿入固定して実質的に可動部分がなく
かつ空気または酸素を乳化状態に混合させ得る管
状ラインミキサーを直結し、且つ該管状ラインミ
キサーに入る前の部分において、汚水を導入する
手段と、汚水中に空気または酸素を導入する手段
を設け、さらに管状ラインミキサーを出た後の空
気又は酸素を超微細な気泡にし、乳化状態に混合
した汚水の配管流路を分岐し、各濾床内を上向流
に流すべくそれぞれを濾床底部及び濾床段間隙に
連通して設置したことを特徴とする上向流式曝気
循環型生物接触酸化装置。
In a circulation system in which wastewater containing a large amount of oxygen is circulated through a contact oxidation tower filled with one or more stages of honeycomb tube filter beds carrying microorganisms, and the wastewater is purified by the oxidation action of microorganisms, the circulation system is an upflow type. Then, a plurality of rectangular plates twisted leftward and rightward are alternately inserted and fixed into the circulation piping flow path of this circulation system to create a system that has virtually no moving parts and emulsifies air or oxygen. A tubular line mixer is directly connected to the mixer, and before entering the tubular line mixer, means for introducing wastewater and means for introducing air or oxygen into the wastewater are provided. The remaining air or oxygen is made into ultra-fine bubbles, and the piping flow path of the mixed wastewater in an emulsified state is branched, and each is connected to the bottom of the filter bed and the gap between the filter bed stages in order to flow upward in each filter bed. This is an upflow aeration circulation type biological catalytic oxidation device that is characterized by being installed in
JP1981061251U 1981-04-30 1981-04-30 Expired JPS6246477Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981061251U JPS6246477Y2 (en) 1981-04-30 1981-04-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981061251U JPS6246477Y2 (en) 1981-04-30 1981-04-30

Publications (2)

Publication Number Publication Date
JPS56168298U JPS56168298U (en) 1981-12-12
JPS6246477Y2 true JPS6246477Y2 (en) 1987-12-15

Family

ID=29655651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981061251U Expired JPS6246477Y2 (en) 1981-04-30 1981-04-30

Country Status (1)

Country Link
JP (1) JPS6246477Y2 (en)

Also Published As

Publication number Publication date
JPS56168298U (en) 1981-12-12

Similar Documents

Publication Publication Date Title
US2479403A (en) Method for treating sewage
US3152982A (en) Method and apparatus for sewage treatment
JPS6012636Y2 (en) Reactor device for treating liquids consisting of biologically degradable waste products
CN110510815A (en) Integrated sewage treating apparatus and sewage water treatment method based on simultaneous nitrification-denitrification
JP4014581B2 (en) Biological filtration device
EP0112095A1 (en) Aqueous liquid treatment process and apparatus
JPS6246477Y2 (en)
US6770200B2 (en) Method and apparatus for enhancing wastewater treatment in lagoons
CN1161285C (en) Oxygen dissolving process and equipment for sewage treatment
JP2003053378A (en) Method and device for treating water by using separation membrane
JPS6323999Y2 (en)
JPH0586280B2 (en)
JP2020018966A (en) Water treatment method and water treatment apparatus
JPH07136678A (en) Wastewater treatment method and tank
JPH0214118B2 (en)
JPH0681699U (en) Oxygen supply device for deep aeration tank
JPH0434960Y2 (en)
JP3250042B2 (en) Wastewater treatment equipment
JPS6340597B2 (en)
JP3652473B2 (en) Wastewater treatment system
WO2000001623A1 (en) Apparatus and process for sewage and wastewater treatment
JP4242025B2 (en) Air diffuser for cleaning filter layer, aerobic filter bed tank and septic tank
JPS6216239Y2 (en)
JP3545671B2 (en) Sewage treatment equipment
JPH01231994A (en) Sewage treating equipment