JPS624634B2 - - Google Patents

Info

Publication number
JPS624634B2
JPS624634B2 JP16762482A JP16762482A JPS624634B2 JP S624634 B2 JPS624634 B2 JP S624634B2 JP 16762482 A JP16762482 A JP 16762482A JP 16762482 A JP16762482 A JP 16762482A JP S624634 B2 JPS624634 B2 JP S624634B2
Authority
JP
Japan
Prior art keywords
plate
heat transfer
gasket
cypronickel
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16762482A
Other languages
Japanese (ja)
Other versions
JPS5960183A (en
Inventor
Masamitsu Murai
Shunji Ito
Kazuo Noya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP16762482A priority Critical patent/JPS5960183A/en
Publication of JPS5960183A publication Critical patent/JPS5960183A/en
Publication of JPS624634B2 publication Critical patent/JPS624634B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 本発明は、海洋温度差発電用等として海水環境
下で使用されるプレート式熱交換器に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plate heat exchanger used in a seawater environment, such as for ocean temperature difference power generation.

プレート式熱交換器は、その優れた伝熱性能か
ら低温エネルギーの熱回収用としての需要があ
り、特に熱交換される流体の一つが海水である海
洋温度差発電用等に広く使用されている。
Plate heat exchangers are in demand for heat recovery from low-temperature energy due to their excellent heat transfer performance, and are particularly widely used in applications such as ocean temperature difference power generation where one of the fluids to be heat exchanged is seawater. .

従来、海水環境下で使用されているプレート式
熱交換器の伝熱プレートの素材としてはチタン板
が多く使用されている。その理由は、プレート式
熱交換器の伝熱プレートは構造的に局部腐食が生
じ易いばかりでなく、その伝熱性能を高めるため
に、他の熱交換器、例えばシエル・アンド・チユ
ーブ式熱交換器と比較して薄い素材が用いられる
ので、特に十分な耐食性が要求されるからである
が、チタン板の使用は原価高となる欠点がある。
Conventionally, titanium plates have often been used as the material for heat transfer plates in plate heat exchangers used in seawater environments. The reason for this is that the heat transfer plate of a plate heat exchanger is not only structurally prone to local corrosion, but also that other heat exchangers, such as shell-and-tube heat exchangers, are required to improve its heat transfer performance. This is because a material that is thinner than the container is required to have sufficient corrosion resistance, but the use of titanium plates has the disadvantage of increasing costs.

他方、キユプロニツケルは、シエル・アンド・
チユーブ式熱交換器に多く使用されているが、プ
レート式熱交換器への使用には問題点が多く、従
つてその使用例は少ない。その理由は、プレート
式熱交換器の伝熱プレートは、伝熱性能を高める
ために、その表面は複雑な波形に形成されるが、
この波形の凹部での流速が部分的に非常に大とな
り、局部的にエロージヨンが発生して局部電池腐
食に付加されるためである。この局部的電池腐食
を軽減する方法として陰極防食法がある。これは
腐食電位の異なる2種類の金属を積層することが
達成されるが、電位差が大きすぎる場合には問題
が多く、キユプロニツケルの場合には、例えば9/
1Cu(銅)―Ni(ニツケル)とニツケル量の多い
8/2Cu―Ni、又は7/3Cu―Niとを使用するとよ
い。
On the other hand, Cypronickel
Although it is often used in tube heat exchangers, there are many problems in its use in plate heat exchangers, and therefore there are few examples of its use. The reason is that the surface of the heat transfer plate of a plate heat exchanger is formed into a complex waveform to improve heat transfer performance.
This is because the flow velocity in the corrugated recesses becomes extremely high in some parts, causing local erosion and adding to the local battery corrosion. There is a cathodic protection method as a method to reduce this local battery corrosion. This can be achieved by laminating two metals with different corrosion potentials, but there are many problems if the potential difference is too large, and in the case of Cypronickel, for example 9/
1Cu (copper) - Ni (nickel) and a large amount of nickel
It is recommended to use 8/2Cu-Ni or 7/3Cu-Ni.

而し、海洋温度差発電等に使用されるプレート
式熱交換器の場合には更に問題がある。
However, there are further problems in the case of plate heat exchangers used in ocean temperature difference power generation and the like.

プレート式熱交換器は、第1図,第2図に示す
如く、通孔1aを有する伝熱プレート1を2枚一
組としてガスケツト2を介在させて積層緊締され
て冷媒通路Aと海水通路Bとを形成している。か
かるプレート式熱交換器を海洋温度差発電用等に
使用する場合には、伝熱プレート1の内面及びガ
スケツト2内に突出する外面は冷媒たるアンモニ
アに、又他の外面は海水にさらされるが、Niの
含有量の多いキユプロニツケルは、アンモニアに
よる応力腐食割れ感受性が強いために深い割れが
発生し、この割れを通じてアンモニアが海水中に
漏洩して事故を発生する虞れがある。この応力腐
食割れを防止する方法として、伝熱プレート1の
アンモニアに接触する面、特にガスケツト2内に
突出する外面を耐応力腐食割れ材を用いて溶射等
の手段によつて被覆することが考えられるが、プ
レート式熱交換器はその効率の観点から薄い伝熱
プレートの使用が好ましく、しかもガスケツトと
伝熱プレートとの接触面のシール性が特に重視さ
れる処であるが、被覆にてはその面の平滑度が得
難く、このような方法では充分な問題の解決とは
ならない。
As shown in FIGS. 1 and 2, a plate heat exchanger is constructed by stacking and tightening a set of two heat transfer plates 1 having through holes 1a with a gasket 2 interposed between them to form a refrigerant passage A and a seawater passage B. and is formed. When such a plate heat exchanger is used for ocean temperature difference power generation, etc., the inner surface of the heat transfer plate 1 and the outer surface protruding into the gasket 2 are exposed to ammonia as a refrigerant, and the other outer surface is exposed to seawater. Cypronickel, which has a high Ni content, is highly susceptible to stress corrosion cracking due to ammonia, resulting in deep cracks, and there is a risk that ammonia may leak into seawater through these cracks, causing an accident. As a method to prevent this stress corrosion cracking, it is considered that the surface of the heat transfer plate 1 that comes into contact with ammonia, especially the outer surface that protrudes into the gasket 2, is coated with a stress corrosion cracking resistant material by means such as thermal spraying. However, for plate heat exchangers, it is preferable to use thin heat transfer plates from the viewpoint of efficiency, and the sealing performance of the contact surface between the gasket and the heat transfer plate is particularly important. It is difficult to obtain smoothness of the surface, and such a method does not sufficiently solve the problem.

本発明は、上記の如き事情に鑑みてなされたも
のであり、海水に接触する外面をキユプロニツケ
ルとし、アンモニアに接触する面が耐応力腐食割
れ性を有する異種金属となるキユプロニツケルク
ラツド鋼製の伝熱プレートを使用して、耐食性、
伝熱性に優れ、しかも安価な海洋温度差発電用等
に好適のプレート式熱交換器を提供することを目
的としている。
The present invention has been made in view of the above circumstances, and is made of Cypronickel clad steel, in which the outer surface that comes in contact with seawater is made of Cypronickel, and the surface that comes into contact with ammonia is made of a dissimilar metal that is resistant to stress corrosion cracking. Using heat transfer plate, corrosion resistance,
The object of the present invention is to provide a plate heat exchanger that has excellent heat conductivity and is inexpensive and suitable for use in ocean temperature difference power generation.

本発明に係るプレート式熱交換器について図面
を参照して説明する。
A plate heat exchanger according to the present invention will be explained with reference to the drawings.

プレート式熱交換器の一般構造は、第2図に示
す如く、通孔1aを有する伝熱プレート1を2枚
一組として、その通孔1aを連通させてガスケツ
ト2を介在して多数積層緊締されてアンモニアた
る冷媒の冷媒通路Aと海水通路Bとを形成してい
る。
As shown in Fig. 2, the general structure of a plate heat exchanger is that two heat transfer plates 1 having through holes 1a are made into a set, and a large number of heat transfer plates 1 are stacked and tightened with gaskets 2 interposed between the through holes 1a. A refrigerant passage A for a refrigerant such as ammonia and a seawater passage B are formed.

伝熱プレート1は、第3図にその一部を拡大し
て示す如く、鋼板を母材1bとし、中間材1cと
してニツケルを重量比で30%以上、好ましくは50
%以上を含有する鋼とニツケルとの合金を用い、
合材1dとしてはキユプロニツケルを用いたキユ
プロニツケルクラツド鋼板からなつている。
As shown in an enlarged view of a part of the heat transfer plate 1, the base material 1b is a steel plate, and the intermediate material 1c is nickel in a weight ratio of 30% or more, preferably 50%.
Using an alloy of steel and nickel containing % or more,
The composite material 1d is made of a Cupronickel clad steel plate using Cupronickel.

そして、合材1dたるキユプロニツケル層の厚
さは耐食年数により異なるが実用上は0.1mm以上
が適当である。厚きに過ぎる場合には伝熱性能が
低下するほか、中間材1cとの境界部の局部腐食
が問題となるため0.3mm以下が好ましく、中間材
1cの厚さは実用上0.1mm以上あればよい。なお
伝熱プレート1の厚さは0.6mm乃至1mm程度のも
のであり、海水通路Bに対応する面には伝熱効果
を高めるために波形を形成してある。中間材1c
の銅とニツケルとの合金のニツケル含有量を重量
比で30%以上、好ましくは50%以上とするのはア
ンモニアの接触による銅とニツケルとの合金の応
力腐食割れが感受性の最大値はニツケル含有量が
重量比で30%付近にあるためである。
The thickness of the Cypronickel layer, which is 1d of the composite material, varies depending on the corrosion resistance period, but for practical purposes, 0.1 mm or more is appropriate. If it is too thick, the heat transfer performance will deteriorate and local corrosion at the boundary with the intermediate material 1c will become a problem, so it is preferably 0.3 mm or less, and the thickness of the intermediate material 1c should be 0.1 mm or more for practical purposes. good. The thickness of the heat transfer plate 1 is about 0.6 mm to 1 mm, and a waveform is formed on the surface corresponding to the seawater passage B to enhance the heat transfer effect. Intermediate material 1c
The reason why the nickel content of the copper-nickel alloy is 30% or more, preferably 50% or more by weight is that the maximum susceptibility of the copper-nickel alloy to stress corrosion cracking due to contact with ammonia is the nickel-containing alloy. This is because the amount is around 30% by weight.

更に、作用環境が、特に応力腐食割れが発生し
やすい環境の場合には、第3図に示す如くガスケ
ツト2と伝熱プレート1との接触部分より冷媒側
のキユプロニツケル層を中間材1cが露出するま
で除去することになり該部分の応力腐食割れを略
確実に防止することができる。
Furthermore, if the operating environment is one in which stress corrosion cracking is particularly likely to occur, the intermediate material 1c will expose the Cypronickel layer on the refrigerant side from the contact area between the gasket 2 and the heat transfer plate 1, as shown in FIG. As a result, stress corrosion cracking in this portion can be almost reliably prevented.

本発明に係るキユプロニツケルクラツド鋼製プ
レート式熱交換器は、通孔を有するプレートの2
枚を一組としてガスケツトを介在させて積層緊締
してなるプレート式熱交換器において、重量比で
30%以上のニツケルを含有するニツケルと銅との
合金を中間材として合材と母材との間に介層した
キユプロニツケルクラツド鋼板のキユプロニツケ
ルを伝熱プレートの外面として用い、該伝熱プレ
ートのガスケツトとの接触部分の冷媒側のキユプ
ロニツケル層を除去して、中間材を露出させた。
従つて下記の効果を生じた。
The plate heat exchanger made of Cupronickel clad steel according to the present invention has two plates having through holes.
In a plate heat exchanger made up of a set of plates stacked and tightened with a gasket interposed, the weight ratio
The heat transfer process is carried out by using a Cupronickel clad steel plate, which is a Cupronickel clad steel plate in which an alloy of nickel and copper containing 30% or more of nickel is interposed between the composite material and the base metal as an intermediate material, as the outer surface of the heat transfer plate. The Cupronickel layer on the refrigerant side of the plate in contact with the gasket was removed to expose the intermediate material.
Therefore, the following effects were produced.

(1) 合材と中間材との腐食電位差を十分大きくし
たので中間材の腐食が生じ難い。
(1) Since the corrosion potential difference between the composite material and the intermediate material is made sufficiently large, corrosion of the intermediate material is difficult to occur.

(2) 合材の肉厚を0.4mm以下としたので局部腐食
を実用上問題を生じない程度に抑制することが
できた。
(2) Since the wall thickness of the composite material was set to 0.4 mm or less, local corrosion could be suppressed to the extent that it would not cause any practical problems.

(3) 伝熱プレートのガスケツトとの接触部分より
冷媒側のキユプロニツケル層を除去したアンモ
ニアが接触することをなくしたので応力腐食割
れの懸念がなくなつた。
(3) Since the ammonia layer on the refrigerant side was removed from the contact area of the heat transfer plate with the gasket, contact with the ammonia was eliminated, eliminating concerns about stress corrosion cracking.

(4) 伝熱プレートの海水との接触面はすべてキユ
プロニツケルで形成されており、ニツケルの含
有量の多いキユプロニツケルを用いることによ
つて局部電池腐食を抑制できた。
(4) All surfaces of the heat transfer plate that come into contact with seawater are made of cypronickel, and by using cypronickel with a high nickel content, local battery corrosion can be suppressed.

よつて、キユプロニツケルクラツド鋼製の伝熱
プレートを使用することによつて、耐食性、伝熱
性に優れ、しかも安価な海洋温度差発電用等に適
したプレート式熱交換器を提供できた。
Therefore, by using a heat transfer plate made of Cypronickel clad steel, we were able to provide a plate-type heat exchanger that has excellent corrosion resistance and heat transfer properties, and is also inexpensive and suitable for ocean thermal power generation. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はプレート式熱交換器の正面図、第2図
は同断面図、第3図は本発明に係るキユプロニツ
ケルクラツド鋼製プレート式ガスケツトの伝熱プ
レートとガスケツトとの接触状態を示す拡大断面
図である。 1:伝熱プレート、1a:通孔、1b:母材、
1c:中間材、1d:合材(キユプロニツケ
ル)、2:ガスケツト、A:アンモニア通路、
B:海水通路。
Fig. 1 is a front view of the plate heat exchanger, Fig. 2 is a sectional view thereof, and Fig. 3 shows the state of contact between the heat transfer plate and the gasket of the Cupronickel clad steel plate gasket according to the present invention. FIG. 1: heat transfer plate, 1a: through hole, 1b: base material,
1c: Intermediate material, 1d: Composite material (Kyupronickel), 2: Gasket, A: Ammonia passage,
B: Seawater passage.

Claims (1)

【特許請求の範囲】[Claims] 1 通孔を有する伝熱プレートの2枚を一組とし
てガスケツトを介在させて積層緊締してなるプレ
ート式熱交換器において、重量比で30%以上のニ
ツケルを含有するニツケルと銅との合金を中間材
として合材と母材との間に介層したキユプロニツ
ケルクラツド鋼板のキユプロニツケルを伝熱プレ
ートの外面として用い、該伝熱プレートのガスケ
ツトとの接触部分の冷媒側のキユプロニツケル層
を除去して中間材を露出させたことを特徴とする
キユプロニツケルクラツド鋼製プレート式熱交換
器。
1. In a plate heat exchanger formed by laminating and tightening a set of two heat transfer plates having through holes with a gasket interposed, an alloy of nickel and copper containing 30% or more of nickel by weight is used. A Cypronickel clad steel plate interposed between the composite material and the base material as an intermediate material is used as the outer surface of the heat transfer plate, and the Cypronickel layer on the refrigerant side of the part of the heat transfer plate in contact with the gasket is removed. A plate-type heat exchanger made of Cypronic clad steel, characterized in that the intermediate material is exposed.
JP16762482A 1982-09-28 1982-09-28 Heat exchanger made of cupro-nickel clad steel plate Granted JPS5960183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16762482A JPS5960183A (en) 1982-09-28 1982-09-28 Heat exchanger made of cupro-nickel clad steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16762482A JPS5960183A (en) 1982-09-28 1982-09-28 Heat exchanger made of cupro-nickel clad steel plate

Publications (2)

Publication Number Publication Date
JPS5960183A JPS5960183A (en) 1984-04-06
JPS624634B2 true JPS624634B2 (en) 1987-01-31

Family

ID=15853235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16762482A Granted JPS5960183A (en) 1982-09-28 1982-09-28 Heat exchanger made of cupro-nickel clad steel plate

Country Status (1)

Country Link
JP (1) JPS5960183A (en)

Also Published As

Publication number Publication date
JPS5960183A (en) 1984-04-06

Similar Documents

Publication Publication Date Title
US3960208A (en) Process for providing heat transfer with resistance to erosion-corrosion in aqueous environment
US4276927A (en) Plate type heat exchanger
JPS5846540B2 (en) Aluminum alloy laminate for heat exchangers assembled by non-oxidizing vacuum brazing
US4317484A (en) Heat exchanger core
US3809155A (en) Erosion-corrosion resistant aluminum radiator clad tubing
US20080257533A1 (en) Method of Producing a Corrosion Resistant Aluminum Heat Exchanger
US6886629B2 (en) Plate heat exchanger
JP2010249426A (en) Method of manufacturing aluminum heat exchanger for exhaust gas and heat exchanger
JPH0233977Y2 (en)
JP2002363707A (en) Composite material for brazing and brazed product using the composite material
CN100432613C (en) Corrosion-resistant agent and heat exchanger with it
KR19980080522A (en) Aluminum Alloy Heat Exchanger
CN101925791A (en) Fin tube assembly for air cooled heat exchanger and method of manufacturing the same
JPS624634B2 (en)
US20060124283A1 (en) Fluid-handling apparatus with corrosion-erosion coating and method of making same
JP3704178B2 (en) Aluminum material for brazing and drone cup type heat exchanger using the material and excellent in corrosion resistance
US3872921A (en) Erosion-corrosion resistant aluminum radiator clad tubing
JPH10122788A (en) Aluminum material for vacuum brazing, and drawn cup type heat-exchanger being excellent in anticorrosive property using the material
CN2622659Y (en) Corrosion resistance structure of combined heat exchanging tube and its tube sheet
CN217358208U (en) Corrosion-resistant internal thread aluminum composite pipe
JPH1017966A (en) Aluminum material for vacuum brazing and drawn cup type heat exchanger which has excellent corrosion resistance and is formed by using the material
JPS60230953A (en) Composite plate made of aluminum material for heat exchanger
EP0832412B1 (en) Method for the manufacture of a heat exchanger
JPS58136995A (en) Heat exchanger
JPH03189072A (en) Hear exchanger and its manufacture