JPS6246152A - Air-conditioning machine - Google Patents

Air-conditioning machine

Info

Publication number
JPS6246152A
JPS6246152A JP60184905A JP18490585A JPS6246152A JP S6246152 A JPS6246152 A JP S6246152A JP 60184905 A JP60184905 A JP 60184905A JP 18490585 A JP18490585 A JP 18490585A JP S6246152 A JPS6246152 A JP S6246152A
Authority
JP
Japan
Prior art keywords
room temperature
defrosting
compressor
heat exchanger
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60184905A
Other languages
Japanese (ja)
Inventor
Kenji Matsuda
松田 謙治
Yofumi Tezuka
手塚 與文
Kazuaki Isono
磯野 一明
Hiroyuki Umemura
博之 梅村
Hitoshi Iijima
等 飯島
Fumio Matsuoka
文雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60184905A priority Critical patent/JPS6246152A/en
Priority to KR1019860006265A priority patent/KR900005979B1/en
Priority to DE8686111450T priority patent/DE3685862T2/en
Priority to EP86111450A priority patent/EP0213540B1/en
Priority to US06/898,492 priority patent/US4709554A/en
Priority to CN86105455.5A priority patent/CN1005210B/en
Priority to AU61785/86A priority patent/AU580509B2/en
Publication of JPS6246152A publication Critical patent/JPS6246152A/en
Priority to CN88106586A priority patent/CN1008131B/en
Priority to HK150/93A priority patent/HK15093A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent reduction of room temperature during defrosting operation by a method wherein an inverter control unit, inputting the signal of a defrosting condition detector for an outdoor heat exchanger and rising the revolving number of a compressor and the set room temperature of a room temperature detector before starting defrosting operation, is provided. CONSTITUTION:The constitution of a circuit is added with a micro-computer (hereinafter referred to micon) 16, the room temperature detector 17 and a waveform shaping unit 18. The detecting signal of the defrosting condition detector 10 is inputted into the input terminal IN1 of the micon 16 while the detecting signal of the room temperature detector 17 is inputted into the input terminal IN2 of the same. The waveform shaping unit 18 is connected between the terminals 15 of a control electric source and controls the revolving number of the compressor 1 by the output signal of output terminal OUT2 of the micon 16. The revolving number of the compressor 1 is increased by the inverter control unit inputting the signal of the defrosting condition detector 10 and when the increased temperature has been achieved, the defrosting operation is started. According to this method, the reduction of room temperature during defrosting operation may be prevented without complicating the device.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、暖房運転時、室外側熱交換器に付着した霜
を除霜する空気調和機に関する。
The present invention relates to an air conditioner that defrosts frost adhering to an outdoor heat exchanger during heating operation.

【従来の技術】[Conventional technology]

第6図、第7図はたとえば、実開昭57−490393
号公報の従来例として示された従来のビー1−ポンプ式
空気調和機の冷媒回路図と、除霜時の電気制細回路図で
ある。 との両図のうち、第6図において、1は圧縮機、2は四
方弁、3は室内側熱交換器、4は減圧装置、5は室内側
熱交換器である。これらの圧縮機1、四方弁2、室内側
熱交換器3、減圧装置4、室外側熱交換器5を冷媒配管
6により環状に連結して、冷媒を通して冷媒回路7を構
成している。 また、室内側熱交換器3に対向して、室内ファン8が配
設されており、室外側熱交換器5にも室外ファン9が配
設されている。 室外側熱交換器5の入口配管に感温部が接触している除
霜条件検出器10が配設されている。除霜条件検出器1
0が検出信号を出力すると、第7図に示す切換開閉接点
11の接点11a、llbが切り換えられるようになっ
ている。 この切換開閉接点11の接点11aは常時は閉成され、
除霜条件検出器lOが検出信号を出力すると、接点11
bを閉じるようになっている。 接点11aは四方弁2の駆動コイル2aと暖房スイッチ
13の一方の接点を介して制御電源端子15の一方に接
続されている。 同様にして、接点11bは、リレー12およびスイッチ
13の他方の接点を介して制御電源端子15の一方に接
続されている。切換開閉接点11の可動接点は制御電源
端子15の他方に接続されている。 制御電源端子15間には、リレー12の常閉接点12a
、室内ファン8、送風速度スイッチ14の直列回路が接
続されている。 次に動作について説明する。暖房時には、暖房スイッチ
13を閉成し、四方弁の駆動コイル2aを励磁して、四
方弁2を暖房サイクル運転する。 これにより圧縮機1から吐出された高温高圧ガスは矢印
のように、四方弁2を通り、室内側熱交換型3で室内フ
ァン8の強制通風によって冷却され、凝縮液となって減
圧装置4で断熱膨張して、低圧冷媒となり、室外側熱交
換器5で室外ファン9の強制通風により加熱されて蒸発
し、低圧ガスとなって四方弁2を通り、圧縮機1に吸入
される。 外気温が下がるにしたがい、室外側熱交換器5から冷媒
回Is7内への吸い上げ熱景が減少し、蒸発温度が下が
ってきて、零点温度以下になると、室外側熱交換器5に
着霜が始まるが、これにより熱を吸い上げる能力が減少
し、室外側熱交換器5の入力配管温度はさらに低下し、
設定温度以下となる。 この温度を除霧条件検出器10が検出して、切換開閉接
点11°の接点11aの開放により、四方弁の駆動コイ
ル2aの励磁が解け、四方弁2は切り換わり、冷媒回路
7は冷房運転となる。 また、同時に、接点11bの閉成により、リレー12が
励磁され、その常閉接点12aが開放されて、室内ファ
ン8の送風が停止し、居住者へのコールドドラフトが防
止される。このとき、送風速度スイッチ14はいずれか
が入っている。 このように、四方弁2が切り換わり、冷房運転になるこ
とにより、圧縮機1から吐出した高温高圧冷媒ガスは、
切り換わった四方弁2を通過した後、室外側熱交換器5
に入り、冷媒の有する熱でそれに付着した霜を解かす。 除霜終了にともない、除霜条件検出器10の感温部の温
度が上昇すると、切換開閉接点11の接点11aが閉じ
、接点11bが開き、四方弁2の駆動コイル2aは再び
励磁され、四方弁2が切り換わり、暖房運転に戻るよう
になる。
Figures 6 and 7 are for example Utility Model Application No. 57-490393
They are a refrigerant circuit diagram of a conventional Bee 1-pump type air conditioner shown as a conventional example in the publication, and an electrical throttling circuit diagram during defrosting. In FIG. 6, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a pressure reducing device, and 5 is an indoor heat exchanger. These compressor 1, four-way valve 2, indoor heat exchanger 3, pressure reducing device 4, and outdoor heat exchanger 5 are connected in an annular manner by a refrigerant pipe 6 to form a refrigerant circuit 7 through which refrigerant passes. Further, an indoor fan 8 is disposed opposite to the indoor heat exchanger 3, and an outdoor fan 9 is disposed also in the outdoor heat exchanger 5. A defrosting condition detector 10 whose temperature sensing portion is in contact with the inlet pipe of the outdoor heat exchanger 5 is disposed. Defrost condition detector 1
0 outputs a detection signal, contacts 11a and llb of the switching contact 11 shown in FIG. 7 are switched. The contact 11a of this switching contact 11 is normally closed,
When the defrosting condition detector IO outputs a detection signal, contact 11
It is designed to close b. The contact 11a is connected to one of the control power terminals 15 via the drive coil 2a of the four-way valve 2 and one contact of the heating switch 13. Similarly, the contact 11b is connected to one of the control power terminals 15 via the other contact of the relay 12 and the switch 13. A movable contact of the switching contact 11 is connected to the other control power terminal 15. A normally closed contact 12a of the relay 12 is connected between the control power terminals 15.
, indoor fan 8, and air blowing speed switch 14 are connected in series. Next, the operation will be explained. During heating, the heating switch 13 is closed, the drive coil 2a of the four-way valve is energized, and the four-way valve 2 is operated in a heating cycle. As a result, the high-temperature, high-pressure gas discharged from the compressor 1 passes through the four-way valve 2 as shown by the arrow, is cooled by the forced ventilation of the indoor fan 8 in the indoor heat exchange type 3, and becomes condensed liquid in the pressure reducing device 4. The refrigerant expands adiabatically and becomes a low-pressure refrigerant, which is heated by the forced ventilation of the outdoor fan 9 in the outdoor heat exchanger 5 and evaporates, becoming a low-pressure gas that passes through the four-way valve 2 and is sucked into the compressor 1. As the outside temperature decreases, the heat scene sucked up from the outdoor heat exchanger 5 into the refrigerant circuit Is7 decreases, and when the evaporation temperature decreases and becomes below the zero point temperature, frost will form on the outdoor heat exchanger 5. However, as a result, the ability to absorb heat decreases, and the input pipe temperature of the outdoor heat exchanger 5 further decreases.
The temperature is below the set temperature. This temperature is detected by the misting condition detector 10, and by opening the contact 11a of the switching contact 11°, the excitation of the drive coil 2a of the four-way valve is released, the four-way valve 2 is switched, and the refrigerant circuit 7 is put into cooling operation. becomes. At the same time, the relay 12 is energized by closing the contact 11b, and its normally closed contact 12a is opened, stopping the indoor fan 8 from blowing air, thereby preventing cold draft to the occupants. At this time, one of the blower speed switches 14 is turned on. In this way, by switching the four-way valve 2 and entering cooling operation, the high temperature and high pressure refrigerant gas discharged from the compressor 1 is
After passing through the switched four-way valve 2, the outdoor heat exchanger 5
The heat from the refrigerant melts the frost that has adhered to it. When the temperature of the temperature-sensing part of the defrosting condition detector 10 rises with the end of defrosting, the contact 11a of the switching contact 11 closes and the contact 11b opens, and the drive coil 2a of the four-way valve 2 is energized again. Valve 2 switches and returns to heating operation.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかし、上記従来の空気調和機では、除霜運転の間およ
び暖房運転復帰後、しばらくの間は暖房が行われず、室
内温度が低下し、居住者に不快感を与える。 この発明は、かかる問題点を解決するためになされたも
ので、室温設定の制御にて、除霜運転中、室内温度を低
下させないことのできろ空気調和機を得ることを目的と
する。
However, in the conventional air conditioner described above, heating is not performed for a while during the defrosting operation and after returning to the heating operation, and the indoor temperature decreases, causing discomfort to the occupants. The present invention was made to solve this problem, and an object of the present invention is to provide an air conditioner that can control the room temperature setting so as not to lower the indoor temperature during defrosting operation.

【問題点を解決するための手段】[Means to solve the problem]

この発明に係る空気調和機は、室外側熱交換器の除霜条
件検出器の信号を入力として除霜開始前に圧縮機の回転
数および室温検出器の設定室温を上昇させるインバータ
制御部を設けたものである。
The air conditioner according to the present invention includes an inverter control section that receives a signal from a defrosting condition detector of an outdoor heat exchanger as input and increases the rotation speed of the compressor and the set room temperature of the room temperature detector before starting defrosting. It is something that

【作 用】[For use]

この発明においては、除霜条件検出器の信号苓入力とし
て除霜開始前に圧w1機の回転数をインバータ制御部で
上昇させておき、その上界温度に達したとき、除霜運転
を開始させるように作用する。
In this invention, the rotation speed of the pressure w1 machine is increased by the inverter control section before the start of defrosting as a signal input to the defrosting condition detector, and when the upper limit temperature is reached, the defrosting operation is started. It acts to cause

【実施例】【Example】

以下、この発明の空気調和装置の実施例について図面に
基づき説明する。第1図はその一実施例の電気回路図で
ある。この第1図において、第7図と同一部分には同一
符号を付してその構成の説明を省略して、第7図とは異
なる部分を主体にして説明する。 この第1図においては、第7図の回路構成に新たにマイ
クロコンピュータ(以下、マイコンという)16、室温
検出器17、波形整形部18が付加されている。 即ち、マイコン16は入力端子INI、IN2、出力端
子0UTI、0UT2を備えており、内部にプログラム
ROM、データRAM5ALU (演算装置)を有して
いる。 マイコン16の入力端子INIには、除霜条件検出器1
0の検出信号が入力されろようになっている。この除霜
条件検出器10は第6図で示したのと同一のものである
。 また、マイコン16の入力端子IN2には室温検出器1
7の検出信号が入力されるようになっている。室温検出
器17ば居室の室温を検出するものである。 マイコン16はこれらの入力端子INI、IN2に入力
される検出信号を読取って除霜運転を行う切換開閉接点
11へ出力端子OUT 1から出力信号を出力するよう
になっているとともに、出力端子0UT2から波形整形
部18に出力信号を出力するようになっている。 この波形整形部18は、制tjE電源端子15間に接続
され、マイコン16の出力端子0UT2からの出力信号
により、圧縮機1の回転数制御を行うようになっている
。この波形整形部18ば一般的な誘導電動機を駆動させ
る装置である。 次にこの実施例の動作について、第2図および第3図を
併用して説明する。第2図は除霜条件検出器10の検出
信号により動作するマイコン16の動作内容を示すフロ
ーチャートであり、第3図はその制御部を示す。 まず、第2図のステップ20にて、暖房運転を行ってい
るとき、除霜条件検出器10から検出信号が入力端子I
NIに入力されろと、ステップ21からステップ22に
移行し、圧縮機1の回転数を第3図に示すようにΔF上
昇させ、さらに、ステップ23で室温検出器17に室温
設定をΔT上昇させろように指令して、暖房運転を続け
ろ。そして、室温検出器17が新たに設定した室温(T
+ΔT)に達したら、ステップ24からステップ25に
移行して、除霜運転を開始する。 この除霜運転する過程は従来と同一であるが、ステップ
26にて、圧wI機1の回転数は除霜運転モードで特別
に指定した回転数F2で運転を行う。 次に、除霜条件検出器10が除霜終了をして、その検出
信号をマイコン16の入力端子INIに出力して、ステ
ップ27からステップ28へ移行し、元の暖房運転に戻
る。除霜を完了して元の暖房運転にする過程は従来と同
一である。 次に、ステップ29にて、圧縮機1の回転数を暖房運転
゛モードで任意に定めたF3(第3図)に設定し、ステ
ップ30で室温検出器17に元の設定室6Tを指定して
、初期の暖房運転状態へと戻る。 除霜運転開始直前には圧縮機1の回転数がΔF上昇して
(Ft十ΔF)になり、室温がΔT上昇して(T十ΔT
)になるが、除霜運転終了直後には元の室WT以下にな
らない。圧tfJ機1の上昇回転数ΔFおよび室温検出
器10の上昇温度ΔTは室内の負荷に応じて任意に設定
を変更してもよい。 なお、上記実施例では、除霜運転開始直前に圧縮機1の
回転数を(F++ΔF)に上昇させ、室内温度を(T+
ΔT)まで上昇させる制御モードを示したが、圧wJ機
1の回転数および室温設定上昇後、第5図の室温の時間
変化を示す図において、一定時間ΔS経過すれば除霜運
転を開始させる制御にしても、上記実施例と同様の効菓
を奏する。 この場合の動作を示すフローチャートは第4図の如くな
る。この第4図において、ステップ24で室温が設定室
温(T十△T)に達しなくても、室温設定上昇後、65
時間が経過すれば、ステップ31はステップ25の除霜
運転に入る。 時間へSは室温上界が室外側熱交換器50着霜が増加し
て、暖房能力が極度に低下する時間を設定すればよい。
Embodiments of the air conditioner of the present invention will be described below based on the drawings. FIG. 1 is an electrical circuit diagram of one embodiment. In FIG. 1, parts that are the same as those in FIG. 7 are given the same reference numerals, and a description of the structure thereof will be omitted, and the explanation will mainly focus on the parts that are different from FIG. 7. In FIG. 1, a microcomputer (hereinafter referred to as microcomputer) 16, a room temperature detector 17, and a waveform shaping section 18 are newly added to the circuit configuration of FIG. That is, the microcomputer 16 has input terminals INI and IN2, output terminals 0UTI and 0UT2, and has a program ROM and data RAM 5ALU (arithmetic unit) inside. The defrosting condition detector 1 is connected to the input terminal INI of the microcomputer 16.
A detection signal of 0 is allowed to be input. This defrosting condition detector 10 is the same as that shown in FIG. In addition, a room temperature detector 1 is connected to the input terminal IN2 of the microcomputer 16.
7 detection signals are input. The room temperature detector 17 detects the room temperature of the living room. The microcomputer 16 reads the detection signals input to these input terminals INI and IN2 and outputs an output signal from the output terminal OUT 1 to the switching contact 11 that performs defrosting operation, and also outputs an output signal from the output terminal 0UT2. An output signal is output to the waveform shaping section 18. This waveform shaping section 18 is connected between the control tjE power supply terminals 15, and controls the rotation speed of the compressor 1 based on the output signal from the output terminal 0UT2 of the microcomputer 16. This waveform shaping section 18 is a device for driving a general induction motor. Next, the operation of this embodiment will be explained with reference to FIGS. 2 and 3. FIG. 2 is a flowchart showing the operation contents of the microcomputer 16 operated by the detection signal of the defrosting condition detector 10, and FIG. 3 shows its control section. First, at step 20 in FIG.
When the NI command is input, the process moves from step 21 to step 22, where the rotational speed of the compressor 1 is increased by ΔF as shown in FIG. Please give this command and continue heating operation. Then, the room temperature detector 17 sets the newly set room temperature (T
+ΔT), the process moves from step 24 to step 25, and defrosting operation is started. This defrosting operation process is the same as the conventional one, but in step 26, the pressure wI machine 1 is operated at a rotation speed F2 specially designated in the defrosting operation mode. Next, the defrosting condition detector 10 finishes defrosting and outputs the detection signal to the input terminal INI of the microcomputer 16, and the process moves from step 27 to step 28, returning to the original heating operation. The process of completing defrosting and returning to the original heating operation is the same as before. Next, in step 29, the rotation speed of the compressor 1 is set to F3 (Fig. 3), which is arbitrarily determined in the heating operation mode, and in step 30, the original setting room 6T is specified to the room temperature detector 17. and return to the initial heating operation state. Immediately before the start of defrosting operation, the rotation speed of the compressor 1 increases by ΔF to (Ft + ΔF), and the room temperature increases by ΔT (T + ΔT).
), but immediately after the defrosting operation ends, the room temperature does not drop below the original WT. The settings of the increased rotational speed ΔF of the pressure tfJ machine 1 and the increased temperature ΔT of the room temperature detector 10 may be arbitrarily changed according to the indoor load. In the above embodiment, the rotation speed of the compressor 1 is increased to (F++ΔF) immediately before the start of the defrosting operation, and the indoor temperature is raised to (T+
ΔT), but after the rotation speed of the pressure wJ machine 1 and the room temperature setting are increased, the defrosting operation is started after a certain period of time ΔS has elapsed in the diagram showing the time change of the room temperature in Figure 5. Even in control, the same effects as in the above embodiments are achieved. A flowchart showing the operation in this case is shown in FIG. In this FIG. 4, even if the room temperature does not reach the set room temperature (T + △T) in step 24, after the room temperature setting has been increased, 65
When the time has elapsed, step 31 enters the defrosting operation of step 25. The time S may be set to a time when the upper limit of the room temperature increases frost formation on the outdoor heat exchanger 50 and the heating capacity is extremely reduced.

【発明の効果】【Effect of the invention】

この発明は以上説明したとおり、除霜運転開始前に圧縮
機の回転数を上昇させて室温を上昇させておき、その上
昇温度に達すると、除霧運転を開始するようにしたので
、装置を複雑化させろことなく、除霜運転中に室温が低
下するのを防止でき、快適な居住空間が得られろ効果が
ある。
As explained above, this invention increases the rotational speed of the compressor to raise the room temperature before starting the defrosting operation, and when the increased temperature is reached, the fogging operation starts, so that the device can be operated. It is possible to prevent the room temperature from dropping during defrosting operation without making it complicated, and it is effective in providing a comfortable living space.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の空気調和機の一実施例におけろ除霜
時の電気制御回路図、第2図は同上空気調和機における
電気制御回路の動作の流れを示すフローチャート、第3
図は同上空気調和機の室温の時間変化図、第4図はこの
発明の空気調和機の他の実施例の電気制御回路の動作の
流れを示すフローチャート、第5図は同上他の実施例の
室温の時間変化図、第6図は従来の空気調和機の冷媒回
路図、第7図は従来の空気調和機の除霜時の電気制御回
路図である。 1 圧縮機、2 四方弁、2a 四方弁の駆動コイル、
3 室内側熱交換器、4 減圧装置、5 室外側熱交換
器、6 冷媒配管、7 冷媒回路、8 室内ファン、9
 室外ファン、10 除霜条件検出器、11 ・切換開
閉接点、12 リレー、13 暖房スイッチ、16 マ
イコン、17室温検出器、18 波形整形部。 なお、図中同一符号は同−又は相当部分を示す。 代理人  大 岩  増 雄(ほか2名)第1図 1二F品次 12:ソL− 18・吸形獣もザ 第 2 図 第4図 第6図 第7図 町 0発 明 者  松 岡   文 雄  鎌倉市大船2
]8丁目1番1号 三菱電機株式会社中央研゛目14番
4吋 三菱電機株式会社商品研究所手続補正書(自発) 昭和  年  月  日 1、事件の表示   特願昭60−184905号2、
発明の名称   空気調和機 30.補正をする者 事件との関係  特許出願人 住 所    東京都千代田区丸の内二丁目2番3号名
 称  (601)三菱電機株式会社代表者志岐守哉 4o代理人 住 所    東京都千代田区丸の内二丁目2番3号5
、補正の対象 (1)明細書の発明の詳細な説明の欄 6、?ltl正の内容 (1)明細書筒2頁10行目に「5は室内側熱交換器」
とあるのを「5は室外側熱交換器」と補正する。 (2)同第7頁12行目に「17は居室の」とあるのを
「17は居住空間の」と補正する。
Fig. 1 is an electrical control circuit diagram during defrosting in an embodiment of the air conditioner of the present invention, Fig. 2 is a flowchart showing the flow of operation of the electrical control circuit in the same air conditioner, and Fig. 3
Fig. 4 is a flowchart showing the operation flow of the electric control circuit of another embodiment of the air conditioner of the present invention, and Fig. 5 is a diagram of the change in room temperature of the air conditioner according to the above embodiment. FIG. 6 is a diagram of changes in room temperature over time, FIG. 6 is a refrigerant circuit diagram of a conventional air conditioner, and FIG. 7 is an electrical control circuit diagram of a conventional air conditioner during defrosting. 1 compressor, 2 four-way valve, 2a four-way valve drive coil,
3 indoor heat exchanger, 4 pressure reducing device, 5 outdoor heat exchanger, 6 refrigerant piping, 7 refrigerant circuit, 8 indoor fan, 9
Outdoor fan, 10 defrosting condition detector, 11 switching contact, 12 relay, 13 heating switch, 16 microcomputer, 17 room temperature detector, 18 waveform shaping section. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Masuo Oiwa (and 2 others) Fig. 1 12F Shinatsugu 12: SO L-18, Sucking beast moza Fig. 2 Fig. 4 Fig. 6 Fig. 7 Town 0 Inventor Matsuoka Yu Fumi Kamakura City Ofuna 2
] 8-1-1 Mitsubishi Electric Corporation Chuo Research Center 14-4 Mitsubishi Electric Corporation Product Research Institute Procedural Amendment (Voluntary) Showa Year Month Day 1, Incident Indication Patent Application No. 184905 No. 1884-2,
Title of invention Air conditioner 30. Relationship with the person making the amendment Patent applicant address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (601) Mitsubishi Electric Corporation Representative Moriya Shiki 4o Agent address 2-chome Marunouchi, Chiyoda-ku, Tokyo 2 No. 3 No. 5
, Subject of amendment (1) Column 6 of detailed explanation of the invention in the specification, ? ltlCorrect contents (1) On the 10th line of page 2 of the specification cylinder, "5 is the indoor heat exchanger"
The statement "5 is an outdoor heat exchanger" is corrected. (2) On page 7, line 12, the statement ``17 is in the living room'' is corrected to ``17 is in the living space.''

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機、四方弁、室内側熱交換器、減圧装置およ
び室外側熱交換器を冷媒配管により環状に連結して冷媒
を通すように構成された冷媒回路、室内温度を検出する
室温検出器、上記室外側熱交換器の除霜条件を検出する
除霜条件検出器、この除霜条件検出器の検出信号により
除霜運転開始前に上記圧縮機の回転数を上昇させるとと
もに上記室温検出器の設定室温を上昇させる手段を備え
てなる空気調和機。
(1) A refrigerant circuit configured to connect a compressor, a four-way valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger in a ring shape through refrigerant piping to allow refrigerant to pass therethrough; room temperature detection for detecting indoor temperature; a defrosting condition detector for detecting the defrosting conditions of the outdoor heat exchanger; a detection signal from the defrosting condition detector increases the rotational speed of the compressor before starting the defrosting operation and detects the room temperature; An air conditioner equipped with a means to raise the set room temperature of the device.
(2)圧縮機の回転数および室温検出器の設定室温を上
昇させる手段はその決定開始時点から所定時間経過後に
除霜運転を開始するように制御することを特徴とする特
許請求の範囲第1項記載の空気調和機。
(2) The means for increasing the rotation speed of the compressor and the set room temperature of the room temperature detector is controlled so that the defrosting operation is started after a predetermined time has elapsed from the time when the determination is started. Air conditioner as described in section.
JP60184905A 1985-08-22 1985-08-22 Air-conditioning machine Pending JPS6246152A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP60184905A JPS6246152A (en) 1985-08-22 1985-08-22 Air-conditioning machine
KR1019860006265A KR900005979B1 (en) 1985-08-22 1986-07-30 Air conditioning apparatus
DE8686111450T DE3685862T2 (en) 1985-08-22 1986-08-19 AIR CONDITIONER.
EP86111450A EP0213540B1 (en) 1985-08-22 1986-08-19 Air conditioning apparatus
US06/898,492 US4709554A (en) 1985-08-22 1986-08-21 Air conditioning apparatus
CN86105455.5A CN1005210B (en) 1985-08-22 1986-08-22 Air conditioning equipment
AU61785/86A AU580509B2 (en) 1985-08-22 1986-08-22 Air conditioning apparatus
CN88106586A CN1008131B (en) 1985-08-22 1988-09-07 Air conditioning apparatus
HK150/93A HK15093A (en) 1985-08-22 1993-02-25 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60184905A JPS6246152A (en) 1985-08-22 1985-08-22 Air-conditioning machine

Publications (1)

Publication Number Publication Date
JPS6246152A true JPS6246152A (en) 1987-02-28

Family

ID=16161379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60184905A Pending JPS6246152A (en) 1985-08-22 1985-08-22 Air-conditioning machine

Country Status (1)

Country Link
JP (1) JPS6246152A (en)

Similar Documents

Publication Publication Date Title
US4102390A (en) Control system for heat pump and furnace combination
JP4668769B2 (en) Air conditioner
JPS6246152A (en) Air-conditioning machine
JPS63129258A (en) Heat pump type air conditioner
JPH0359358A (en) Air conditioner
JPS6152376B2 (en)
JPS6246151A (en) Air-conditioning machine
JPH07174389A (en) Defrosting controller for air-conditioning machine
JPS6033444A (en) Control of defrosting operation of air-conditioning machine
JPH0256570B2 (en)
JPS621636Y2 (en)
JPS5920581Y2 (en) Control circuit for heat pump air conditioner
JPS6325448A (en) Indoor machine for heat pump type air-conditioning machine
JPS62175541A (en) Heat pump type air conditioner
JPS5895138A (en) Heat pump type air conditioner
JPH0113978Y2 (en)
JPS62129659A (en) Air conditioner
JPS6193358A (en) Bypass controller for decompression apparatus in air conditioner
JPS5815796Y2 (en) Defrosting device for heat pump air conditioners
JPS59153076A (en) Controller for operation of air conditioner
JPS59145437A (en) Heat pump type air conditioning device
JPS5850197Y2 (en) air conditioner
JPS60243436A (en) Defrosting system for heat pump type air conditioning equipment
JPS62200136A (en) Defroster for air conditioner
JPS60253747A (en) Defrosting controller for air conditioner