JPS624604B2 - - Google Patents

Info

Publication number
JPS624604B2
JPS624604B2 JP14015878A JP14015878A JPS624604B2 JP S624604 B2 JPS624604 B2 JP S624604B2 JP 14015878 A JP14015878 A JP 14015878A JP 14015878 A JP14015878 A JP 14015878A JP S624604 B2 JPS624604 B2 JP S624604B2
Authority
JP
Japan
Prior art keywords
pressure
water
economizer
circulation
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14015878A
Other languages
Japanese (ja)
Other versions
JPS5565803A (en
Inventor
Akira Hirayama
Shozo Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14015878A priority Critical patent/JPS5565803A/en
Publication of JPS5565803A publication Critical patent/JPS5565803A/en
Publication of JPS624604B2 publication Critical patent/JPS624604B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 従来の複合循環式超臨界圧ボイラでは、節炭器
出口に循環ポンプを設置してゐるので、起動時及
部分負荷時の安定性、起動損失の減少など多くの
特長があるが、その反面低負荷で減圧運転ができ
ないので、中間負荷火力としての運用に適しない
という欠点があつた。第1図は、そのような従来
の複合循環式超臨界圧ボイラの一例の系統図で、
図中01は給水ポンプ、02は高圧ヒータ、03
は給水制御弁、04は節炭器、05は混合球、0
6は循環ポンプ、07は火炉、08は過熱器、0
9は高圧タービン、010は再循環管路、011
は起動バイパス弁、012はタービンバイパス弁
を示す。
[Detailed Description of the Invention] Conventional combined circulation supercritical pressure boilers have a circulation pump installed at the outlet of the economizer, so they have many features such as stability at startup and partial load, and reduced startup loss. However, on the other hand, it had the disadvantage that it was not suitable for operation as a medium-load thermal power plant because it could not operate under reduced pressure at low loads. Figure 1 is a system diagram of an example of such a conventional combined circulation supercritical pressure boiler.
In the diagram, 01 is the water supply pump, 02 is the high pressure heater, and 03
is the water supply control valve, 04 is the energy saver, 05 is the mixing bulb, 0
6 is the circulation pump, 07 is the furnace, 08 is the superheater, 0
9 is a high pressure turbine, 010 is a recirculation pipe, 011
012 indicates a startup bypass valve, and 012 indicates a turbine bypass valve.

このような装置において定常運転の場合、給水
ポンプ01出口から過熱器08出口に到る系内の
圧力がすべて臨界圧以上となるよう運転されるの
で、節炭器04から火炉07、過熱器08と続く
熱交換器内部の流動はすべて単相流であり、熱水
〜蒸気における比体積の差は殆んどなく、したが
つて火炉出口○エの蒸気(もしくは高温熱水)の再
循環○エ′と節炭器出口の高温熱水○イとが混合球0
5内で混合する場合においてウオターハンマー等
の発生もなく、かつ混合後の高温熱水○ウのポンプ
06内流動も安定しているため、キヤビテーシヨ
ン等発生の恐れは全くない。(部分負荷に於て
も、このように臨界圧以上で運転される限り、問
題は生じない。) しかしながら、近年原子力火力がベースロード
発電設備として建設運転されるに伴ない、超臨界
圧大型火力も中間負荷火力として又ピークロード
負荷として運用されるようになつた。ところが、
超臨界圧大型ボイラをそのような中間火力的運用
で低い中間負荷を多用する目的に使用し、高圧状
態のまま低負荷運転を長く行うと、タービン絞り
損失の増加、給水ポンプ動力の増加を招くだけで
なく、メインテナンスも多く必要であり不経済と
なる。こうして、中間火力的運用をする時にも最
高効率が発揮されるような大出力火力プラントが
望まれるようになつたので、その具体策として検
討されたのが減圧運転である。
In the case of steady operation in such a device, the system is operated so that the pressure in the system from the water pump 01 outlet to the superheater 08 outlet is all above the critical pressure. The flow inside the heat exchanger that follows is all single-phase flow, and there is almost no difference in specific volume between hot water and steam, so the steam (or high-temperature hot water) at the furnace outlet ○D is recirculated ○ Mixing ball 0 with E' and high temperature hot water ○A at the outlet of the economizer
When mixing in the pump 06, no water hammer or the like occurs, and the flow of the high-temperature hot water in the pump 06 after mixing is stable, so there is no fear of cavitation or the like. (Even at partial load, no problem will occur as long as it is operated above the critical pressure.) However, as nuclear power plants have been constructed and operated as base-load power generation facilities in recent years, supercritical large-scale thermal power plants It also came to be operated as a medium-load thermal power plant and as a peak-load thermal power plant. However,
If a supercritical pressure large-scale boiler is used for such intermediate thermal power operation with frequent use of low intermediate loads, and if the low load operation is continued for a long time in a high pressure state, it will lead to an increase in turbine throttling loss and an increase in feed water pump power. Not only that, but it also requires a lot of maintenance, which is uneconomical. As a result, there became a desire for a high-output thermal power plant that could achieve maximum efficiency even when operating as an intermediate thermal power plant, and depressurized operation was considered as a specific measure for this purpose.

ところで、第1図に示す従来の複合サイクルの
系統において減圧運転をした場合を仮定する。
100%負荷運転時にたとえば過熱器08出口圧力
255Kg/cm2gで運転するのを、50%負荷時に125
Kg/cm2gで減圧運転すると、火炉07内で熱水の
蒸発が起り、火炉出口の○エ点においては、気水混
合のいわゆる二相流となる。この場合、蒸発は
125Kg/cm2gの飽和温度(約325℃)に相当する一
定温度の下で起り、減圧しない場合の蒸発時の温
度約380℃と比較して相当低い値となる。したが
つて蒸発潜熱が大きく、火炉出口○エで25〜30%の
飽和水分を含んだものとなる。
By the way, it is assumed that the conventional combined cycle system shown in FIG. 1 is operated under reduced pressure.
For example, superheater 08 outlet pressure during 100% load operation
Operating at 255Kg/cm 2 g, 125 at 50% load
When operating under reduced pressure at Kg/cm 2 g, hot water evaporates in the furnace 07, resulting in a so-called two-phase flow of steam and water mixture at point ○E at the furnace outlet. In this case, the evaporation is
This occurs at a constant temperature corresponding to the saturation temperature of 125 kg/cm 2 g (approximately 325° C.), which is considerably lower than the temperature during evaporation of approximately 380° C. without pressure reduction. Therefore, the latent heat of vaporization is large, and it contains 25 to 30% saturated moisture at the furnace outlet.

このような状態で過熱器08内に気水混合気が
流れ、又、一部は再循環して混合球05に導かれ
る。一方節炭器04には高圧ヒーター02出口の
熱水が導入され(減圧運転のため○ア点の温度は定
常よりも若干低い)、節炭器04内でさらに加熱
されて混合球05に入る。減圧時節炭器出口○イ点
の温度は通常時よりも低い値となるが、飽和状態
も下るので、出口○イ点の状態は一部蒸気を発生の
可能性を有するか、もしくはサブクールの割合が
極めて少ないものとなる。したがつて混合球05
内では、乾き度の高い混合気と蒸発寸前の熱水と
が混合し、蒸気の凝縮、熱水の蒸発という相の変
化が甚しい状態の流体が循環ポンプ06へ送られ
ることとなり、ポンプ06内ではキヤビテーシヨ
ン、混合球05内ではウオターハンマーの現象発
生が予想される。したがつて火炉07内を減圧状
態にする運転はできない。
In this state, the steam/water mixture flows in the superheater 08, and a part of the mixture is recirculated and guided to the mixing bulb 05. On the other hand, the hot water from the outlet of the high-pressure heater 02 is introduced into the economizer 04 (the temperature at point ○ is slightly lower than the steady state due to the reduced pressure operation), is further heated in the economizer 04, and enters the mixing bulb 05. . During depressurization, the temperature at point ○A at the exit of the economizer will be lower than normal, but the saturated state will also drop, so the condition at point ○A at the exit has the possibility of generating some steam, or the proportion of subcooling will decrease. will be extremely small. Therefore, mixed ball 05
Inside, a highly dry air-fuel mixture and hot water on the verge of evaporation mix, and the fluid, which undergoes a severe phase change of condensation of steam and evaporation of hot water, is sent to circulation pump 06. Cavitation is expected to occur inside the ball, and water hammer is expected to occur inside the mixed ball 05. Therefore, operation that brings the inside of the furnace 07 into a reduced pressure state is not possible.

本発明は、上記のような不具合をなくし、複合
循環ボイラにおいて減圧運転ができるようなフロ
ーシステムを提供することを目的とし、その要旨
は、節炭器管から火炉管を経て過熱器管に至る管
路内を流体が流れ順次加熱されるものにおいて、
上記節炭器管の上流または中間に混合器、同混合
器の下流に循環ブースタポンプ、上記火炉管の中
間または下流に気液分離器をそれぞれ設けるとと
もに、上記混合器と上記気液分離器の液体出口と
を互に連通したことを特徴とするボイラ装置であ
る。
The purpose of the present invention is to eliminate the above-mentioned problems and provide a flow system that allows reduced pressure operation in a combined circulation boiler. In pipes where fluid flows through a pipe and is heated sequentially,
A mixer is provided upstream or in the middle of the economizer pipe, a circulation booster pump is provided downstream of the mixer, and a gas-liquid separator is provided in the middle or downstream of the furnace pipe. This boiler device is characterized in that the liquid outlet and the liquid outlet are communicated with each other.

このように本発明では、火炉管の出口に気液分
離器を設け、これと混合球を循環パイプで直結
し、この気液分離器で火炉出口における減圧時の
気水混合物を分離し、蒸気は過熱器へ飽和水は混
合球へ戻すとともに、混合球内部のサブクール状
態が飽和点より低下するよう、混合球設置位置を
節炭器入口側に移し、循環ポンプのキヤビテーシ
ヨン現象をなくすようにした。又節炭器における
スチーミング現象を防止する為、節炭器を二段に
分け、低温節炭器は従来方式、高温節炭器は入口
に分配ヘツダー及びオリフイス(必要の場合)を
設け、スチーミングがたとえ起きても差支えない
ようにした。
In this way, in the present invention, a gas-liquid separator is provided at the outlet of the furnace tube, and the mixing bulb is directly connected to the gas-liquid separator through a circulation pipe. In addition to returning the saturated water to the superheater to the mixing bulb, the mixing bulb was moved to the inlet side of the energy saver so that the subcooled state inside the mixing bulb was lower than the saturation point, thereby eliminating the cavitation phenomenon of the circulation pump. . In addition, in order to prevent the steaming phenomenon in the economizer, the economizer is divided into two stages, the low temperature economizer is the conventional method, and the high temperature economizer is equipped with a distribution header and orifice (if necessary) at the inlet. Even if teaming occurs, it will not be a problem.

気液分離器の火炉管系統内設置位置は、火炉管
路系の部分負荷特性を考慮し、適性中間位置を選
定する事も可能であり、この場合減圧運転時は、
火炉中間に設置した気液分離器出口から分岐循環
させることになる。
The installation position of the gas-liquid separator in the furnace pipe system can be selected at an appropriate intermediate position by considering the partial load characteristics of the furnace pipe system. In this case, during depressurization operation,
Branch circulation will be performed from the outlet of the gas-liquid separator installed in the middle of the furnace.

次に本発明の一実施例を図面によつて説明す
る。
Next, one embodiment of the present invention will be described with reference to the drawings.

第2図は本発明ボイラの一実施例のフロー系統
線図、第3図は同じく立体配置図、第4図は再循
環系の詳細図である。これらの図において、3は
給水制御弁、4aは第1節炭器、4bは第2節炭
器、7aは第1火炉管、7bは第2火炉管、7c
は第3火炉管、8aは第1過熱器、8bは第2過
熱器、8cは第3過熱器、8dは第4過熱器であ
る。5は混合器で、上記第1節炭器4aと上記第
2節炭器4bとの中間に設けられている。6は循
環ブースタポンプで、上記混合器5の下流に設け
られている。
FIG. 2 is a flow system diagram of an embodiment of the boiler of the present invention, FIG. 3 is a three-dimensional layout diagram, and FIG. 4 is a detailed diagram of a recirculation system. In these figures, 3 is a water supply control valve, 4a is a first economizer, 4b is a second economizer, 7a is a first furnace tube, 7b is a second furnace tube, and 7c
is a third furnace tube, 8a is a first superheater, 8b is a second superheater, 8c is a third superheater, and 8d is a fourth superheater. A mixer 5 is provided between the first economizer 4a and the second economizer 4b. Reference numeral 6 denotes a circulation booster pump, which is provided downstream of the mixer 5.

21は気液分離器で、上記第3火炉壁7cの下
流に設けられている。
A gas-liquid separator 21 is provided downstream of the third furnace wall 7c.

そして、上記混合器5と上記気液分離器21の
液体出口とは循環管路10により、互に連通して
いる。22はトータルフローメータで、上記循環
ブースタポンプ6と上記第2節炭器4bとの中間
に設けられている。23は分離器出口フローメー
タで、上記気液分離器21の下流に設けられてい
る。24は差圧制御弁で上記分離器出力フローメ
ータ23の下流に設けられている。25はレベル
制御弁で、上記循環管路10の途中に設けられて
いる。26は上記ブースタポンプ6を駆動する変
速モータである。また27は差圧制御コントロー
ラ、28はレベルコントローラ、29はフローコ
ントーラである。なお30は上記第2過熱器8b
と上記第3過熱器8cとの間に設けられた過熱低
減器、31はスプレー弁である。
The mixer 5 and the liquid outlet of the gas-liquid separator 21 communicate with each other through a circulation pipe 10. A total flow meter 22 is provided between the circulation booster pump 6 and the second economizer 4b. A separator outlet flow meter 23 is provided downstream of the gas-liquid separator 21. A differential pressure control valve 24 is provided downstream of the separator output flow meter 23. Reference numeral 25 denotes a level control valve, which is provided in the middle of the circulation pipe 10. 26 is a variable speed motor that drives the booster pump 6. Further, 27 is a differential pressure control controller, 28 is a level controller, and 29 is a flow controller. Note that 30 is the second superheater 8b.
A superheat reducer 31 provided between the third superheater 8c and the third superheater 8c is a spray valve.

このようなボイラ装置においてボイラ給水は、
給水制御弁3から低温の第1節炭器4aを通り、
混合器5に導入され、ここでボイラ循環水と混合
されて、循環ブースタポンプ6に入り加圧され、
ボイラ水トータルフローメータ22を通過し、高
温の第2節炭器4bから火炉管に到る。
In such boiler equipment, boiler water supply is
From the water supply control valve 3, it passes through the low-temperature first economizer 4a,
It is introduced into a mixer 5, where it is mixed with boiler circulating water, and then enters a circulation booster pump 6 where it is pressurized.
The boiler water passes through the total flow meter 22 and reaches the furnace tube from the high temperature second economizer 4b.

火炉管は熱負荷の高い方から第1火炉管7a、
第2火炉管7b、第3火炉管7cに分れ、連絡管
で接続されているが、ボイラ水はこれら火炉管内
を順次通過し加熱されて蒸気となる。
The furnace tubes are the first furnace tube 7a from the one with the highest heat load,
It is divided into a second furnace tube 7b and a third furnace tube 7c, which are connected by a connecting tube, and the boiler water sequentially passes through these furnace tubes and is heated to become steam.

火炉管出口(又は中間におく事も出来る。)に
は気液分離器21が設けられており、ここで低負
荷減圧運転時の際発生する汽水混合気中の飽和水
が分離される。気液分離器21を出た蒸気は、分
離器出口フローメータ23、差圧制御弁24を通
り、さらに低温の第1過熱器8a、第2過熱器8
bを通り、過熱低減器30を経て、高温の第3過
熱器8c、第4過熱器8dを通る間に逐次加熱さ
れ、高温高圧の過熱蒸気となつて図示しないター
ビンに到る。タービンで仕事をした蒸気は図示し
ない復水器で冷却されて水に戻り、復水ポンプ、
給水処理装置、低圧ヒータ、脱気器、給水移送ポ
ンプ、中圧給水ヒータ、ボイラ給水ポンプ、高圧
給水ヒータ(いずれも図示せず)を通り高温高圧
給水となつて、給水制御3から再びボイラ内に導
入される。
A gas-liquid separator 21 is provided at the outlet of the furnace tube (or it can be placed in the middle), and saturated water in the brackish water mixture generated during low-load decompression operation is separated here. The steam exiting the gas-liquid separator 21 passes through a separator outlet flow meter 23, a differential pressure control valve 24, and is further transferred to a first superheater 8a and a second superheater 8 at low temperatures.
b, passes through the desuperheater 30, and passes through the high-temperature third superheater 8c and fourth superheater 8d, where it is successively heated and becomes high-temperature, high-pressure superheated steam that reaches a turbine (not shown). The steam that has done work in the turbine is cooled in a condenser (not shown) and returned to water, and then the condensate pump,
The high-temperature, high-pressure feed water passes through the feed water treatment device, low pressure heater, deaerator, feed water transfer pump, medium pressure feed water heater, boiler feed water pump, and high pressure feed water heater (all not shown), and then returns to the boiler from the feed water control 3. will be introduced in

一方、過熱器出口温度はスプレー弁31で制御
される。
On the other hand, the superheater outlet temperature is controlled by the spray valve 31.

又起動時のタービンバイパスとして起動用ドレ
ン弁が使われる。
Also, a startup drain valve is used as a turbine bypass during startup.

火炉管内の流量は、循環ブースタポンプ6出口
のトータルフローメーター22と分離器出口フロ
ーメーター23とにより、所定の流量を保持する
ようフロートコントローラ29および変速モータ
26により制御される。
The flow rate in the furnace tube is controlled by a total flow meter 22 at the outlet of the circulation booster pump 6 and a flow meter 23 at the separator outlet, and by a float controller 29 and a variable speed motor 26 to maintain a predetermined flow rate.

火炉管出口には、低負荷時の系内循環量を維持
し流動を安定するため、差圧制御弁24が設けら
れ、混合器5と気液分離器21の差圧を所定の値
(例えば4Kg/cm2)に保持するよう差圧制御コン
トローラ27により制御する。
At the outlet of the furnace tube, a differential pressure control valve 24 is provided to maintain the circulation amount in the system and stabilize the flow at low loads, and controls the differential pressure between the mixer 5 and the gas-liquid separator 21 to a predetermined value (e.g. The differential pressure controller 27 controls the pressure to maintain the pressure at 4 kg/cm 2 ).

低負荷減圧時の循環飽和水は、気液分離器21
と混合器5を結ぶ循環管10を通り、レベル制御
弁25を経て混合器5に到る。レベルはレベルコ
ントローラ28により制御される。
Circulating saturated water during low load decompression is passed through the gas-liquid separator 21
It passes through a circulation pipe 10 connecting the mixer 5 and the mixer 5 via a level control valve 25. The level is controlled by a level controller 28.

火炉〜節炭器間のフローシステムにおいて、給
水量=蒸気量をQA、循環量をQBとすれば、 システムフローQC=QA+QB の関係が成立する。第5図はこれ等負荷とシステ
ムフローとの関係をグラフ化したもので、低負荷
から約80%負荷までは、給水量QA(貫流フロ
ー)の他に循環フローQBが流れ、QC=QA+QB
は負荷に拘らずほぼ一定値に制御される。点Pは
ドライポイントを示す。この負荷(約80%)以上
の状態では火炉管出口は完全なドライ蒸気となる
ので、P点以上の負荷に於ては循環フローQB
Oとなり、すべて貫流状態でQAのみが流れるこ
とになる。したがつてポンプ6は給水ポンプのブ
ースタポンプとして作動するのみとなる。
In the flow system between the furnace and the economizer, if the amount of water supplied = steam amount is Q A and the amount of circulation is Q B , the relationship of system flow Q C = Q A + Q B holds. Figure 5 is a graph showing the relationship between these loads and the system flow. From low load to about 80% load, in addition to the water supply amount Q A (throughflow flow), a circulation flow Q B flows, and Q C =Q A +Q B
is controlled to a nearly constant value regardless of the load. Point P indicates a dry point. At a load above this point (approximately 80%), the outlet of the furnace tube becomes completely dry steam, so at a load above point P, the circulation flow Q B =
O, and only Q A flows in a flow-through state. Therefore, the pump 6 only operates as a booster pump for the water supply pump.

第6図はエンタルピー圧力線図を示すが、第2
〜5図における、各点および各負荷での水〜蒸気
の状態を表わしたものである。
Figure 6 shows the enthalpy pressure diagram, but the second
It represents the state of water to steam at each point and each load in Figure 5.

超臨界圧ボイラにおいては、設計圧力が臨界点
を超えた状態にあるので、臨界点を超えた運転状
態に維持される限り、部分負荷においても火炉管
内の流体は単相流となる。これを第6図中に示す
と、と′(点線で示す)の範囲内の運転条件
であつて、従来の複合循環式ボイラの運用となつ
ている。
In a supercritical pressure boiler, the design pressure is in a state exceeding the critical point, so as long as the operating state is maintained above the critical point, the fluid in the furnace tube becomes a single-phase flow even under partial load. This is shown in FIG. 6, where the operating conditions are within the range of and' (indicated by dotted lines), which corresponds to the operation of a conventional combined circulation boiler.

しかし、このような高圧状態で低負荷運転を多
用することは、前記のように不経済なので、減圧
運転が望ましいが、もしこのように減圧運転した
場合、第6図中〜のように、負荷に応じて圧
力は減少し、第2図中○カ〜○サに示される各部の状
態は、第6図○カ〜○サのように変化する。
However, frequent use of low load operation in such a high pressure state is uneconomical as mentioned above, so depressurized operation is desirable, but if such depressurized operation is performed, the load will be The pressure decreases accordingly, and the state of each part indicated by circles ○ to ○ in FIG. 2 changes as shown by circles to ○ in FIG. 6.

特に火炉管出口○コに於ては、逐次、蒸気の温度
が低下し、点P以降減圧が進むにつれ系内の蒸気
は汽水混合状態となり、飽和水の含まれる割合が
多くなる。(○コは循環フローのない場合を示す。) 第1図に示される従来の複合循環式ボイラの場
合、このような減圧状態の汽水混合気が、中間も
しくは低負荷時にそのまま混合器05に入るの
で、乾き度の高い混合気と蒸発寸前の節炭器出口
の熱水とが衝突混合して、蒸気の凝縮、熱水の蒸
発という、相の変化が甚しい状態で循環ポンプ0
6に送られる事となり、ポンプ内部ではキヤビテ
ーシヨン、混合器内ではウオターハンマ現象が避
けられない。又過熱器08には水分の含まれる混
合気が送られるので、蒸気温度特性の変化はもち
ろん、スケールトラブル、等による事故も懸念さ
れる。
Particularly at the furnace tube outlet ○, the temperature of the steam gradually decreases, and as the pressure decreases after point P, the steam in the system becomes mixed with brackish water, and the proportion of saturated water increases. (○ indicates the case where there is no circulation flow.) In the case of the conventional combined circulation boiler shown in Figure 1, such a depressurized brackish water mixture enters mixer 05 as it is at intermediate or low load. As a result, the highly dry air-fuel mixture and the hot water at the exit of the economizer, which is about to evaporate, collide and mix, resulting in severe phase changes such as steam condensation and hot water evaporation.
6, cavitation inside the pump and water hammer phenomenon inside the mixer are unavoidable. Furthermore, since the air-fuel mixture containing moisture is sent to the superheater 08, there are concerns not only of changes in steam temperature characteristics but also of accidents due to scaling troubles and the like.

本発明によれば火炉7c出口(又は中間におく
事もできる。)に気液分離器21をそなえ、ここ
で汽水混合気を分離し、蒸気は過熱器8aへ、分
離された飽和水は混合器5へと確実に分配すると
ともに、混合器5内部では低温節炭器出口の給水
を充分なサブクールの状態に戻し、その状態でポ
ンプ6内に導入することができるので、循環量の
多い低負荷条件まで何等問題なく安全運転ができ
る。もちろん低負荷時には充分な循環フローが得
られるので、流動の安定性が良く、通常の貫流ボ
イラとしては比較にならぬ程安全運転が維持さ
れ、加えてプラント効率の向上、補機動力の節
減、メンテナンスの低減等、工業上の利益は多大
である。
According to the present invention, a gas-liquid separator 21 is provided at the outlet of the furnace 7c (or it can be placed in the middle), where the steam-water mixture is separated, the steam is sent to the superheater 8a, and the separated saturated water is mixed. At the same time, the water at the outlet of the low-temperature economizer can be returned to a sufficiently subcooled state inside the mixer 5, and then introduced into the pump 6 in that state. It can be operated safely under any load conditions without any problems. Of course, sufficient circulation flow can be obtained at low loads, resulting in good flow stability and safe operation that is incomparable to ordinary once-through boilers. The industrial benefits are significant, such as reduced maintenance.

以上詳細に説明したように、本発明によれば、
大容量の複合循環式超臨界圧ボイラを、低負荷に
おいても安全かつ経済的に運転することができる
ので、産業上有用である。
As explained in detail above, according to the present invention,
The present invention is industrially useful because a large-capacity combined circulation supercritical pressure boiler can be operated safely and economically even at low loads.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の複合循環式超臨界圧ボイラのフ
ロー系統図、第2図は本発明の複合循環式超臨界
圧ボイラの一実施例のフロー系統図、第3図は同
立体配置図、第4図は再循環系の詳細図、第5図
は本発明ボイラの負荷とシステムフローとの関係
を示す図、第6図は本発明ボイラの各部の各負荷
における状態を示すエンタルピー圧力線図であ
る。 4a…第1節炭器、4b…第2節炭器、5…混
合器、6…循環ポンプ、7a,7b,7c…火炉
管、8a,8b,8c…過熱器、10…循環管
路、21…気液分離器、22,23…フローメー
タ、24…差圧制御弁、25…レベル制御弁、2
6…変速モータ、27…差圧制御コントローラ、
28…レベルコントローラ、29…フローコント
ローラ。
Fig. 1 is a flow system diagram of a conventional combined circulation type supercritical pressure boiler, Fig. 2 is a flow system diagram of an embodiment of the combined circulation type supercritical pressure boiler of the present invention, and Fig. 3 is a three-dimensional diagram of the same. Figure 4 is a detailed diagram of the recirculation system, Figure 5 is a diagram showing the relationship between the load and system flow of the boiler of the present invention, and Figure 6 is an enthalpy pressure diagram showing the state of each part of the boiler of the present invention at each load. It is. 4a...first economizer, 4b...second economizer, 5...mixer, 6...circulation pump, 7a, 7b, 7c...furnace tube, 8a, 8b, 8c...superheater, 10...circulation pipe line, 21... Gas-liquid separator, 22, 23... Flow meter, 24... Differential pressure control valve, 25... Level control valve, 2
6... variable speed motor, 27... differential pressure control controller,
28... Level controller, 29... Flow controller.

Claims (1)

【特許請求の範囲】[Claims] 1 節炭器管から火炉管を経て過熱器管に至る管
路内を流体が流れ順次加熱されるものにおいて、
上記節炭器管の上流または中間に混合器、同混合
器の下流に循環ブースタポンプ、上記火炉管の中
間または下流に気液分離器をそれぞれ設けるとと
もに、上記混合器と上記気液分離器の液体出口と
を互に連通したことを特徴とするボイラ装置。
1 In a system in which fluid flows through the pipe from the economizer pipe to the furnace pipe to the superheater pipe and is heated sequentially,
A mixer is provided upstream or in the middle of the economizer pipe, a circulation booster pump is provided downstream of the mixer, and a gas-liquid separator is provided in the middle or downstream of the furnace pipe. A boiler device characterized in that a liquid outlet and a liquid outlet are communicated with each other.
JP14015878A 1978-11-14 1978-11-14 Boiler device Granted JPS5565803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14015878A JPS5565803A (en) 1978-11-14 1978-11-14 Boiler device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14015878A JPS5565803A (en) 1978-11-14 1978-11-14 Boiler device

Publications (2)

Publication Number Publication Date
JPS5565803A JPS5565803A (en) 1980-05-17
JPS624604B2 true JPS624604B2 (en) 1987-01-31

Family

ID=15262208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14015878A Granted JPS5565803A (en) 1978-11-14 1978-11-14 Boiler device

Country Status (1)

Country Link
JP (1) JPS5565803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512501A (en) * 2011-03-30 2014-05-22 シーメンス アクチエンゲゼルシヤフト Method for operating once-through boiler and boiler configured to carry out this method
US11323585B2 (en) 2018-07-02 2022-05-03 Hewlett-Packard Development Company, L.P. Guide element for paper alignment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512501A (en) * 2011-03-30 2014-05-22 シーメンス アクチエンゲゼルシヤフト Method for operating once-through boiler and boiler configured to carry out this method
US9194577B2 (en) 2011-03-30 2015-11-24 Siemens Aktiengesellschaft Method for operating a once-through steam generator and steam generator designed for carrying out the method
US11323585B2 (en) 2018-07-02 2022-05-03 Hewlett-Packard Development Company, L.P. Guide element for paper alignment

Also Published As

Publication number Publication date
JPS5565803A (en) 1980-05-17

Similar Documents

Publication Publication Date Title
US4164849A (en) Method and apparatus for thermal power generation
CA2718367C (en) Direct heating organic ranking cycle
US6041588A (en) Gas and steam turbine system and operating method
US6250258B1 (en) Method for starting up a once-through heat recovery steam generator and apparatus for carrying out the method
EP2698507B1 (en) System and method for temperature control of reheated steam
BR0209712B1 (en) device for cooling of a gas turbine cooling agent.
US3175953A (en) Steam-cooled nuclear reactor power plant
US4487166A (en) Start-up system for once-through boilers
WO2020110473A1 (en) Boiler system, power generation plant, and boiler system operation method
US3807364A (en) Mixing header
JPH03221702A (en) Duplex type heat exchanger for waste heat recovery
JPS624604B2 (en)
CN111486442A (en) Boiler water spray temperature reduction device of thermal power generating unit
US3313111A (en) Startup system for a once through steam generator including a startup balancing heatexchanger
JP2010151345A (en) Once-through exhaust heat recovery boiler
JP2007183068A (en) Once-through exhaust heat recovery boiler
US6152085A (en) Method for operating a boiler with forced circulation and boiler for its implementation
US3180798A (en) Vapor cooled nuclear reactor
JPS629801B2 (en)
JP4842071B2 (en) Operation method of once-through exhaust heat recovery boiler and operation method of power generation equipment
JP2791076B2 (en) Auxiliary steam supply device
JPH03117801A (en) Exhaust heat recovery boiler
JP2002371807A (en) Turbine equipment and steam converting device
JPH05209503A (en) Compound generating plant having steam drum
JPS6042842B2 (en) thermal power generation device