JPS6245698B2 - - Google Patents

Info

Publication number
JPS6245698B2
JPS6245698B2 JP58027201A JP2720183A JPS6245698B2 JP S6245698 B2 JPS6245698 B2 JP S6245698B2 JP 58027201 A JP58027201 A JP 58027201A JP 2720183 A JP2720183 A JP 2720183A JP S6245698 B2 JPS6245698 B2 JP S6245698B2
Authority
JP
Japan
Prior art keywords
dielectric layer
sample
electrode
electrostatic chuck
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58027201A
Other languages
Japanese (ja)
Other versions
JPS59152636A (en
Inventor
Tsutomu Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2720183A priority Critical patent/JPS59152636A/en
Publication of JPS59152636A publication Critical patent/JPS59152636A/en
Publication of JPS6245698B2 publication Critical patent/JPS6245698B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、導電材料や半導体材料等からなる試
料を加工或いは検査するにあたつて、これらの試
料を電気的に固定保持する静電チヤツク装置の製
造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an electrostatic chuck device for electrically fixing and holding samples made of conductive materials, semiconductor materials, etc. when processing or inspecting these samples. Relating to a manufacturing method.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体ウエーハを加工或いは検査する工程にお
いては、ウエーハを加工機や検査機の所定部位に
固定保持することが必要となる。特に、ウエーハ
上に微細なパターンを描画し多数のトランジスタ
を形成する集積回路の製作においては、ウエーハ
を平坦な面に確実に固定することが必要である。
In the process of processing or inspecting a semiconductor wafer, it is necessary to securely hold the wafer at a predetermined location of a processing machine or an inspection machine. Particularly, in the production of integrated circuits in which a fine pattern is drawn on a wafer to form a large number of transistors, it is necessary to securely fix the wafer to a flat surface.

従来、このような場合の保持手段として機械
式、真空式(流体の圧力差を利用したもの)およ
び電気式のチヤツクが用いられている。これらの
チヤツクの中で電気式のものは、試料の平坦度を
良くして固定することができ、かつ取扱いが簡単
であるため半導体製造分野において特に有用であ
る。
Conventionally, mechanical, vacuum (using fluid pressure differences), and electric chucks have been used as holding means in such cases. Among these chucks, electric chucks are particularly useful in the field of semiconductor manufacturing because they can fix the sample with good flatness and are easy to handle.

電気式チヤツク、すなわち電気的に試料を保持
する静電チヤツク装置は、2つの互いに反対に荷
電されたコンデンサ板の吸引力を利用するもの
で、一般に第1図に示す如く電極1、誘電層2、
直流電源3および導電性(半導体も含む)の試料
4から構成される。なお、第1図中5は試料4と
の導通をとるための接点を示している。このよう
なチヤツク板における試料の吸着力Fは電極と試
料との間の誘電層に大きく影響され、一般に次式
で示される。
Electric chucks, ie, electrostatic chuck devices that electrically hold a sample, utilize the attractive force of two oppositely charged capacitor plates, generally consisting of an electrode 1 and a dielectric layer 2, as shown in FIG. ,
It consists of a DC power source 3 and a conductive (including semiconductor) sample 4. Note that 5 in FIG. 1 indicates a contact point for establishing electrical continuity with the sample 4. The adsorption force F of a sample on such a chuck plate is greatly influenced by the dielectric layer between the electrode and the sample, and is generally expressed by the following equation.

F=1/2εp・εs・S(V/t)〔N〕………(1
) ただし、εpは真空誘電率、εsは比誘電率、S
は面積、Vは電圧、tは誘電層の厚さである。上
記第1式から判るように誘電層の厚さtが薄い
程、さらに誘電層の比誘電率εsが大きい程低電
圧で使用することが可能である。また、誘電層に
は試料が繰り返し固定されるため、耐摩耗性およ
び耐圧性が要求される。
F=1/2ε p・ε s・S (V/t) 2 [N]……(1
) However, ε p is the vacuum permittivity, ε s is the relative permittivity, and S
is the area, V is the voltage, and t is the thickness of the dielectric layer. As can be seen from the first equation above, the thinner the thickness t of the dielectric layer and the larger the dielectric constant ε s of the dielectric layer, the lower the voltage can be used. Furthermore, since samples are repeatedly fixed to the dielectric layer, wear resistance and pressure resistance are required.

公知の英国特許第144321号では、静電チヤツク
板としてマイカ、ポリエステル或いはチタン酸バ
リウムで作られた誘電層が示されているが、これ
らの材料は電極に付着させるために接着剤を使用
しなければならず、このため誘電層表面の滑らか
さが接着剤によつて大きく失われると云う欠点が
ある。
Known British Patent No. 144321 shows dielectric layers made of mica, polyester or barium titanate as electrostatic chuck plates, but these materials require the use of adhesives to adhere to the electrodes. However, this has the disadvantage that the smoothness of the surface of the dielectric layer is greatly reduced by the adhesive.

また、公知の日本特許、特開昭55−145351号公
報では、誘電層材料が電極材料の酸化物、特に陽
極酸化物で構成されていることが特徴となつてい
るが、この場合誘電層の厚さを500〔Å〕以下と
すると試料の繰り返し固定、製作時および使用時
の取り扱いによつて簡単に傷が入つてしまい、誘
電層の絶縁不良を招く。酸化膜誘電層を厚くする
ことによつてこれらのことを防止できるとして
も、酸化過程で表面層の粗さは悪化し、結果的に
試料との真実接触表面積が極端に減少する。すな
わち、前記第1式で示した面積Sが非常に小さく
なり、吸着力が低下し、時には加工や検査に必要
な保持力を発生しないこともある。さらに、ポー
ラスな部分の誘電率が略1となり、誘電層全体の
比誘電率も減少し、吸着力が目標より大幅に低下
する等の問題があつた。
Furthermore, a well-known Japanese patent, JP-A-55-145351, is characterized in that the dielectric layer material is composed of an oxide of an electrode material, particularly an anodic oxide; If the thickness is less than 500 Å, it will be easily scratched by repeated fixing of the sample and handling during manufacturing and use, resulting in poor insulation of the dielectric layer. Even if these problems can be prevented by increasing the thickness of the oxide dielectric layer, the roughness of the surface layer deteriorates during the oxidation process, resulting in an extreme reduction in the actual contact surface area with the sample. That is, the area S shown in the first equation becomes very small, the suction force decreases, and sometimes the holding force necessary for processing and inspection may not be generated. Further, the dielectric constant of the porous portion was approximately 1, and the relative dielectric constant of the entire dielectric layer was also reduced, causing problems such as the attraction force being significantly lower than the target.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、電極材料と誘電層材料とを特
に一致させることなく高い比誘電率を有する誘電
層材料を自由に選択することができ、吸着力、機
構的強度および耐摩耗性の向上をはかり得、かつ
誘電層表面の平坦度を十分高くすることが可能な
静電チヤツク装置の製造方法を提供することにあ
る。
The purpose of the present invention is to enable the freedom to select a dielectric layer material having a high relative permittivity without having to specifically match the electrode material and the dielectric layer material, thereby improving adsorption force, mechanical strength, and wear resistance. It is an object of the present invention to provide a method for manufacturing an electrostatic chuck device that is measurable and that can sufficiently increase the flatness of the surface of a dielectric layer.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、誘電層を溶射により形成し、
その表面部をプラスチツクを含浸させて平坦化処
理を施すことにある。誘電層材料としてアルミナ
(Al2O3)、酸化チタン(TiO2)およびチタン酸バ
リウム(BaTiO3)等の無機材料或いはこれらの材
料を混合したものを使用することによつて、十分
に高い比誘電率を持つた誘電層を形成することが
できる。さらに、数種の誘電材料を混合して溶射
することにより、融点を下げ生産性および加工性
の良い誘電層の形成が可能である。また、溶射は
物理的に固定されているが、その固定力は十分に
強く、表面の平坦度を増すために行う研削やラツ
ピング等の機械加工に対しても十分耐え得る固定
力を持つている。また、電極を溶射或いは蒸着で
形成することによつて、基板との被着力が十分大
きな状態で薄い電極面を平坦度良く形成すること
が可能である。
The gist of the present invention is to form a dielectric layer by thermal spraying,
The purpose is to impregnate the surface with plastic and flatten it. A sufficiently high ratio can be achieved by using inorganic materials such as alumina (Al 2 O 3 ), titanium oxide (TiO 2 ), and barium titanate (BaTiO 3 ) or a mixture of these materials as the dielectric layer material. A dielectric layer having a dielectric constant can be formed. Furthermore, by thermal spraying a mixture of several types of dielectric materials, it is possible to lower the melting point and form a dielectric layer with good productivity and workability. In addition, thermal spraying is physically fixed, but its fixing force is strong enough to withstand mechanical processing such as grinding and lapping to increase the flatness of the surface. . Furthermore, by forming the electrode by thermal spraying or vapor deposition, it is possible to form a thin electrode surface with good flatness while maintaining a sufficiently strong adhesion to the substrate.

本発明はこのような点に着目し、表面平坦な基
板上に電極を被着し、その上面を誘電層で被覆し
てなり、誘電層上に配置される導電性若しくは半
導体試料を電気的に固定保持する静電チヤツク装
置を製造するに当り、誘電層を溶射により形成
し、その表面部にプラスチツクを含浸させた後、
これに平坦化加工を施すようにしたものである。
The present invention focuses on these points, and consists of depositing an electrode on a substrate with a flat surface, covering the upper surface with a dielectric layer, and electrically connecting a conductive or semiconductor sample placed on the dielectric layer. When manufacturing an electrostatic chuck device to be fixed and held, a dielectric layer is formed by thermal spraying, and after impregnating the surface with plastic,
This is then subjected to a flattening process.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電極材料の酸化で誘電層を形
成する場合と異なり、誘電材料を自由に選択する
ことが可能であり、誘電層の比誘電率を十分に大
きくすることができる。また、接着剤を使用する
必要もなく長期の使用でも劣化することがない。
さらに、溶射する材料の選択により誘電層の機械
的強度および耐摩耗性を十分大きくすることがで
きる。すなわち、吸着力、機械的強度および耐摩
耗性の向上をはかり得、かつ誘電層表面の平坦度
を十分高くすることができる。また、基板材料と
溶射材料との選択で各材料の熱膨張係数を一致さ
せることにより、熱変形によるクラツクの発生や
平坦度の悪化を未然に防止することができる。
According to the present invention, unlike the case where a dielectric layer is formed by oxidizing an electrode material, it is possible to freely select a dielectric material, and the dielectric constant of the dielectric layer can be made sufficiently large. Furthermore, there is no need to use adhesives, and there is no deterioration even after long-term use.
Furthermore, the mechanical strength and wear resistance of the dielectric layer can be sufficiently increased by selecting the material to be thermally sprayed. That is, the adsorption force, mechanical strength, and wear resistance can be improved, and the flatness of the surface of the dielectric layer can be made sufficiently high. Further, by selecting the substrate material and the thermal spraying material so that the coefficients of thermal expansion of each material match, it is possible to prevent the occurrence of cracks and deterioration of flatness due to thermal deformation.

また本発明によれば、溶射により形成された多
孔質の誘電層にプラスチツクを含浸させ、その表
面に平坦化加工を施すことにより、強い吸着力を
発揮する良好な平坦面を容易に得ることができ
る。更にこのプラスチツクの含浸により誘電層の
比誘電率の増大が図られる。
Further, according to the present invention, by impregnating plastic into a porous dielectric layer formed by thermal spraying and flattening the surface, it is possible to easily obtain a good flat surface that exhibits strong adsorption force. can. Furthermore, this plastic impregnation increases the dielectric constant of the dielectric layer.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の一実施例の概略構成を示す平
面図、第3図aは第2図の矢視A−A断面図、第
3図bは第2図の矢視B−B断面図である。図中
11は金属製の基板であり、この基板11の上面
は平坦に加工され、基板11上には絶縁層12
が、例えばアルミナの溶射により形成されてい
る。絶縁層12上には、アルミニウムの蒸着によ
り2つの電極13a,13bがそれぞれ形成され
ている。電極13a,13bは半円形状の薄膜か
らなるもので相互に線対称に配置されている。
Fig. 2 is a plan view showing a schematic configuration of an embodiment of the present invention, Fig. 3a is a sectional view taken along arrow A-A in Fig. 2, and Fig. 3b is a sectional view taken along arrow BB in Fig. 2. It is a diagram. In the figure, reference numeral 11 denotes a metal substrate.The upper surface of this substrate 11 is processed to be flat, and an insulating layer 12 is placed on the substrate 11.
is formed, for example, by thermal spraying of alumina. Two electrodes 13a and 13b are formed on the insulating layer 12 by aluminum vapor deposition. The electrodes 13a and 13b are made of semicircular thin films and are arranged line-symmetrically with respect to each other.

電極13a,13bおよび絶縁層12上には、
アルミナを溶射してなる誘電層14が形成されて
いる。ここで溶射とは、溶射材料を熱溶融したも
のを吹き付けることを云う。誘電層14には、エ
ポキシ樹脂や弗素樹脂等の合成若しくは半合成さ
れた高分子材料を主成分とするプラスチツク15
が含浸されている。そして、プラスチツク15が
含浸された誘電層14の表面は研摩、ラツピング
およびバフ等によつて平坦化加工されている。し
かして、誘電層14の上面に半導体ウエーハ等の
試料16が載置され、前記電極13a,13b間
に直流電源17が接続されるものとなつている。
On the electrodes 13a, 13b and the insulating layer 12,
A dielectric layer 14 is formed by spraying alumina. Thermal spraying here refers to spraying a thermally molten material. The dielectric layer 14 is made of plastic 15 whose main component is a synthetic or semi-synthetic polymeric material such as epoxy resin or fluororesin.
is impregnated. The surface of the dielectric layer 14 impregnated with the plastic 15 is planarized by polishing, lapping, buffing, or the like. A sample 16 such as a semiconductor wafer is placed on the upper surface of the dielectric layer 14, and a DC power source 17 is connected between the electrodes 13a and 13b.

このような構成であれば、電極13aから上方
向に出た電界は試料16に入り、試料16から下
方向に出た電界は電極13bに入ることになり、
これにより試料16を電極13a,13b側に吸
引でき、試料16を誘電層14上に吸着せしめる
ことができる。そしてこの場合、誘電層14をア
ルミナの溶射によつて形成しているので、誘電層
14の比誘電率を自由に選択することができ、誘
電層14の機械的強度および耐摩耗性の向上をは
かり得る。
With such a configuration, the electric field emitted upward from the electrode 13a will enter the sample 16, and the electric field emitted downward from the sample 16 will enter the electrode 13b.
Thereby, the sample 16 can be attracted to the electrodes 13a and 13b, and the sample 16 can be attracted onto the dielectric layer 14. In this case, since the dielectric layer 14 is formed by spraying alumina, the dielectric constant of the dielectric layer 14 can be freely selected, and the mechanical strength and wear resistance of the dielectric layer 14 can be improved. It can be measured.

また、試料16と電源17との導通をとる必要
がないことから次のような利点が得られる。すな
わち、半導体製造プロセスでのウエーハ(試料)
は、工程の途中でウエーハ全面に酸化膜や窒化膜
等の絶縁膜が形成される。このようなウエーハを
静電チヤツクにより吸着する場合には、ウエーハ
と電源との導通をとるため、上記絶縁膜を例えば
高電圧で破壊或いは削り落とす等して絶縁膜の一
部を取り除く必要がある。このため、工程の複雑
化を招く。また、高電圧による絶縁膜の破壊の際
には、絶縁膜やレジスト等が飛び散つてごみとな
り、ウエーハ表面を汚す等の問題が生じる。しか
るに、本装置では一対の電極13a,13b間に
電圧を印加することによつて、試料との導通をと
ることなしに試料を誘電層上に吸着することがで
きる。つまり、試料16と電源17との導通をと
る必要がないことから、半導体ウエーハ表面に形
成された絶縁膜を取り除く等の面倒な工程が不要
となる。
Further, since there is no need to establish continuity between the sample 16 and the power source 17, the following advantages can be obtained. In other words, wafers (sample) in the semiconductor manufacturing process
During the process, an insulating film such as an oxide film or a nitride film is formed over the entire surface of the wafer. When such a wafer is to be attracted by an electrostatic chuck, it is necessary to remove a portion of the insulating film by, for example, destroying or scraping it off with a high voltage in order to establish continuity between the wafer and the power supply. . Therefore, the process becomes complicated. Further, when the insulating film is destroyed by high voltage, the insulating film, resist, etc. are scattered and become dust, causing problems such as contaminating the wafer surface. However, in this device, by applying a voltage between the pair of electrodes 13a and 13b, the sample can be adsorbed onto the dielectric layer without establishing electrical continuity with the sample. That is, since there is no need to establish electrical continuity between the sample 16 and the power source 17, there is no need for troublesome steps such as removing an insulating film formed on the surface of the semiconductor wafer.

また、本実施例のように誘電層14に前記プラ
スチツク15を含浸させることによつて、次のよ
うな効果が得られる。すなわち、溶射によつて形
成された誘電層14は完全に気泡をなくすことが
できず、多孔質層となる。このため、前述したよ
うに吸着力が低下するが、上記プラスチツク15
の含浸により多孔質部分を埋め比誘電率を増すこ
とができる。通常、チヤツク板の平坦度および表
面粗さを良くするために研削およびラツピング等
により加工を行うが、多孔質の場合表面粗さはあ
る程度しか良くならない。これに対し、プラスチ
ツク15を含浸させた場合、非常に良い表面粗さ
を得ることができる。さらに、チヤツク板を真空
中で使用する場合、多孔質内の空気やガスをなか
なか放出できず真空度が上がらないことがある
が、プラスチツク15の含浸により(この場合、
数ミクロンの空洞に流入するようプラスチツク1
5に適当な粘度、流動性を持たせる。含浸の割合
は誘電層14の全体でも表面層のみでも良い。)、
ガス放出を少なくすることができる。
Further, by impregnating the dielectric layer 14 with the plastic 15 as in this embodiment, the following effects can be obtained. That is, the dielectric layer 14 formed by thermal spraying cannot completely eliminate bubbles and becomes a porous layer. For this reason, as mentioned above, the adsorption force decreases, but the plastic 15
The dielectric constant can be increased by impregnating the porous portions. Normally, processing such as grinding and lapping is performed to improve the flatness and surface roughness of the chuck plate, but in the case of porous materials, the surface roughness can only be improved to a certain extent. On the other hand, when the plastic 15 is impregnated, a very good surface roughness can be obtained. Furthermore, when the chuck plate is used in a vacuum, it may be difficult to release the air or gas inside the pores and the degree of vacuum may not increase.
plastic 1 so that it flows into a cavity of several microns.
5 to have appropriate viscosity and fluidity. The ratio of impregnation may be the entire dielectric layer 14 or only the surface layer. ),
Gas release can be reduced.

なお、本発明は上述した実施例に限定されるも
のではない。例えば、前記溶射する誘電層材料と
しては、アルミナに限らず酸化チタン、チタン酸
バリウム或いはセラミツクスの中で溶射可能なも
のを適当に選んで使用すればよい。さらに、前記
プラスチツクは、エポキシ樹脂や弗素樹脂等の高
分子材料に限るものではなく、その他のプラスチ
ツク類を種々目的に合わせて使用することができ
る。さらに、前記基板としてガラス等の絶縁基板
を用いる場合、前記絶縁層を設けなくてもよい。
Note that the present invention is not limited to the embodiments described above. For example, the material for the dielectric layer to be thermally sprayed is not limited to alumina, but may be appropriately selected from titanium oxide, barium titanate, or ceramics that can be thermally sprayed. Further, the plastic is not limited to polymer materials such as epoxy resin and fluororesin, and other plastics can be used depending on various purposes. Furthermore, when an insulating substrate such as glass is used as the substrate, the insulating layer may not be provided.

また、前記電極の数は2つに限るものではな
く、1個或いは2n(nは自然数)個の範囲で適
宜定めればよい。ここで、電極を1個とする場
合、電極と試料との間に電圧を印加するために試
料表面の絶縁膜を取り除く等の工程が必要となる
が、この場合であつても前述した本発明の目的は
十分達成される。さらに、電極間或いは電極と試
料との間に印加する電圧は一定電圧に限るもので
はなく、適当な周波数で変化する電圧であつても
よい。また、電極の形成手段として蒸着の代りに
溶射を用いることも可能である。その他、本発明
の要旨を逸脱しない範囲で、種々変形して実施す
ることができる。
Further, the number of the electrodes is not limited to two, and may be appropriately determined within the range of one or 2n (n is a natural number). Here, when using only one electrode, a process such as removing an insulating film on the surface of the sample is required in order to apply a voltage between the electrode and the sample, but even in this case, the present invention described above The purpose of is fully achieved. Furthermore, the voltage applied between the electrodes or between the electrode and the sample is not limited to a constant voltage, but may be a voltage that changes at an appropriate frequency. Moreover, it is also possible to use thermal spraying instead of vapor deposition as a means for forming the electrodes. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の静電チヤツク装置の概略構成を
示す断面図、第2図は本発明の一実施例の概略構
成を示す平面図、第3図aは第2図の矢視A−A
断面図、第3図bは第2図の矢視B−B断面図で
ある。 11……基板、12……絶縁層、13a,13
b……電極、14……誘電層、15……プラスチ
ツク、16……試料、17……電源。
FIG. 1 is a sectional view showing a schematic configuration of a conventional electrostatic chuck device, FIG. 2 is a plan view showing a schematic configuration of an embodiment of the present invention, and FIG. 3a is a view taken along arrow A-A in FIG.
The cross-sectional view, FIG. 3b, is a cross-sectional view taken along arrow B-B in FIG. 11...Substrate, 12...Insulating layer, 13a, 13
b...electrode, 14...dielectric layer, 15...plastic, 16...sample, 17...power supply.

Claims (1)

【特許請求の範囲】 1 表面平坦な基板上に電極を被着する工程と、
前記電極を覆うように溶射により誘電層を形成す
る工程と、前記誘電層表面部にプラスチツクを含
浸させる工程と、前記プラスチツクを含浸させた
誘電層表面部に平坦化加工を施す工程とを有する
ことを特徴とする静電チヤツク装置の製造方法。 2 前記電極として、少なくとも2つの電極膜を
形成することを特徴とする特許請求の範囲第1項
記載の静電チヤツク装置の製造方法。 3 前記基板は、絶縁物からなるものであること
を特徴とする特許請求の範囲第1項又は第2項記
載の静電チヤツク装置の製造方法。 4 前記基板は、表面平坦な金属板上に絶縁層を
溶射或いは蒸着してなるものであることを特徴と
する特許請求の範囲第1項記載又は第2項の静電
チヤツク装置の製造方法。
[Claims] 1. A step of depositing an electrode on a substrate with a flat surface;
The method includes the steps of: forming a dielectric layer by thermal spraying so as to cover the electrode; impregnating the surface of the dielectric layer with plastic; and flattening the surface of the dielectric layer impregnated with the plastic. A method of manufacturing an electrostatic chuck device characterized by: 2. The method of manufacturing an electrostatic chuck device according to claim 1, characterized in that at least two electrode films are formed as the electrodes. 3. The method of manufacturing an electrostatic chuck device according to claim 1 or 2, wherein the substrate is made of an insulator. 4. The method of manufacturing an electrostatic chuck device according to claim 1 or 2, wherein the substrate is formed by thermally spraying or vapor depositing an insulating layer on a metal plate with a flat surface.
JP2720183A 1983-02-21 1983-02-21 Static chucking device Granted JPS59152636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2720183A JPS59152636A (en) 1983-02-21 1983-02-21 Static chucking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2720183A JPS59152636A (en) 1983-02-21 1983-02-21 Static chucking device

Publications (2)

Publication Number Publication Date
JPS59152636A JPS59152636A (en) 1984-08-31
JPS6245698B2 true JPS6245698B2 (en) 1987-09-28

Family

ID=12214475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2720183A Granted JPS59152636A (en) 1983-02-21 1983-02-21 Static chucking device

Country Status (1)

Country Link
JP (1) JPS59152636A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286248A (en) * 1986-06-05 1987-12-12 Toto Ltd Electrostatic chuck plate and manufacture thereof
JPH0727961B2 (en) * 1986-06-05 1995-03-29 東陶機器株式会社 Method of manufacturing electrostatic chuck plate
JP2521471B2 (en) * 1987-05-14 1996-08-07 富士通株式会社 Electrostatic suction device
EP0339903B1 (en) * 1988-04-26 1993-10-06 Toto Ltd. Method of making dielectric ceramics for electrostatic chucks
JP2600558Y2 (en) * 1991-10-02 1999-10-12 住友金属工業株式会社 Electrostatic chuck
KR100463782B1 (en) * 1995-09-20 2005-04-28 가부시끼가이샤 히다치 세이사꾸쇼 Electrostatic adsorption electrode and its manufacturing method
JP4268450B2 (en) * 2003-05-23 2009-05-27 キヤノン株式会社 Large glass substrate adsorption device for display
EP3846334A4 (en) * 2019-09-11 2021-12-08 Creative Technology Corporation Attachment/detachment device
JP7204009B2 (en) 2019-12-13 2023-01-13 三井化学株式会社 Pellicle demounting method and pellicle demounting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148356A (en) * 1981-03-09 1982-09-13 Hitachi Ltd Sample holding device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148356A (en) * 1981-03-09 1982-09-13 Hitachi Ltd Sample holding device

Also Published As

Publication number Publication date
JPS59152636A (en) 1984-08-31

Similar Documents

Publication Publication Date Title
JPS6059104B2 (en) electrostatic chuck board
US4724510A (en) Electrostatic wafer clamp
KR20020019030A (en) Electrostatic chuck and treating device
IL123843A (en) Electrostatic clamping method and apparatus for dielectric workpieces in vacuum processors
JPS6245698B2 (en)
JPH0434953A (en) Electrostatic chucking plate
JPH0760849B2 (en) Electrostatic chuck plate
KR20020008791A (en) Plastic film electrostatic adsorption apparatus and electrostatic adsorption method
JPH056933A (en) Electrostatic chuck made of ceramic
JP2501504B2 (en) Electrostatic chuck
JPH0152899B2 (en)
KR20050026385A (en) Improved platen for electrostatic wafer clamping apparatus
JPS6114660B2 (en)
JPH0255175B2 (en)
JP2851766B2 (en) Electrostatic chuck
KR100706021B1 (en) Method for manufacturing esc
JP2600558Y2 (en) Electrostatic chuck
JPS62286247A (en) Electrostatic chuck plate and manufacture thereof
JPH06198533A (en) Electrostatic chuck
JPS61260949A (en) Electrostatic chuck plate
JPH11260899A (en) Electrostatic chuck
JPH11251419A (en) Electrostatic chuck for holding substrate and substrate holding method therefor
KR20060135973A (en) Method for manufacturing esc
JPH09193010A (en) Semiconductor manufacturing device
JPH05283513A (en) Sample holding device