JPH0727961B2 - Method of manufacturing electrostatic chuck plate - Google Patents

Method of manufacturing electrostatic chuck plate

Info

Publication number
JPH0727961B2
JPH0727961B2 JP61130507A JP13050786A JPH0727961B2 JP H0727961 B2 JPH0727961 B2 JP H0727961B2 JP 61130507 A JP61130507 A JP 61130507A JP 13050786 A JP13050786 A JP 13050786A JP H0727961 B2 JPH0727961 B2 JP H0727961B2
Authority
JP
Japan
Prior art keywords
base material
dielectric layer
chuck plate
electrostatic chuck
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61130507A
Other languages
Japanese (ja)
Other versions
JPS62286247A (en
Inventor
武利 村上
英史 藤本
安史 和田
Original Assignee
東陶機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東陶機器株式会社 filed Critical 東陶機器株式会社
Priority to JP61130507A priority Critical patent/JPH0727961B2/en
Publication of JPS62286247A publication Critical patent/JPS62286247A/en
Publication of JPH0727961B2 publication Critical patent/JPH0727961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は導電性材料あるいは半電導性材料からなる試料
を電気的に吸着固定する静電チャック板の製造方法に関
する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing an electrostatic chuck plate for electrically attracting and fixing a sample made of a conductive material or a semiconductive material.

(従来の技術) LSI等の大集積回路チップはシリコンウエーハ等の半導
体ウエーハにパターンニング等の各種微細加工を施すこ
とで製造される。そしてこれら微細加工を行なうにあた
ってはウエーハを平坦な面に確実に固定することが必要
となり、このため従来から機械式、吸引式及び電気式の
チャック板が利用されており、特に静電的にウエーハを
吸着固定する静電チャック板はウエーハの平坦度を維持
しつつ固定できるため広く用いられている。
(Prior Art) Large integrated circuit chips such as LSIs are manufactured by subjecting semiconductor wafers such as silicon wafers to various fine processing such as patterning. When performing these microfabrications, it is necessary to securely fix the wafer on a flat surface. Therefore, mechanical, suction, and electric chuck plates have been conventionally used, and particularly electrostatically The electrostatic chuck plate that attracts and fixes the wafer is widely used because it can be fixed while maintaining the flatness of the wafer.

かかる静電チャック板としては特公昭60−59104号ある
いは特公昭61−4611号に開示される構造となっている。
Such an electrostatic chuck plate has a structure disclosed in JP-B-60-59104 or JP-B-61-4611.

特公昭60−59104号に開示される静電チャック板は第5
図に示すように、板状の電極(100)表面にアルミナ(A
l2O3)を溶射して誘電層(101)を形成し、この誘電層
(101)上に載置したウエーハ等の試料(102)に他方の
電極(103)を接触せしめるようにしたものであり、ま
た特公昭61−4611号に開示される静電チャック板は第6
図に示すように、複数の板状電極(100)を絶縁性誘電
層(101)内に埋設することで、試料(102)に電極(10
3)を接触させなくても吸着できるようにしている。
The electrostatic chuck plate disclosed in Japanese Patent Publication No. 60-59104 is No. 5
As shown in the figure, the alumina (A
A dielectric layer (101) is formed by spraying l 2 O 3 ) and the other electrode (103) is brought into contact with a sample (102) such as a wafer placed on the dielectric layer (101). And the electrostatic chuck plate disclosed in Japanese Patent Publication No. 61-4611 is No. 6
As shown in the figure, by embedding a plurality of plate-shaped electrodes (100) in the insulating dielectric layer (101), the electrodes (10
Adhesion is possible without contacting 3).

(発明が解決しようとする問題点) ところで半導体ウエーハ表面をエッチングする場合等、
数百℃の高温下で加工を行なうことがある。一方、従来
の静電チャック板の電極(100)は比較的厚い金属製板
状をなしているため、室温から数百℃のヒートサイクル
を繰り返すと、電極(100)内部の残留応力等により電
極が次第に変形し、チャック板の平坦度を維持できなく
なる。特に誘電層(101)表面の平坦度は数μ以内に抑
えることが必要とされており、電極(100)の変形は従
来の静電チャック板が抱える大きな問題である。
(Problems to be solved by the invention) By the way, when etching a semiconductor wafer surface,
Processing may be performed at a high temperature of several hundred degrees Celsius. On the other hand, since the electrode (100) of the conventional electrostatic chuck plate has a relatively thick metal plate shape, repeated heat cycles from room temperature to several hundreds of degrees Celsius may cause residual stress inside the electrode (100), etc. Becomes gradually deformed, and the flatness of the chuck plate cannot be maintained. In particular, the flatness of the surface of the dielectric layer (101) is required to be suppressed within several μ, and the deformation of the electrode (100) is a big problem that the conventional electrostatic chuck plate has.

(問題点を解決するための手段) 上記問題点を解決するべく本発明に係る静電チャック板
の製造方法は、セラミックス材料を焼成することで基材
を形成し、この基材の一面に膜状電極を形成した後、基
材を予め1000℃以上に加熱した状態で、前記膜状電極を
覆うように基材の一面にAl2O3を主原料とする絶縁溶射
材を溶射し、この絶縁溶射材にてα型の結晶構造が主体
となった誘電層を形成するようにした。
(Means for Solving Problems) In order to solve the above problems, the method of manufacturing an electrostatic chuck plate according to the present invention forms a base material by firing a ceramic material, and forms a film on one surface of the base material. After forming the strip-shaped electrode, the substrate is preheated to 1000 ° C. or higher, and an insulating spray material mainly composed of Al 2 O 3 is sprayed on one surface of the substrate so as to cover the film electrode. The insulating sprayed material was used to form a dielectric layer mainly composed of an α-type crystal structure.

ここで、前記膜状電極を形成するにあたっては、予め基
材の一面にサンドブラストあるいはエッチング等の表面
処理を施して表面粗度を100〜300メッシュとした状態で
行なうことが好ましい。
Here, when forming the film electrode, it is preferable to perform a surface treatment such as sandblasting or etching on one surface of the base material in advance so that the surface roughness is 100 to 300 mesh.

(作用) 基材を予め1000℃以上に加熱した状態で、Al2O3を主原
料とする絶縁溶射材を溶射すると、基材表面に形成され
る誘電層の構造はα型が主体となり、絶縁抵抗は低下せ
ず誘電吸着力を高めることができる。
(Function) When a base material is heated in advance to 1000 ° C. or higher and an insulating thermal spray material containing Al 2 O 3 as a main material is sprayed, the structure of the dielectric layer formed on the base material surface is mainly α-type, The insulation resistance does not decrease and the dielectric attraction force can be increased.

(実施例) 以下に本発明の実施例を添付図面に基づいて説明する。(Example) Below, the Example of this invention is described based on an accompanying drawing.

第1図は本発明に係る静電チャックの縦断面図、第2図
は第1図のA−A線断面図であり、チャック板は基材
(1)の上面に膜状内部電極(2)を形成し、基材
(1)に形成した孔(3)を介して外部に外部電極
(4)を引き出し、この外部電極(4)を電源(5)に
接続し、また内部電極(2)は絶縁性誘電層(6)にて
覆われ、この誘電層(6)上にウエーハ等の導電性試料
(7)が載置され、この試料(7)に電源(5)に接続
する電極(8)が接触し、更に基材(1)内には冷却水
を通す冷却通路(9)が形成されている。
FIG. 1 is a vertical sectional view of an electrostatic chuck according to the present invention, and FIG. 2 is a sectional view taken along the line AA of FIG. 1, in which a chuck plate has a film-like internal electrode (2) on the upper surface of a substrate (1). ) Is formed, the external electrode (4) is drawn out through the hole (3) formed in the base material (1), the external electrode (4) is connected to the power supply (5), and the internal electrode (2) is also formed. ) Is covered with an insulating dielectric layer (6), a conductive sample (7) such as a wafer is placed on the dielectric layer (6), and an electrode connected to the power source (5) is attached to the sample (7). (8) are in contact with each other, and a cooling passage (9) for passing cooling water is formed in the base material (1).

ここで、前記基材(1)はセラミックス材料からなり、
具体的にはAl2O3等の酸化物、Si3N4,AlN等の窒化物ある
いはSiC等の炭化物を用いる。そして、特に熱伝導率が
高く絶縁性に優れた窒化物または炭化物を用いれば、冷
却通路(9)を設けた場合に誘電層(6)上面の冷却効
率の向上及び熱分布の均一化を図ることができる。
Here, the base material (1) is made of a ceramic material,
Specifically, an oxide such as Al 2 O 3 , a nitride such as Si 3 N 4 or AlN, or a carbide such as SiC is used. When a nitride or a carbide having a high thermal conductivity and an excellent insulating property is used, the cooling efficiency of the upper surface of the dielectric layer (6) is improved and the heat distribution is made uniform when the cooling passage (9) is provided. be able to.

また、冷却通路(9)は基材(1)焼成時にキャスティ
ング(鋳込み)によって同時に形成される。このよう
に、本発明にあっては基材(1)をセラミックにて構成
したため、基材(1)中に直接冷却通路(9)を形成す
ることができ、基材を金属製とした従来のチャック板に
比べ、冷却効果、均熱化及びコンパクト化の点で有利で
ある。
Further, the cooling passage (9) is simultaneously formed by casting when the base material (1) is fired. As described above, in the present invention, since the base material (1) is made of ceramic, the cooling passage (9) can be formed directly in the base material (1), and the base material is made of metal. Is advantageous in terms of cooling effect, soaking, and compactness.

前記内部電極(2)はAg/Pd等からなり、基材(1)表
面にパターン化して形成されている。このようにしてパ
ターン化して形成するにはAg/Pd等の電極材料を含むペ
ーストをスクリーン印刷法によって基材(1)表面にプ
リントした後に焼付けるか、あるいは電極面のエッチン
グ等の厚膜技術を利用して行なう。なお、外部電極
(4)についてはスルーホール技術を利用し、基材
(1)中を貫通して外部にその一部を引き出す。
The internal electrode (2) is made of Ag / Pd or the like, and is formed by patterning on the surface of the base material (1). To form by patterning in this way, a paste containing an electrode material such as Ag / Pd is printed on the surface of the substrate (1) by a screen printing method and then baked, or a thick film technique such as etching of the electrode surface. Using. The external electrode (4) uses a through-hole technique to penetrate the base material (1) and draw a part thereof to the outside.

前記誘電層(6)はセラミックスからなる基材(1)表
面にセラミックス材料をプラズマ溶射等することで形成
される。ここで一般に溶射は、溶射材料よりも被溶射材
(基材)が硬度が小さくないと良好な密着性を持つ溶射
膜(誘電層)を形成しにくい。そこで本実施例にあって
はセラミックスを焼成することで基材(1)を形成した
後、基材(1)表面にサンドブラスト処理あるいはエッ
チング処理を施し、表面を粗くした後にセラミックス溶
射材を溶射するようにしている。なお、第3図は基材
(1)の表面粗さと密着強度との関係を示すグラフであ
り、このグラフから明らかなように、基材(1)の表面
粗度は100〜300メッシュとすることが好ましい。
The dielectric layer (6) is formed by plasma spraying a ceramic material on the surface of the base material (1) made of ceramics. Generally, in thermal spraying, it is difficult to form a thermal sprayed film (dielectric layer) having good adhesion unless the material to be sprayed (base material) has a hardness lower than that of the thermal spray material. Therefore, in this embodiment, after the base material (1) is formed by firing ceramics, the surface of the base material (1) is subjected to sandblasting or etching treatment to roughen the surface and then the ceramic sprayed material is sprayed. I am trying. FIG. 3 is a graph showing the relationship between the surface roughness of the base material (1) and the adhesion strength. As is clear from this graph, the surface roughness of the base material (1) is 100 to 300 mesh. It is preferable.

また誘電層(6)を構成する溶射材としてはAl2O3粉の
みとしてもよいが、Al2O3粉にTiO2粉、ZrO2粉、Si3N4
あるいはSiC粉を混合したものを用いれば、誘電層
(6)の絶縁抵抗及び熱伝導率を高めることができる。
Further, as the thermal spray material constituting the dielectric layer (6), only Al 2 O 3 powder may be used, but Al 2 O 3 powder mixed with TiO 2 powder, ZrO 2 powder, Si 3 N 4 powder or SiC powder If used, the insulation resistance and the thermal conductivity of the dielectric layer (6) can be increased.

即ち、絶縁抵抗(R)は一般に次式で表わされる。That is, the insulation resistance (R) is generally expressed by the following equation.

R=ρVl/S ρ:体積抵抗率 l :絶縁距離 S :絶縁面積 そして、誘電層(6)の面積(S)を例えば78.5cm2
厚さ(l)は50μ(50×10-3mm)程度とし、絶縁抵抗
(R)を1010Ω以上とするには体積抵抗率(ρ)が2
×1014Ω−cm以上でなければならない。ここで溶射材料
としての焼結アルミナの結晶構造はα型であり、その体
積抵抗率(ρ)は1014〜162Ω−cmであるのに対し、
溶射後にあっては結晶構造がγ、η型に近いものとな
り、体積抵抗率(ρ)は1010Ω−cm程度まで低下す
る。
R = ρ V l / S ρ V : Volume resistivity l: Insulation distance S: Insulation area Then, the area (S) of the dielectric layer (6) is, for example, 78.5 cm 2 ,
The thickness (l) is about 50 μ (50 × 10 −3 mm), and the volume resistivity (ρ V ) is 2 to make the insulation resistance (R) 10 10 Ω or more.
× 10 14 Ω-cm or more. Here, the crystal structure of sintered alumina as a thermal spray material is α type, and its volume resistivity (ρ V ) is 10 14 to 16 2 Ω-cm, while
After thermal spraying, the crystal structure becomes close to γ and η type, and the volume resistivity (ρ V ) decreases to about 10 10 Ω-cm.

そこで、溶射材料としてAl2O3粉に対し、Si3N4粉を15重
量%程度混合したものを用いた結果、体積抵抗率
(ρ)が1016Ω−cm台となった。特にチャック板は20
0℃程度の高温下で使用され、かかる高温下では体積抵
抗率(ρV)が1023程度低下することを考慮すれば、
溶射材としてSi3N4粉を混合することは極めて有効であ
る。
Then, as a result of using a mixture of Al 2 O 3 powder and Si 3 N 4 powder in an amount of about 15% by weight as a thermal spray material, the volume resistivity (ρ V ) was in the order of 10 16 Ω-cm. Especially for chuck plate 20
Considering that it is used at a high temperature of about 0 ° C, and the volume resistivity (ρ V ) decreases by about 10 2 to 3 at such a high temperature,
Mixing Si 3 N 4 powder as a thermal spray material is extremely effective.

また、Al2O3粉に対し、SiC粉を加えた場合はAl2O3のみ
熱伝導率に対して熱伝導率が改善される。このことは基
材(1)を前記した冷却通路(9)によって若しくは他
の冷却手段で冷却する場合に冷却効率が向上し、誘電層
(6)上面の均熱化が図れ、試料(7)の加工・品質管
理の面で有効である。
Further, when SiC powder is added to Al 2 O 3 powder, only Al 2 O 3 has improved thermal conductivity with respect to thermal conductivity. This means that the cooling efficiency is improved when the substrate (1) is cooled by the cooling passage (9) described above or by another cooling means, so that the upper surface of the dielectric layer (6) can be uniformly heated, and the sample (7) can be obtained. It is effective in terms of processing and quality control.

更にAl2O3粉に対し、TiO2粉、Si3N4粉、ZrO2粉、あるい
はSiC粉を混合することで、誘電層(6)の耐摩耗性が
向上する。
Furthermore, by mixing TiO 2 powder, Si 3 N 4 powder, ZrO 2 powder, or SiC powder with Al 2 O 3 powder, the wear resistance of the dielectric layer (6) is improved.

また、チャック板の製造方法を改良しても誘電層(6)
の絶縁抵抗(R)を高めることができる。つまり基材
(1)の温度を低温(200℃以下)のままで、基材
(1)表面に溶射を行なって誘電層(6)を形成する
と、誘電層(6)を構成するAl2O3の結晶構造は前記し
た如くγ型に近いものとなり、絶縁抵抗(R)が低下す
るが、基材(1)を1000℃以上例えば1200℃に加熱した
状態で溶射を行なうと、基材(1)表面に形成される誘
電層(6)の構造はα型が主体となり、絶縁抵抗(R)
は低下せず誘電吸着力を高めることができる。
Even if the manufacturing method of the chuck plate is improved, the dielectric layer (6)
The insulation resistance (R) can be increased. That is, when the temperature of the base material (1) is kept low (200 ° C. or lower), the surface of the base material (1) is sprayed to form the dielectric layer (6), and Al 2 O forming the dielectric layer (6) is formed. The crystal structure of 3 becomes close to the γ type as described above, and the insulation resistance (R) is lowered. However, when thermal spraying is carried out while the base material (1) is heated to 1000 ° C. or higher, eg 1200 ° C., the base material ( 1) The structure of the dielectric layer (6) formed on the surface is mainly α type, and the insulation resistance (R)
Can be enhanced without increasing the dielectric attraction force.

また、誘電層(6)を溶射によって形成する場合には誘
電層(6)表面の平滑度を高めるためガラス等の無機含
浸膜を形成するようにしてもよい。
When the dielectric layer (6) is formed by thermal spraying, an inorganic impregnated film such as glass may be formed in order to enhance the smoothness of the surface of the dielectric layer (6).

第4図は別実施例に係る静電チャック板の縦断面図であ
り、この実施例にあっては基材(1)の表面に内部電極
(2)を形成するにあたり、スクリーン印刷法あるいは
エッチング等の厚膜技術によればパターン化できること
を利用して、基材(1)上に複数の内部電極(2),
(2)を形成し、これら内部電極(2),(2)を誘電
層(6)で覆い、試料(7)に電極を接触させずに静電
力で吸着し得るようにしたものである。
FIG. 4 is a vertical cross-sectional view of an electrostatic chuck plate according to another embodiment. In this embodiment, when forming the internal electrodes (2) on the surface of the base material (1), a screen printing method or etching is used. By utilizing the fact that thick film technology such as PATTERN enables patterning, a plurality of internal electrodes (2),
(2) is formed and these internal electrodes (2) and (2) are covered with a dielectric layer (6) so that the sample (7) can be adsorbed by electrostatic force without contacting the electrodes.

また、静電力(F)は一般に次式で表わされる。The electrostatic force (F) is generally expressed by the following equation.

F=(1/2)ε・ε・S(V/d) ε:真空誘電率 ε:比誘電率 S :誘電面積 V :電圧 d :誘電層の厚さ ここで、ε、ε、Sはそれぞれ材質、構造で決ま
り、電圧(V)を高くすることなく静電力(F)を高め
るには誘電層の厚さ(d)を薄くすれば良いのである
が、前述したスクリーン印刷あるいは溶射では薄膜化に
限度がある。そこでCVD(Chemical Vapour Depositio
n)またはPVD(Physical Vapour Deposition)等の薄膜
形成法により、内部電極(2)及び誘電層(6)を形成
してもよい。
F = (1/2) ε O・ ε S・ S (V / d) 2 ε O : Vacuum permittivity ε S : Relative permittivity S: Dielectric area V: Voltage d: Dielectric layer thickness where ε O 2 , ε S , and S are determined by the material and structure, respectively. To increase the electrostatic force (F) without increasing the voltage (V), the thickness (d) of the dielectric layer may be reduced. There is a limit to thinning the film by screen printing or thermal spraying. So CVD (Chemical Vapor Depositio)
The internal electrode (2) and the dielectric layer (6) may be formed by a thin film forming method such as n) or PVD (Physical Vapor Deposition).

具体的には上記CVDまたはPVDによって基材(1)上にTi
C、TiN等を0.5μ以下形成し、これを内部電極(2)と
し、この内部電極(2)の上にAl2O3、Si3N4等の緻密な
絶縁性薄膜を10〜20μ形成し、これを誘電層(6)とす
れば、静電気を大幅に高めることが可能となる。
Specifically, Ti is deposited on the substrate (1) by the above CVD or PVD.
C, TiN, etc. is formed to 0.5 μm or less, and this is used as the internal electrode (2), and a dense insulating thin film of Al 2 O 3 , Si 3 N 4 etc. is formed on this internal electrode (2) in an amount of 10 to 20 μm. However, if this is used as the dielectric layer (6), it is possible to significantly increase static electricity.

(発明の効果) 以上に説明した如く本発明に係る静電チャック板の製造
方法は、セラミックス材料を焼成することで基材を形成
するので、基材中に直接冷却通路を形成することがで
き、冷却効率が向上し、誘電層上面の均熱化が図られ
る。
(Effects of the Invention) As described above, in the method for manufacturing an electrostatic chuck plate according to the present invention, since the base material is formed by firing the ceramic material, the cooling passage can be directly formed in the base material. In addition, the cooling efficiency is improved, and the upper surface of the dielectric layer is uniformly heated.

また、この基材の一面に膜状電極を形成した後、基材を
予め1000℃以上に加熱した状態で、前記膜状電極を覆う
ように基材の一面にAl2O3を主原料とする絶縁溶射材を
溶射するので、基材表面に形成される誘電層の構造はα
型が主体となり、絶縁抵抗は低下せず誘電吸着力を高め
ることができる。
Further, after forming a film electrode on one surface of this base material, Al 2 O 3 is used as a main raw material on one surface of the base material so as to cover the film electrode in a state where the base material is preheated to 1000 ° C. or higher. Since the insulating thermal spray material is sprayed, the structure of the dielectric layer formed on the substrate surface is α
Since the mold is the main component, the dielectric attraction force can be increased without lowering the insulation resistance.

更に、場合によっては、基材表面に誘電層を溶射によっ
て形成するにあたり、予め基材の一面にサンドブラスト
あるいはエッチング等の表面処理を施して表面粗度を10
0〜300メッシュとした状態で行なうようにしたので、誘
電層の密着強度を高めることができる。
Further, in some cases, in forming the dielectric layer on the surface of the base material by thermal spraying, one surface of the base material is previously subjected to surface treatment such as sand blasting or etching to obtain a surface roughness of 10
Since it is performed in the state of 0 to 300 mesh, the adhesion strength of the dielectric layer can be increased.

また、本発明の製造方法で製造された静電チャック板
は、セラミックス基材の表面に膜状電極を形成したの
で、ヒートサイクルの繰り返しによってチャック板が変
形することなく、試料を載置する誘電層表面の平坦度を
数μ以下に維持することができ、長期の使用に耐える。
In addition, since the electrostatic chuck plate manufactured by the manufacturing method of the present invention has the film-shaped electrode formed on the surface of the ceramic substrate, the chuck plate is not deformed by repeated heat cycles, and the dielectric plate on which the sample is mounted is not deformed. The flatness of the layer surface can be maintained at several μ or less, and can withstand long-term use.

また、基材を構成するセラミックスをAlN、SiC等の熱伝
導率の高いものとすれば、冷却効率を高めることがで
き、電極をスクリーン印刷等の厚膜法にて形成すれば電
極のパターン化を容易になすことができ、誘電層を構成
する溶射材としてSi3N4、SiC、TiO2またはZrO2を添加す
れば、静電力、熱伝導率、更には耐摩耗性を向上せしめ
ることができ、また電極及び誘電層をCVD、PVD等にて形
成すれば静電力の向上が図れる等多くの効果を発揮す
る。
Further, if the ceramics constituting the base material is made of AlN, SiC or the like having high thermal conductivity, the cooling efficiency can be increased, and if the electrodes are formed by a thick film method such as screen printing, the electrodes are patterned. If Si 3 N 4 , SiC, TiO 2 or ZrO 2 is added as a thermal spray material forming the dielectric layer, electrostatic force, thermal conductivity, and wear resistance can be improved. If the electrodes and the dielectric layer are formed by CVD, PVD, etc., the electrostatic force can be improved and many other effects can be achieved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る静電チャック板の縦断面図、第2
図は第1図のA−A線断面図、第3図は基材の表面粗さ
と誘電層の密着強度との関係を示すグラフ、第4図は別
実施例に係わる静電チャック板の縦断面図、第5図及び
第6図は従来の静電チャック板の縦断面図である。 尚、図面中、(1)は基材、(2)は内部電極、(5)
は電源、(6)は誘電層、(7)は試料、(9)は冷却
通路である。
FIG. 1 is a vertical sectional view of an electrostatic chuck plate according to the present invention, and FIG.
1 is a sectional view taken along the line AA of FIG. 1, FIG. 3 is a graph showing the relationship between the surface roughness of the base material and the adhesion strength of the dielectric layer, and FIG. 4 is a vertical section of an electrostatic chuck plate according to another embodiment. FIGS. 5 and 6 are vertical sectional views of a conventional electrostatic chuck plate. In the drawings, (1) is a base material, (2) is an internal electrode, and (5)
Is a power source, (6) is a dielectric layer, (7) is a sample, and (9) is a cooling passage.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 和田 安史 神奈川県茅ヶ崎市本村2丁目8番1号 東 陶機器株式会社茅ケ崎工場内 (56)参考文献 特開 昭59−57446(JP,A) 特開 昭60−260136(JP,A) 特開 昭60−197335(JP,A) 特開 昭60−96832(JP,A) 特開 昭59−152636(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasushi Wada 2-8-1, Motomura, Chigasaki-shi, Kanagawa Tochi Kikai Co., Ltd. Chigasaki factory (56) Reference JP-A-59-57446 (JP, A) Kai 60-260136 (JP, A) JP 60-197335 (JP, A) JP 60-96832 (JP, A) JP 59-152636 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】セラミックス材料を焼成することで基材を
形成し、この基材の一面に膜状電極を形成した後、基材
を予め1000℃以上に加熱した状態で、前記膜状電極を覆
うように基材の一面にAl2O3を主原料とする絶縁溶射材
を溶射し、この絶縁溶射材にてα型の結晶構造が主体と
なった誘電層を形成するようにしたことを特徴とする静
電チャック板の製造方法。
1. A base material is formed by firing a ceramic material, and a film electrode is formed on one surface of the base material. Then, the base material is preheated to 1000 ° C. or higher, and the film electrode is formed. An insulating spray material containing Al 2 O 3 as a main raw material was sprayed on one surface of the base material so as to cover it, and the insulating spray material was used to form a dielectric layer mainly composed of an α-type crystal structure. A method of manufacturing a characteristic electrostatic chuck plate.
【請求項2】前記膜状電極を形成するにあたっては、予
め基材の一面にサンドブラストあるいはエッチング等の
表面処理を施して表面粗度を100〜300メッシュとした状
態で行なうようにしたことを特徴とする請求項(1)に
記載の静電チャック板の製造方法。
2. The film-shaped electrode is formed in such a manner that one surface of the substrate is previously subjected to a surface treatment such as sandblasting or etching to have a surface roughness of 100 to 300 mesh. The method for manufacturing an electrostatic chuck plate according to claim 1.
JP61130507A 1986-06-05 1986-06-05 Method of manufacturing electrostatic chuck plate Expired - Fee Related JPH0727961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61130507A JPH0727961B2 (en) 1986-06-05 1986-06-05 Method of manufacturing electrostatic chuck plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61130507A JPH0727961B2 (en) 1986-06-05 1986-06-05 Method of manufacturing electrostatic chuck plate

Publications (2)

Publication Number Publication Date
JPS62286247A JPS62286247A (en) 1987-12-12
JPH0727961B2 true JPH0727961B2 (en) 1995-03-29

Family

ID=15035934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61130507A Expired - Fee Related JPH0727961B2 (en) 1986-06-05 1986-06-05 Method of manufacturing electrostatic chuck plate

Country Status (1)

Country Link
JP (1) JPH0727961B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636583Y2 (en) * 1987-07-07 1994-09-21 住友金属工業株式会社 Electrostatic chuck
DE69130205T2 (en) * 1990-12-25 1999-03-25 Ngk Insulators Ltd Semiconductor wafer heater and method of manufacturing the same
JP2501504B2 (en) * 1990-12-28 1996-05-29 日本碍子株式会社 Electrostatic chuck
JP2836986B2 (en) * 1991-03-26 1998-12-14 日本碍子株式会社 Electrostatic chuck and method of manufacturing the same
JPH0755423B2 (en) * 1991-03-29 1995-06-14 日本碍子株式会社 Wafer holder manufacturing method
JP3447305B2 (en) * 1991-07-30 2003-09-16 京セラ株式会社 Electrostatic chuck
CN116525525A (en) * 2023-06-30 2023-08-01 无锡卓瓷科技有限公司 Silicon carbide electrostatic chuck and manufacturing method thereof
CN117832036A (en) * 2024-03-05 2024-04-05 无锡卓瓷科技有限公司 Hot-melt aluminum electrode layer electrostatic chuck and manufacturing process thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957446A (en) * 1982-09-28 1984-04-03 Kokusai Electric Co Ltd Electrostatic adsorption type substrate holder
JPS59152636A (en) * 1983-02-21 1984-08-31 Toshiba Corp Static chucking device
JPS6096832A (en) * 1983-11-01 1985-05-30 Fukuo Iwabori Manufacture of ignition device of gas lighter
JPS60197335A (en) * 1984-03-14 1985-10-05 Toshiba Corp Electrostatic chuck device
JPS60260136A (en) * 1984-06-06 1985-12-23 Nec Corp Electrostatic bonding method

Also Published As

Publication number Publication date
JPS62286247A (en) 1987-12-12

Similar Documents

Publication Publication Date Title
CN110770891B (en) Electrostatic chuck and method of manufacturing the same
KR101905158B1 (en) Locally heated multi-zone substrate support
US6272002B1 (en) Electrostatic holding apparatus and method of producing the same
KR100978996B1 (en) Process of producing electrostatic chuck
JPH04277648A (en) Electrostatic chuck coated with diamond
US6122159A (en) Electrostatic holding apparatus
US7672111B2 (en) Electrostatic chuck and method for manufacturing same
JPH0746437Y2 (en) Electrostatic chuck
JPH0760849B2 (en) Electrostatic chuck plate
JP2001351966A (en) Suscepter and method for manufacturing the suscepter
JPS6395644A (en) Electrostatic chuck
JPH056433B2 (en)
TW540129B (en) An electrostatic adsorption device
JPH0727961B2 (en) Method of manufacturing electrostatic chuck plate
JP2513995B2 (en) Electrostatic check
JPH07326655A (en) Electrostatic chuck
JP4811790B2 (en) Electrostatic chuck
JPH09223729A (en) Electrostatic chuck
JP3426845B2 (en) Electrostatic chuck
JP2001007189A (en) Electrostatic chuck and its manufacture
JP2001284328A (en) Ceramic part
JP3810341B2 (en) Electrostatic chuck
JPH10107132A (en) Electrostatic chuck
JP2010016304A (en) Corrosion-resistant laminated ceramics member
JP2001077185A (en) Electrostatic chuck and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees