JPS6245614B2 - - Google Patents

Info

Publication number
JPS6245614B2
JPS6245614B2 JP57081761A JP8176182A JPS6245614B2 JP S6245614 B2 JPS6245614 B2 JP S6245614B2 JP 57081761 A JP57081761 A JP 57081761A JP 8176182 A JP8176182 A JP 8176182A JP S6245614 B2 JPS6245614 B2 JP S6245614B2
Authority
JP
Japan
Prior art keywords
reflected
mirror
lens
light
driving mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57081761A
Other languages
Japanese (ja)
Other versions
JPS589228A (en
Inventor
Kyonobu Endo
Hideaki Sato
Yoshinori Sugiura
Kimio Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57081761A priority Critical patent/JPS589228A/en
Publication of JPS589228A publication Critical patent/JPS589228A/en
Publication of JPS6245614B2 publication Critical patent/JPS6245614B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

【発明の詳細な説明】 本発明はビデオ・デイスクの如き高密度信号記
録体に含まれる信号を、光等のビームにより、信
号記録体に対し非接触で再生、復調する信号再生
装置等に用いるのに適した光学系に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is used in a signal reproducing device, etc. that reproduces and demodulates a signal contained in a high-density signal recording medium such as a video disk using a beam of light or the like without contacting the signal recording medium. This invention relates to an optical system suitable for.

既に知られているように、TV信号等を記録し
たビデオ・デイスクは、その信号トラツクピツチ
が数ミクロン程度でありビーム等を用いて非接触
でこの狭い信号トラツクを走査し信号を検出する
方法では、正しい信号を再生復調するために、何
らかの補正手段を設けなければならない。このよ
うな手段を設けた信号再生装置の光学系の従来例
を第1図に示す。ここでレーザ等から発せられた
平行光束1は矩形マスク2を通過し、偏光ビーム
スプリツター3、λ/4板4を通つて駆動ミラー
5で反射され、再生レンズ6の焦点面に矩形マス
ク2の回折像を作る。記録体7は再生レンズの焦
点面におかれ再生レンズ6とキヤツツ・アイ光学
系を構成しており、光束を反射し、かかる反射光
束は再び再生レンズを通つて駆動ミラー5に向
う。駆動ミラー5で反射された光は、入射時と同
方向に反射され再びλ/4板を通り、入射時と偏
光角を90゜変え、偏光ビームスプリツター3によ
り図において右側に反射される。この光束はレン
ズ10により、その焦点面に記録体10が照明さ
れている部分の像を作る。即ち、レンズ10の焦
点面と記録体7とは共役な関係(結像関係にあ
る)にある。
As is already known, video discs that record TV signals, etc., have a signal track pitch of approximately several microns, and a method of detecting signals by scanning this narrow signal track non-contact using a beam or the like is difficult. In order to reproduce and demodulate the correct signal, some kind of correction means must be provided. A conventional example of an optical system of a signal reproducing device provided with such means is shown in FIG. Here, a parallel light beam 1 emitted from a laser or the like passes through a rectangular mask 2, passes through a polarizing beam splitter 3, a λ/4 plate 4, and is reflected by a driving mirror 5, and a rectangular mask 2 is formed on the focal plane of a reproduction lens 6. Create a diffraction image of. The recording medium 7 is placed on the focal plane of the reproducing lens and constitutes a cat's eye optical system together with the reproducing lens 6, and reflects the light beam, and the reflected light beam passes through the reproducing lens again toward the driving mirror 5. The light reflected by the drive mirror 5 is reflected in the same direction as when it was incident, passes through the λ/4 plate again, changes the polarization angle by 90 degrees from the time when it was incident, and is reflected by the polarizing beam splitter 3 to the right in the figure. This light beam forms an image of the illuminated portion of the recording medium 10 on its focal plane by the lens 10. That is, the focal plane of the lens 10 and the recording medium 7 are in a conjugate relationship (in an imaging relationship).

更に、レンズ10を通過した光束をビーム・ス
プリツター11で2分してレンズ10からの距離
がレンズ10の焦点距離に等しい場所にそれぞれ
信号検出器(受光素子)8とトラツキング補正用
信号検出器(受光素子)9a,9bをおく。ここ
で受光素子9a,9bで得られるトラツキング信
号に従つて、駆動ミラー5を駆動させることによ
つて記録体7上の光束の焦点を移動させ、トラツ
キングを行うことができる。第1図で駆動ミラー
を回動させたときの光路を破線で示すと、本例の
ように記録体7と受光素子9a,9bのおかれた
レンズ10の焦点面が結像関係にある場合は、駆
動ミラー5を回転してもレンズ10の焦点面で記
録体7の像が生じる位置は動かない。
Further, the light flux passing through the lens 10 is divided into two by a beam splitter 11, and a signal detector (light receiving element) 8 and a tracking correction signal detector ( (light receiving elements) 9a and 9b are placed. Here, by driving the driving mirror 5 in accordance with the tracking signals obtained by the light receiving elements 9a and 9b, the focal point of the light beam on the recording medium 7 can be moved and tracking can be performed. In FIG. 1, the optical path when the driving mirror is rotated is shown by a broken line. When the recording medium 7 and the focal plane of the lens 10 on which the light receiving elements 9a and 9b are placed are in an imaging relationship as in this example, Even if the drive mirror 5 is rotated, the position where the image of the recording medium 7 is formed on the focal plane of the lens 10 does not change.

一方、別の信号再生装置用光学系として、第1
図のようなレンズ10を用いず、記録体から反射
された平行光束を結像させずに直接受光素子で受
けて、反射光の回折パターン情報を検出すること
によつてトラツキング信号を得るものが考えられ
る。このような系は結像レンズを省略でき、光路
長も短縮できるので、信号再生装置の小型化、低
コスト化に有利である。
On the other hand, as another optical system for a signal reproducing device, the first
A tracking signal is obtained by directly receiving the parallel light beam reflected from the recording medium by a light receiving element without using the lens 10 as shown in the figure, without forming an image, and by detecting the diffraction pattern information of the reflected light. Conceivable. Since such a system can omit the imaging lens and shorten the optical path length, it is advantageous for downsizing and cost reduction of the signal reproducing device.

しかしながら第1図のような従来の光学系を用
いると、記録体7で反射されレンズ6、駆動ミラ
ー5を介して得られる反射光束は、駆動ミラー5
を回転させると破線で示すように平行移動され
る。従つて従来の光学系において反射光束を結像
させずに検出しようとすると、駆動ミラーを回転
させてトラツキングを行う度に反射光束と受光素
子の位置関係がくずれ、正確な信号検出及びトラ
ツキングが行えないという不都合が生じた。
However, when using the conventional optical system as shown in FIG.
When rotated, it is translated in parallel as shown by the dashed line. Therefore, if a conventional optical system attempts to detect the reflected light beam without forming an image, the positional relationship between the reflected light beam and the light-receiving element will be distorted each time the driving mirror is rotated to perform tracking, making it difficult to perform accurate signal detection and tracking. The inconvenience of not having one occurred.

本発明は上記事実に鑑み、光束を走査する際
に、該光束の照射する物体からの反射光束が、走
査による平行移動を起こさない光束走査光学系を
提供することを目的とする。
In view of the above facts, an object of the present invention is to provide a beam scanning optical system in which, when scanning a beam, the reflected beam from an object irradiated with the beam does not undergo parallel movement due to scanning.

本発明は、駆動ミラーと該駆動ミラーによつて
反射された平行光束を被照射物体に集束させる対
物レンズとから成り、前記駆動ミラーを回転駆動
させて前記被照射物体上の集束点を移動させる光
束走査光学系において、前記駆動ミラーの回転中
心を、該駆動ミラーの反射面上で前記対物レンズ
の光軸と一致した位置とし、該回転中心と前記対
物レンズの中心との距離を、前記対物レンズの焦
点距離と等しくとることによつて、前述の目的を
達するものである。
The present invention comprises a driving mirror and an objective lens that focuses the parallel light beam reflected by the driving mirror onto an irradiated object, and rotates the driving mirror to move a focal point on the irradiated object. In the beam scanning optical system, the center of rotation of the driving mirror is set at a position on the reflective surface of the driving mirror that coincides with the optical axis of the objective lens, and the distance between the center of rotation and the center of the objective lens is determined by the distance between the center of rotation and the center of the objective lens. The above objective is achieved by making the focal length equal to the focal length of the lens.

以下図面を用いて本発明を詳細に説明する。 The present invention will be explained in detail below using the drawings.

第2図は本発明を適用することのできる光学系
を示す。第2図において12は被照射物体、13
は対物レンズ、14は駆動ミラー、15はミラー
の回転中心を示す。駆動ミラー14は当初被照射
物体12とほぼ45゜の角度をなす様に置かれてい
る。また20はレンズの中心である。今、ビーム
16はミラー14の回転中心で反射されるものと
する。さらに回転中心15とレンズの円心20の
光軸は一致しているものとする。ビーム16はミ
ラー14で反射された後、レンズの中心を通り被
照射物体12に当る。レンズの中心を通るビーム
は屈折されないのでビーム16は被照射物体12
に垂直に入射する。被照射物体12でビーム16
は反射され、再びレンズ13の中心を通り入射時
と同じ経路をたどる。またビーム16の隣のビー
ム17は、ミラー14で反射された後、レンズ1
3で屈折し被照射物体12により、被照射物体1
2に入射する角度に等しい角度で反射され、再び
レンズ13を通り、レンズ13に入射時に光軸と
なす角と同じ角度をなしてミラー14に向いミラ
ー14で反射され入射時と同じ方向に向いビーム
16に対称な経路をとり、第2図で18として示
したビームとなる。即ち、ビーム16とビーム1
7の距離をdとするとビーム17は被照射物体で
反射された後は2dの平行移動がある。逆にビー
ム18を入射ビームとすると反射後はビーム17
の経路で反射されてくる。即ち、幅2dのビーム
束が入射したものとすると、被照射物体で反射さ
れた後、再びレンズを通つてミラー14に反射さ
れると、入射ビーム束と反射ビーム束とは全く一
致する。このような系をキヤツツ・アイ光学系と
言う。このような系でミラー14をθだけ回転す
ると(ミラーは14′の位置に来る)ビーム16
はミラー14の反射後は光軸と2θの角度を持
つ。ここでθが充分小さければミラーをθ回転さ
せることにより、被照射物体12面上において△
x=2θだけ焦光点を移動させることができ
る。
FIG. 2 shows an optical system to which the present invention can be applied. In Fig. 2, 12 is the irradiated object, 13
14 indicates an objective lens, 14 indicates a driving mirror, and 15 indicates a center of rotation of the mirror. The driving mirror 14 is initially placed at an angle of approximately 45° with the object 12 to be irradiated. Further, 20 is the center of the lens. It is now assumed that the beam 16 is reflected at the rotation center of the mirror 14. Furthermore, it is assumed that the rotation center 15 and the optical axis of the lens center 20 coincide. After being reflected by the mirror 14, the beam 16 passes through the center of the lens and impinges on the illuminated object 12. Since the beam passing through the center of the lens is not refracted, the beam 16 is directed toward the illuminated object 12.
is incident perpendicularly to . Beam 16 at irradiated object 12
is reflected and passes through the center of the lens 13 again, following the same path as when it was incident. Also, the beam 17 next to the beam 16 is reflected by the mirror 14 and then reflected by the lens 1.
3 and is refracted by the irradiated object 12, the irradiated object 1
The light is reflected at an angle equal to the angle at which it enters the lens 13, passes through the lens 13 again, faces the mirror 14 at the same angle as the angle it makes with the optical axis when it enters the lens 13, and is reflected by the mirror 14, facing the same direction as when it entered. It takes a path symmetrical to beam 16, resulting in the beam shown as 18 in FIG. That is, beam 16 and beam 1
When the distance of 7 is d, the beam 17 undergoes a parallel movement of 2d after being reflected by the object to be irradiated. Conversely, if beam 18 is the incident beam, beam 17 will be generated after reflection.
It is reflected along the path of That is, assuming that a beam beam having a width of 2d is incident, when it is reflected by the object to be irradiated and then reflected by the mirror 14 through the lens again, the incident beam beam and the reflected beam beam completely match. Such a system is called a cat's eye optical system. In such a system, when mirror 14 is rotated by θ (mirror comes to position 14'), beam 16
has an angle of 2θ with the optical axis after being reflected by the mirror 14. Here, if θ is small enough, by rotating the mirror by θ, △
The focal point can be moved by x=2θ.

第2図で被照射物体12からの反射光を考える
と、駆動ミラー14をθ回転させた場合は、破線
で示した経路をたどり、ビーム16からDだけ平
行移動したビーム19となつて返つてくる。また
平行移動量Dは簡単な幾何学的考察から、 D≒2(z/−1)△x (1) と求められる。ここでzは図で示したようにレン
ズ13とミラーの回転中心53の距離である。
Considering the reflected light from the irradiated object 12 in FIG. 2, if the drive mirror 14 is rotated by θ, it will follow the path shown by the broken line and return from the beam 16 as a beam 19 translated by D. come. Further, the amount of parallel movement D can be determined from simple geometric considerations as follows: D≒2(z/-1)△x (1). Here, z is the distance between the lens 13 and the rotation center 53 of the mirror, as shown in the figure.

ここで第2図の光学系を信号再生装置に用い、
被照射物体12を記録媒体とし、駆動ミラー14
を回転させてトラツキングを行い、記録媒体から
の反射光を受光素子で受けて検出する場合を考え
ると、前述のような反射光の平行移動は非常に不
都合である。なぜならビーム16の位置に受光素
子を設置すると、トラツキングによつてミラー1
4をθ回転させた場合反射光はビーム19のよう
に受光素子とDの位置ずれを起こし正確な信号検
出が行えないからである。
Here, the optical system shown in Fig. 2 is used as a signal reproducing device,
The irradiated object 12 is used as a recording medium, and the driving mirror 14
Considering the case where tracking is performed by rotating the recording medium and the light receiving element receives and detects the reflected light from the recording medium, the parallel movement of the reflected light as described above is very inconvenient. This is because when the light receiving element is installed at the position of the beam 16, the mirror 1 is
4 is rotated by θ, the reflected light causes a positional shift between the light receiving element and D, as in the case of beam 19, and accurate signal detection cannot be performed.

本発明は第2図において距離zをレンズの焦点
距離に等しくとるものである。本発明におい
て、ビーム16が駆動ミラー14によつて光軸と
2θの角度で反射された場合を考えると、このビ
ームは、zがレンズ13の焦点距離なので、レン
ズ13によつて光軸に平行な方向に偏向される。
即ちビームは被照射物体12に垂直に入射し、入
射した光路と同一の経路をたどつてビーム16の
位置に反射される。
In the present invention, the distance z in FIG. 2 is set equal to the focal length of the lens. In the present invention, considering the case where the beam 16 is reflected by the driving mirror 14 at an angle of 2θ with respect to the optical axis, this beam is reflected by the lens 13 parallel to the optical axis since z is the focal length of the lens 13. deflected in the direction.
That is, the beam is perpendicularly incident on the irradiated object 12 and is reflected at the position of the beam 16 following the same optical path as the incident optical path.

これは前記(1)式からも容易に理解される。即ち
(1)式において、z=と置くことによりDは零と
なり、これは反射ビームの入射ビームに対する平
行移動が起きないことを示している。
This can be easily understood from the above equation (1). That is,
In equation (1), by setting z=, D becomes zero, which indicates that no parallel movement of the reflected beam with respect to the incident beam occurs.

また、前に説明した場合と同様に、ビーム17
はビーム18の位置に、ビーム18はビーム17
の位置に返つてくる。従つて本発明では、光軸が
駆動ミラーの回転中心を通る光束を入射すると、
駆動ミラーによる光束走査にかかわらず、常に入
射光束と反射光束は一致する。
Also, as in the previous case, beam 17
is at the position of beam 18, and beam 18 is at the position of beam 17.
It will return to the position of Therefore, in the present invention, when a light beam whose optical axis passes through the rotation center of the drive mirror is incident,
Regardless of the beam scanning by the driving mirror, the incident beam and the reflected beam always match.

以上説明したように、本発明は従来の光束走査
光学系において、被照射物体からの反射光束が常
に一定の位置に返つてくる等の効果を有し、信号
再生装置等に用いるに適した光束走査光学系であ
る。
As explained above, the present invention has an effect that the reflected light beam from the irradiated object always returns to a fixed position in the conventional light beam scanning optical system, and the present invention has the effect that the light beam reflected from the irradiated object always returns to a fixed position, and the light beam is suitable for use in signal reproducing devices. This is a scanning optical system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の信号再生装置の光学系の一例を
示す断面図、第2図は本発明の光学系を説明する
概略図。 12……被照射物体、13……対物レンズ、1
4……駆動ミラー、15……回転中心、16,1
7,18,19……光ビーム、20……レンズ中
心。
FIG. 1 is a sectional view showing an example of an optical system of a conventional signal reproducing device, and FIG. 2 is a schematic diagram illustrating the optical system of the present invention. 12...Irradiated object, 13...Objective lens, 1
4... Drive mirror, 15... Center of rotation, 16,1
7, 18, 19...Light beam, 20...Lens center.

Claims (1)

【特許請求の範囲】[Claims] 1 光源と、該光源から発した光束を偏向する駆
動ミラーと、該駆動ミラーで偏向された光束を、
光軸に対して直角に配置された光反射性の平面か
ら成る被照射物体の表面に設けられたトラツク上
に集束させる対物レンズと、該被照射物体で反射
された光束を再び前記対物レンズ及び駆動ミラー
を介して受光しトラツキング信号を検出する手段
と、検出されたトラツキング信号に従つて前記駆
動ミラーを回動させて前記被照射物体のトラツク
をトラツキングする手段とから成る光束走査光学
系において、前記駆動ミラーの回転中心は該駆動
ミラーの反射面上で前記対物レンズの光軸と一致
した位置にあり、該回転中心と前記対物レンズの
中心との距離が前記対物レンズの焦点距離に等し
いことを特徴とする光束走査光学系。
1. A light source, a driving mirror that deflects the light beam emitted from the light source, and a light beam deflected by the driving mirror,
an objective lens for focusing a light beam on a track provided on the surface of an object to be irradiated, which is made of a light-reflecting plane arranged at right angles to the optical axis; A beam scanning optical system comprising means for receiving light via a driving mirror and detecting a tracking signal, and means for rotating the driving mirror in accordance with the detected tracking signal to track the track of the irradiated object, The center of rotation of the driving mirror is located at a position on the reflective surface of the driving mirror that coincides with the optical axis of the objective lens, and the distance between the center of rotation and the center of the objective lens is equal to the focal length of the objective lens. A beam scanning optical system featuring:
JP57081761A 1982-05-14 1982-05-14 Optical system for scanning luminous flux Granted JPS589228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57081761A JPS589228A (en) 1982-05-14 1982-05-14 Optical system for scanning luminous flux

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57081761A JPS589228A (en) 1982-05-14 1982-05-14 Optical system for scanning luminous flux

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50057724A Division JPS51132920A (en) 1975-05-14 1975-05-14 Signal regeneration apparatus

Publications (2)

Publication Number Publication Date
JPS589228A JPS589228A (en) 1983-01-19
JPS6245614B2 true JPS6245614B2 (en) 1987-09-28

Family

ID=13755430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57081761A Granted JPS589228A (en) 1982-05-14 1982-05-14 Optical system for scanning luminous flux

Country Status (1)

Country Link
JP (1) JPS589228A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258392A (en) * 1984-05-31 1985-12-20 ブンユ− シユ Mechanishm of sash having natural ventilation and sound attenuation effect
JPS6256921A (en) * 1985-09-06 1987-03-12 Citizen Watch Co Ltd Optical scanning device
JP2738543B2 (en) * 1988-09-16 1998-04-08 オリンパス光学工業株式会社 Optical pickup
JP2733072B2 (en) * 1988-11-01 1998-03-30 株式会社リコー Separable optical pickup

Also Published As

Publication number Publication date
JPS589228A (en) 1983-01-19

Similar Documents

Publication Publication Date Title
US4517666A (en) Optical head
US4100577A (en) Apparatus for optically reading signal information recorded on a reflective record medium surface
JPS6227456B2 (en)
CA1099815A (en) Apparatus for optically detecting information signals on a carrier
US5313441A (en) Optical recording and reproducing apparatus having a pickup head including a main prism with reflecting surfaces for splitting the reflected beam
JPS6245614B2 (en)
JPS6117103A (en) Polarizing beam splitter
JPS62132242A (en) Optical disk device
US4633454A (en) Optical information pickup apparatus
JP2738543B2 (en) Optical pickup
JPH07107742B2 (en) Optical disc head focus shift detector
JP2501875B2 (en) Optical pickup device
JP2790701B2 (en) Optical information reproduction method
US20010046200A1 (en) Optical pickup apparatus
JPS6123575B2 (en)
JPS5822165Y2 (en) optical device
JPS639305B2 (en)
JP2790264B2 (en) Optical pickup
JPS641858B2 (en)
JP2733072B2 (en) Separable optical pickup
JPH051532B2 (en)
JP2531904Y2 (en) Focus control device
JP2812764B2 (en) Optical head for optical disk device
JPS6223373B2 (en)
JPS61122936A (en) Focus detecting device