JPS6244865B2 - - Google Patents

Info

Publication number
JPS6244865B2
JPS6244865B2 JP56150335A JP15033581A JPS6244865B2 JP S6244865 B2 JPS6244865 B2 JP S6244865B2 JP 56150335 A JP56150335 A JP 56150335A JP 15033581 A JP15033581 A JP 15033581A JP S6244865 B2 JPS6244865 B2 JP S6244865B2
Authority
JP
Japan
Prior art keywords
layer
light
groove
psg
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56150335A
Other languages
Japanese (ja)
Other versions
JPS5850784A (en
Inventor
Shuichi Mayumi
Kunihiko Asahi
Ichizo Kamei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP56150335A priority Critical patent/JPS5850784A/en
Publication of JPS5850784A publication Critical patent/JPS5850784A/en
Publication of JPS6244865B2 publication Critical patent/JPS6244865B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 本発明は量子効率を向上させるために、リンケ
イ酸ガラス(PSG)を溶融(フロー)することに
よつて形成した反射鏡を有する受光素子の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a light receiving element having a reflecting mirror formed by melting (flowing) phosphosilicate glass (PSG) in order to improve quantum efficiency.

従来の光センサーでは、第1図aに示すように
n層1の上に形成した高比抵抗n(i)層2とさらに
この上に形成したP層3との間に形成されるP−
n接合面に垂直方向に入射する光をそのままP−
n接合面に入射させるので、入射光のかなりの量
がn層またはP層に入いりそこで吸収されてい
た。このように吸収されたエネルギーは情報に寄
与しないので光センサーの効率は低かつた。な
お、図中4はAl電極である。ところで、これを
改善するために、第1図bに示すような入射光用
窓の下に斜めに光反射鏡5を設けた装置におい
て、この光反射鏡によつて入射光をP−n層にそ
れと平行な方向から光を入射せしめ、P−n接合
面すなわち図中のn(i)層2を光導波ガイドとして
利用することによつて量子効率の向上が可能であ
ることがたとえば特公昭56−48182号にて報告さ
れている。しかし、第1図bのような装置を製造
するにあたつて、P−n層に効率良く光を照射さ
せる反射鏡を設けることは製造技術的に非常に困
難であつた。
In a conventional optical sensor, as shown in FIG.
The light incident perpendicularly to the n-junction surface is directly converted to P-
Since the light is incident on the n-junction surface, a considerable amount of the incident light enters the n-layer or the p-layer and is absorbed there. The efficiency of the optical sensor was low because the energy thus absorbed did not contribute to information. Note that 4 in the figure is an Al electrode. By the way, in order to improve this, in a device in which a light reflecting mirror 5 is provided obliquely under the incident light window as shown in FIG. For example, it has been shown in Japanese Patent Publication No. 2006-11111 that quantum efficiency can be improved by making light incident from a direction parallel to the P-n junction surface, that is, the n(i) layer 2 in the figure, as an optical waveguide. Reported in No. 56-48182. However, in manufacturing the device shown in FIG. 1B, it is extremely difficult from a manufacturing technology perspective to provide a reflecting mirror that efficiently irradiates light onto the P-n layer.

本発明はこの様な問題を解決するために、フロ
ーしたPSGのわん曲面にAl等の金属膜を蒸着し
て、この金属膜を反射鏡としてn(i)層に効率よく
光を収束させ、量子効率を高めようとするもので
ある。
In order to solve such problems, the present invention deposits a metal film such as Al on the curved surface of the flowed PSG, and uses this metal film as a reflecting mirror to efficiently converge light onto the n(i) layer. This is an attempt to increase quantum efficiency.

以下、本発明にかかる薄膜状p−i−n接合型
光センサー製造方法の一実施例について説明す
る。
Hereinafter, an embodiment of the method for manufacturing a thin film pin junction type optical sensor according to the present invention will be described.

まず、n型シリコン基板1の上に厚さ5μmの
n型高抵抗エピタキシヤル層を成長させ、これに
ボロンのイオン打ち込みを行なうことによつてn
(i)層2およびP層3を形成する〔第2図a〕。次
に、幅5μm、深さ6μmの溝6をホトレジスト
をマスクにしてドライエツチングによつて形成す
る〔第2図b〕。なお、この溝6はPn接合を越え
る深さで環状もしくは一部が分断された略環状で
あればよい。この工程にて中央部に台形状の光電
変換素子が形成される。これに続いて、後の熱処
理工程の際に、後程被着するPSGからの素子への
リン拡散を防止するために、酸素ガス中1000℃の
熱処理を施し、P層3、n(i)層2及びn層1表面
に酸化ケイ素(SiO2)(図示せず)を成長させ
る。たとえばP層3上に成長した酸化膜膜厚は
500Åである。
First, an n-type high-resistance epitaxial layer with a thickness of 5 μm is grown on an n-type silicon substrate 1, and boron ions are implanted into this layer.
(i) Form layer 2 and P layer 3 [Figure 2a]. Next, a groove 6 having a width of 5 .mu.m and a depth of 6 .mu.m is formed by dry etching using a photoresist as a mask (FIG. 2b). Note that this groove 6 may be annular or partially annular with a depth exceeding the Pn junction. In this step, a trapezoidal photoelectric conversion element is formed in the center. Following this, in order to prevent phosphorus from diffusing into the device from PSG, which will be deposited later, during the subsequent heat treatment process, heat treatment was performed at 1000°C in oxygen gas, and the P layer 3, the n(i) layer Silicon oxide (SiO 2 ) (not shown) is grown on the surfaces of the 2 and n layers 1. For example, the thickness of the oxide film grown on P layer 3 is
It is 500Å.

次に、膜厚8000Å、リン濃度8モル%のPSG7
を被着し、更に、酸素ガス中900℃で20分間熱処
理(PSGの焼きしめ)を施す〔第2図c〕。この
後、フオトエツチング技術を用いて、PSG7を使
定の形状にエツチングして溝6の外側側面にPSG
を残す〔第2図d〕。ひき続き、酸素ガス中1050
℃で20分間の熱処理を施し、PSG7を流動(フロ
ー)させわん曲面を形成する〔第2図e〕。こう
したのち、膜厚0.7μmの例えばAl金属を蒸着
し、ポジレジストをマスクにして所定の形状にな
るようにAlエツチングを行ない、光反射鏡8及
び電極4を形成して光センサーが完成する〔第2
図f〕。尚、第3図は完成した素子の平面図であ
る。
Next, PSG7 with a film thickness of 8000 Å and a phosphorus concentration of 8 mol%
and then heat-treated in oxygen gas at 900°C for 20 minutes (to harden the PSG) [Figure 2c]. After this, using photo-etching technology, PSG 7 is etched into the desired shape and PSG is applied to the outer side of groove 6.
[Figure 2 d]. Continuing to 1050 in oxygen gas
Heat treatment is performed at ℃ for 20 minutes to cause PSG7 to flow and form a curved surface [Figure 2 e]. After this, for example, Al metal is deposited to a thickness of 0.7 μm, and Al is etched into a predetermined shape using a positive resist as a mask. The light reflecting mirror 8 and electrode 4 are formed to complete the optical sensor. Second
Figure f]. Incidentally, FIG. 3 is a plan view of the completed device.

本実施例の場合、形成されたAl反射鏡8はわ
ん曲しておりいわゆる凹面鏡となつている。ま
た、この凹面鏡の光軸がn(i)層内部に位置するた
め、n(i)層は効率よく照射されるので光効果が大
きく、量子効率は向上する。反射鏡薄膜として本
実施例で使用したAl以外に反射率の高いAu等の
金属を使用した場合、量子効率は更に向上するこ
とはいうまでもない。尚、反射凹面鏡の光軸の位
置は反射凹面鏡の位置、方向及び凹面鏡の曲率に
関係する。すなわち、P−i−n素子周囲の溝の
深さ、幅及びPSG膜、Al膜の膜厚、更にPSG膜の
フロー後の表面形状すなわちPSG膜のリン濃度、
フロー条件に関係する。これらの各条件を調整す
ることによつてフローしたPSGわん曲面により収
束された光を所定の活性部に照射することが可能
である。
In the case of this embodiment, the formed Al reflecting mirror 8 is curved and is a so-called concave mirror. Furthermore, since the optical axis of this concave mirror is located inside the n(i) layer, the n(i) layer is efficiently irradiated, resulting in a large optical effect and improved quantum efficiency. Needless to say, if a metal with high reflectivity such as Au is used as the reflective mirror thin film in addition to Al used in this example, the quantum efficiency will be further improved. Note that the position of the optical axis of the reflective concave mirror is related to the position and direction of the reflective concave mirror and the curvature of the concave mirror. That is, the depth and width of the groove around the P-i-n element, the film thickness of the PSG film and the Al film, and the surface shape of the PSG film after flow, that is, the phosphorus concentration of the PSG film,
Related to flow conditions. By adjusting each of these conditions, it is possible to irradiate a predetermined active region with light converged by the flowing PSG curved surface.

以上の通り、本発明によれば、量子効率の高い
高性能光センサーを得ることができる。尚、本実
施例は薄膜状P−i−n接合型光センサーについ
て行なつたが、本発明はその他の受光素子全搬に
応用できるものである。
As described above, according to the present invention, a high-performance optical sensor with high quantum efficiency can be obtained. Although the present embodiment was carried out with respect to a thin film P-i-n junction type optical sensor, the present invention can be applied to all other types of light-receiving elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは従来の光センサーの断面図、第
2図a〜fは本発明の一実施例の製造工程図、第
3図は第2図で製造されたセンサーの概略平面図
である。 1……n層、2……n(i)層、3……P層、4…
…Al電極、6……溝、7……PSG、8……Al
(光反射凹面鏡)。
Figures 1 a and b are cross-sectional views of a conventional optical sensor, Figures 2 a to f are manufacturing process diagrams of an embodiment of the present invention, and Figure 3 is a schematic plan view of the sensor manufactured in Figure 2. be. 1...n layer, 2...n(i) layer, 3...P layer, 4...
...Al electrode, 6...groove, 7...PSG, 8...Al
(Light reflective concave mirror).

Claims (1)

【特許請求の範囲】[Claims] 1 主面に平行なPn接合が作り込まれた基板
に、前記Pn接合を越える深さの環状もしくは一
部が分断された略環状の溝を穿ち、同溝で全周も
しくはほぼ全周が包囲された台形状の光電変換部
を形成したのち、前記溝の外側側面にリンケイ酸
ガラス層を形成し、次いで、熱処理を施し前記リ
ンケイ酸ガラス層を溶融もしくは軟化流動させて
わん曲面を形成し、こののち、同わん曲面上に光
反射層を形成することを特徴とする受光素子の製
造方法。
1. In a substrate in which a Pn junction parallel to the main surface is formed, an annular or partially annular groove with a depth exceeding the Pn junction is bored, and the entire circumference or almost the entire circumference is surrounded by the same groove. After forming a trapezoidal photoelectric conversion portion, a phosphosilicate glass layer is formed on the outer side surface of the groove, and then heat treatment is performed to melt or soften and flow the phosphosilicate glass layer to form a curved surface, A method for manufacturing a light-receiving element, characterized in that a light-reflecting layer is then formed on the same curved surface.
JP56150335A 1981-09-21 1981-09-21 Manufacture of light receiving element Granted JPS5850784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56150335A JPS5850784A (en) 1981-09-21 1981-09-21 Manufacture of light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56150335A JPS5850784A (en) 1981-09-21 1981-09-21 Manufacture of light receiving element

Publications (2)

Publication Number Publication Date
JPS5850784A JPS5850784A (en) 1983-03-25
JPS6244865B2 true JPS6244865B2 (en) 1987-09-22

Family

ID=15494753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56150335A Granted JPS5850784A (en) 1981-09-21 1981-09-21 Manufacture of light receiving element

Country Status (1)

Country Link
JP (1) JPS5850784A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5150182A (en) * 1988-06-07 1992-09-22 The Boeing Company Semiconductor device enhanced for optical interaction
US5045908A (en) * 1990-09-25 1991-09-03 Motorola, Inc. Vertically and laterally illuminated p-i-n photodiode
CN115274912B (en) * 2022-08-01 2024-01-30 中国电子科技集团公司第四十四研究所 High spatial resolution X-ray detector unit, detector and method for manufacturing the same

Also Published As

Publication number Publication date
JPS5850784A (en) 1983-03-25

Similar Documents

Publication Publication Date Title
US5024953A (en) Method for producing opto-electric transducing element
JP3732993B2 (en) Solar cell and manufacturing method thereof
US4818337A (en) Thin active-layer solar cell with multiple internal reflections
US6313397B1 (en) Solar battery cell
US4608451A (en) Cross-grooved solar cell
CA1253607A (en) Photodetector array and a method of making same
JP2748917B2 (en) Semiconductor device
US4620364A (en) Method of making a cross-grooved solar cell
JP2989373B2 (en) Method for manufacturing photoelectric conversion device
US20040195641A1 (en) Semiconductor chip for optoelectronics
Muller Thin silicon film pin photodiodes with internal reflection
JPS6244865B2 (en)
JP2004304187A (en) Light-receiving element and manufacturing method therefor
JPH04246868A (en) P-i-n photodiode and method of improving efficiency thereof
JP2000150937A (en) Solar battery cell and its manufacture
JP2585403B2 (en) Solar cell manufacturing method
JP2004071828A (en) Solar cell
JPS6244873B2 (en)
JP3073833B2 (en) Solar cell manufacturing method
JPH04342174A (en) Semiconductor photoelectric receiving element
JPS59100582A (en) Manufacture of semiconductor element
JPH0473637B2 (en)
JPH0411787A (en) Semiconductor light receiving device
JPH02220479A (en) Photoelectric transducer and manufacture thereof
JPH05136446A (en) Semiconductor photodetector