JPH02220479A - Photoelectric transducer and manufacture thereof - Google Patents

Photoelectric transducer and manufacture thereof

Info

Publication number
JPH02220479A
JPH02220479A JP1040226A JP4022689A JPH02220479A JP H02220479 A JPH02220479 A JP H02220479A JP 1040226 A JP1040226 A JP 1040226A JP 4022689 A JP4022689 A JP 4022689A JP H02220479 A JPH02220479 A JP H02220479A
Authority
JP
Japan
Prior art keywords
angle
photoelectric conversion
conversion element
light
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1040226A
Other languages
Japanese (ja)
Other versions
JPH0766978B2 (en
Inventor
Tadashi Saito
忠 斉藤
Tsuyoshi Uematsu
上松 強志
Kunio Hane
邦夫 羽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1040226A priority Critical patent/JPH0766978B2/en
Publication of JPH02220479A publication Critical patent/JPH02220479A/en
Publication of JPH0766978B2 publication Critical patent/JPH0766978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

PURPOSE:To sufficiently absorb incident light even when the thickness of the title transducer is reduced by a method wherein the transducer is constituted in such a way that the angle of a V-groove in the surface on the light-incident side is different from the angle of a V-groove in the rear. CONSTITUTION:V-grooves are formed in the surface 31 and the rear 41 of a photoelectric transducer 11; angles of the V-grooves formed in the surface 31 and the rear 41 are made different. Accordingly, the surface 31 and the rear 41 are tilted at a certain angle theta to each other; incident light 21 which has passed through the transducer is reflected by the rear 41 and is reflected toward inside by the surface 31 of the transducer. Especially when this angle thetais set to 3 deg. or larger, the light which has reached the rear 41 in the first operation is subjected to total reflection. When an angle theta1 is made different from an angle theta2, the light which has once been incident is confined to the inside of the substrate 11 and is absorbed efficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光電変換素子、特に薄型化した光電変換素子の
光吸収効率の向上に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an improvement in the light absorption efficiency of a photoelectric conversion element, particularly a thinned photoelectric conversion element.

〔従来の技術〕[Conventional technology]

従来の光電変換素子は、 5olar Ce1ls、 
17(1986)p、75〜83に示されているように
、光電変換素子の表面または裏面に形成された。
Conventional photoelectric conversion elements include 5olar Ce1ls,
17 (1986) p., 75-83, it was formed on the front or back surface of a photoelectric conversion element.

該素子の厚みに比べて比較的凹凸の小さいV字形溝構造
などの表面凹凸及び表面または裏面に形成された電極な
どの構造物を除いて、はぼ平板状の断面形状をしている
The device has a flat plate-like cross-sectional shape, except for surface irregularities such as a V-shaped groove structure whose irregularities are relatively small compared to the thickness of the element, and structures such as electrodes formed on the front or back surface.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では、光電変換作用を行なう基板の厚みが
数百μm以上ないと機械的に脆弱になり、素子を数cm
〜数十elfに大きくする事が困難である。
In the above conventional technology, if the thickness of the substrate that performs photoelectric conversion is not more than several hundred μm, it becomes mechanically fragile, and the device
It is difficult to increase the size to several tens of elf.

そこで、基板を波板状に加工することにより、光電変換
作用を行なう基板の実質的な厚みを数十μm程度に小さ
くする事を考えた。しかし、基板の厚みが小さくなると
入射光を十分に吸収できなくなってしまう。
Therefore, we considered reducing the substantial thickness of the substrate that performs photoelectric conversion to about several tens of micrometers by processing the substrate into a corrugated plate shape. However, as the thickness of the substrate becomes smaller, it becomes unable to absorb incident light sufficiently.

本発明の目的は該光電変換素子の厚みを小さくしても入
射光を十分に吸収する構造を提供する事にある。
An object of the present invention is to provide a structure that can sufficiently absorb incident light even if the thickness of the photoelectric conversion element is reduced.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、該光電変換素子の表面と裏面にV溝を設け
、かつそれら表面と裏面に設けられたV溝角度を変える
ことにより達成される。
The above object is achieved by providing V-grooves on the front and back surfaces of the photoelectric conversion element and changing the angles of the V-grooves on the front and back surfaces.

〔作用〕[Effect]

図面を用いて上記手段を説明する。 The above means will be explained using the drawings.

第2図に表面と裏面にV溝を形成して実質的な素子の厚
みを薄くした構造を持っ光電変換素子の構造を示す、こ
の構造では、表側のV溝角度(θ1)は裏側のV溝角度
(θ、)と同じになっている。これにより該光電変換素
子1のマクロ的な厚みaに対して実質的な素ギの厚みb
を小さくすることが出来る。その一部を拡大して、第3
図に示す、入射光2は光電変換素子1に対し、特定の角
度(θ、=54.7°)で表面3に入射し裏面4で反射
され1表面3から再び外部へ放射される。
Figure 2 shows the structure of a photoelectric conversion element that has a structure in which V grooves are formed on the front and back surfaces to reduce the actual thickness of the element. In this structure, the V groove angle (θ1) on the front side is It is the same as the groove angle (θ,). As a result, the actual thickness b of the photoelectric conversion element 1 is
can be made smaller. Expanding a part of it, the third
As shown in the figure, incident light 2 enters the front surface 3 of the photoelectric conversion element 1 at a specific angle (θ, = 54.7°), is reflected by the back surface 4, and is emitted from the first surface 3 to the outside again.

この場合、実質的な素子の厚みは数十μm以下となるた
め、光電変換素子の基板の光の吸収係数が小さい場合入
射光2の一部が外部へ透過してしまう、これは、該素子
の出力電流の低下を招く、従来は、裏面反射#!5を形
成し、基板からの透過光を正反射する事により光路長を
長くし光の吸収を増加させ、光閉じ込め率は約90%で
あった。
In this case, the actual thickness of the element is several tens of μm or less, so if the light absorption coefficient of the substrate of the photoelectric conversion element is small, part of the incident light 2 will be transmitted to the outside. Conventionally, back reflection causes a decrease in the output current of #! 5 was formed, and by specularly reflecting the transmitted light from the substrate, the optical path length was lengthened and light absorption was increased, and the optical confinement rate was about 90%.

これに対し、本発明では、第1@に示す様に光電変換素
子11の光入射側の表面31のV溝角度(θ□)と裏面
41のV溝角度(θ2)を異なる様に構成する。より詳
細には、第4と5図を用いて説明する。第4図はV溝を
構成している半導体基体の一部拡大図、第5図は複数の
半導体片を考慮して光電変換素子を部分的に示した断面
図である。
In contrast, in the present invention, as shown in the first @, the V-groove angle (θ□) on the front surface 31 on the light incidence side of the photoelectric conversion element 11 and the V-groove angle (θ2) on the back surface 41 are configured to be different. . More details will be explained using FIGS. 4 and 5. FIG. 4 is a partially enlarged view of a semiconductor substrate constituting a V-groove, and FIG. 5 is a sectional view partially showing a photoelectric conversion element in consideration of a plurality of semiconductor pieces.

入射光21は前述の光電変換素子11表面31に対し5
4.7°の角度で入射する。この場合1表面31と裏面
41はある角度(θ)だけ傾いている。これにより、素
子内を通過した光は裏面41で反射され、素子内の表面
31で内部に反射される。特に、この角度(θ)を3°
以上に設定すれば、1回目に裏面41に到達した光は全
反射される。もし、裏面41に鏡が存在すれば、θを1
.5@以上に設定すれば素子内の表面31で全反射され
る。このようにθ、と02を変え、特にθ、〉θ2とす
ることにより一度入射した光は基板11内に閉じ込めら
れて効率良く吸収される。第5図はこの状態を示したも
のである。
The incident light 21 is directed to the surface 31 of the photoelectric conversion element 11 at
It is incident at an angle of 4.7°. In this case, the first surface 31 and the back surface 41 are inclined by a certain angle (θ). As a result, the light that has passed through the element is reflected on the back surface 41 and internally reflected on the front surface 31 inside the element. In particular, change this angle (θ) to 3°
With the above settings, the light that reaches the back surface 41 the first time is totally reflected. If there is a mirror on the back surface 41, then θ is 1
.. If it is set to 5@ or more, it will be totally reflected at the surface 31 inside the element. By changing θ and 02 in this manner, and in particular setting θ and >θ2, the light that has once entered is confined within the substrate 11 and efficiently absorbed. FIG. 5 shows this state.

〔実施例〕〔Example〕

第6図を用いて本発明の詳細な説明する。 The present invention will be explained in detail using FIG.

基板66には250μm厚のSi単結晶(100)を用
い、まず光電変換素子の表面のV溝構造(角度74°)
を機械加工で作製した。この機械加工では、必要な刃の
角度を有するダイシングソーを用いた。■溝のピッチは
240μmである。この表面V溝構造に整合した形で、
光電変換素子の裏面に熱酸化膜をマスクにKOH溶液に
より異方性化学エッチを裏面から行いV溝構造とした。
A 250 μm thick Si single crystal (100) is used for the substrate 66, and first a V-groove structure (angle 74°) is formed on the surface of the photoelectric conversion element.
was manufactured by machining. In this machining, a dicing saw with the required blade angle was used. ■The pitch of the grooves is 240 μm. In a form consistent with this surface V-groove structure,
Using a thermal oxide film as a mask, anisotropic chemical etching was performed from the back side of the photoelectric conversion element using a KOH solution to form a V-groove structure.

そのV溝角度は70.5@である。Its V-groove angle is 70.5@.

裏面凸部には、P”He’yをAgの合金化処理により
形成した0表面には、加工歪層の除去後、n4″層65
を燐拡散により形成しその表面をパッシベーション酸化
膜64で覆い、更にその上に光反射防止膜63を形成し
た1表面凸部の一部には表面電極61を形成し酸化膜に
開けたコンタクトホール62を通して01層とオーミッ
クコンタクトをとっている#裏面にはAgを真空蒸着し
て裏面電極をかねた反射鏡68を形成した。これにより
、表面から入射した光は裏面で反射され、再び表面に到
達してもそのほとんどが全反射され基板66の中に入射
光のほぼ98%が閉じこめられる。
On the rear convex part, P"He'y is formed by alloying with Ag. After removing the strained layer, the N4" layer 65 is formed on the surface.
is formed by phosphorus diffusion, its surface is covered with a passivation oxide film 64, and an anti-reflection film 63 is further formed thereon.A surface electrode 61 is formed on a part of the convex part of the surface, and a contact hole is formed in the oxide film. Ag was vacuum deposited on the # back surface which was in ohmic contact with the 01 layer through 62 to form a reflecting mirror 68 which also served as a back electrode. As a result, the light incident from the front surface is reflected by the back surface, and even when it reaches the front surface again, most of the light is totally reflected, and approximately 98% of the incident light is confined within the substrate 66.

上記の説明では、表面のV溝構造を機械加工で作製した
例を示したが、裏面のV溝構造を機械加工で作製し1表
面のV溝構造を異方性化学エッチで加工してもよい。こ
の場合裏面のV溝の角度は約68″以下が好ましい。
In the above explanation, an example was shown in which the V-groove structure on the front surface was created by machining, but it is also possible to create the V-groove structure on the back surface by machining and process the V-groove structure on the first surface by anisotropic chemical etching. good. In this case, the angle of the V-groove on the back surface is preferably about 68'' or less.

〔発明の効果〕〔Effect of the invention〕

上記説明から明らかなように、■溝構造を有する基板か
ら成る光電変換素子において、該基板の厚みが薄く、入
射光の多くを一回の光透過では十分に吸収出来ない場合
に、表面のV溝角度を裏面のV溝角度より大きく設定す
ることにより1表面及び裏面で全反射し、これにより入
射光のほとんどを該基板内で吸収する事が出来る。この
ような構造を持つ該光電変換素子に太陽光と同じスペク
トルを持つ光を照射したところ、入射光のほぼ100%
を該基板内で吸収させる事が出来た。
As is clear from the above explanation, (1) In a photoelectric conversion element made of a substrate having a groove structure, when the thickness of the substrate is thin and most of the incident light cannot be sufficiently absorbed in one light transmission, the surface V By setting the groove angle to be larger than the V-groove angle on the back surface, total reflection occurs on one surface and the back surface, thereby allowing most of the incident light to be absorbed within the substrate. When the photoelectric conversion element with such a structure was irradiated with light having the same spectrum as sunlight, almost 100% of the incident light was irradiated.
was able to be absorbed within the substrate.

また、本発明に関し、Si結晶を例に説明したが、他の
結晶半導体例えばGaAs、InPのIII−V化合物
半導体やCdS、CdTe等のII−VI化合物等にも
適用可能である。
Further, although the present invention has been explained using a Si crystal as an example, it is also applicable to other crystalline semiconductors such as III-V compound semiconductors such as GaAs and InP, and II-VI compounds such as CdS and CdTe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す外観図、第2図は従来
の光電変換素子の外観図、第3図は従来の構造での入射
光の通過経路を示す局所部の断面図。第4図は本発明の
構造での入射光の通過経路を示す局所部の断面図。第5
図は本発明の構造での入射光の通過経路を示す断面図。 第6図は本発明の一実施例を示す外観図。
FIG. 1 is an external view showing an embodiment of the present invention, FIG. 2 is an external view of a conventional photoelectric conversion element, and FIG. 3 is a cross-sectional view of a local part showing the path of incident light in the conventional structure. FIG. 4 is a cross-sectional view of a local portion showing the path of incident light in the structure of the present invention. Fifth
The figure is a cross-sectional view showing the path of incident light in the structure of the present invention. FIG. 6 is an external view showing one embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、少なくとも一種類の半導体からなり、その表面と裏
面に複数のV溝を形成して実質的な素子の厚みを薄くし
た構造を持つ光電変換素子において、光入射側の表面の
V溝角度と裏面のV溝角度が異なる様に構成したことを
特徴とする光電変換素子。 2、特許請求の範囲第1項記載の光電変換素子において
、光入射側の該表面V溝角度が該裏面のV溝角度より大
きくなる様に構成したことを特徴とする光電変換素子。 3、特許請求の範囲第1項記載の光電変換素子において
、光入射側の該表面V溝角度が該裏面のV溝角度より1
.5゜以上大きくなる様に構成したことを特徴とする光
電変換素子。 4、特許請求の範囲第1項記載の光電変換素子において
、該V溝構造を横切る方向に該V溝構造が部分的に形成
されていないことを特徴とする光電変換素子。 5、特許請求の範囲第1〜4のいずれかに項記載の光電
変換素子において、該V溝構造を少なくとも異方性化学
エッチング及び機械加工のいずれかを用いることを特徴
とする該光電変換素子の製造方法。
[Claims] 1. In a photoelectric conversion element made of at least one type of semiconductor and having a structure in which a plurality of V grooves are formed on the front and back surfaces to reduce the substantial thickness of the element, A photoelectric conversion element characterized in that the V-groove angle on the front surface and the V-groove angle on the back surface are configured to be different. 2. A photoelectric conversion element according to claim 1, characterized in that the V-groove angle on the front surface on the light incident side is larger than the V-groove angle on the back surface. 3. In the photoelectric conversion element according to claim 1, the surface V-groove angle on the light incident side is 1 greater than the V-groove angle on the back surface.
.. A photoelectric conversion element characterized in that it is configured to be larger by 5° or more. 4. The photoelectric conversion element according to claim 1, wherein the V-groove structure is not partially formed in a direction transverse to the V-groove structure. 5. The photoelectric conversion element according to any one of claims 1 to 4, wherein the V-groove structure is formed by at least one of anisotropic chemical etching and machining. manufacturing method.
JP1040226A 1989-02-22 1989-02-22 Photoelectric conversion element and manufacturing method Expired - Fee Related JPH0766978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1040226A JPH0766978B2 (en) 1989-02-22 1989-02-22 Photoelectric conversion element and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1040226A JPH0766978B2 (en) 1989-02-22 1989-02-22 Photoelectric conversion element and manufacturing method

Publications (2)

Publication Number Publication Date
JPH02220479A true JPH02220479A (en) 1990-09-03
JPH0766978B2 JPH0766978B2 (en) 1995-07-19

Family

ID=12574837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1040226A Expired - Fee Related JPH0766978B2 (en) 1989-02-22 1989-02-22 Photoelectric conversion element and manufacturing method

Country Status (1)

Country Link
JP (1) JPH0766978B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127579A (en) * 1990-09-19 1992-04-28 Hitachi Ltd Corrugated solar cell
JP2011077165A (en) * 2009-09-29 2011-04-14 Mitsubishi Heavy Ind Ltd Light detector, light detecting apparatus, infrared detector and infrared detecting apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137686A (en) * 1980-03-31 1981-10-27 Shunpei Yamazaki Mis-type photoelectric transducing device
JPS58159761U (en) * 1982-04-20 1983-10-25 シャープ株式会社 solar cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137686A (en) * 1980-03-31 1981-10-27 Shunpei Yamazaki Mis-type photoelectric transducing device
JPS58159761U (en) * 1982-04-20 1983-10-25 シャープ株式会社 solar cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127579A (en) * 1990-09-19 1992-04-28 Hitachi Ltd Corrugated solar cell
JP2011077165A (en) * 2009-09-29 2011-04-14 Mitsubishi Heavy Ind Ltd Light detector, light detecting apparatus, infrared detector and infrared detecting apparatus

Also Published As

Publication number Publication date
JPH0766978B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
US5024953A (en) Method for producing opto-electric transducing element
US8822260B2 (en) Asymmetric surface texturing for use in a photovoltaic cell and method of making
US20050145965A1 (en) Light receiving element and method of manufacturing the same
US6781211B2 (en) Photodiode having an active region shaped in a convex lens
WO2020156239A1 (en) Photodiode and preparation method therefor, and electronic device
US20010050103A1 (en) Solar cell and process for producing the same
JP2989373B2 (en) Method for manufacturing photoelectric conversion device
KR101023144B1 (en) Solar cell using layer transfer process and fabrication method thereof
JPH11274538A (en) Substrate for forming high-strength thin semiconductor element, high-strength thin semiconductor element and manufacture thereof
JPH02220479A (en) Photoelectric transducer and manufacture thereof
JPH03276682A (en) Semiconductor device
JP2000150923A (en) Backside incidence type light receiving device and manufacture thereof
JP3301663B2 (en) Solar cell manufacturing method
US20220271182A1 (en) Backside illuminated avalanche photodiode and manufacturing method thereof
JPH0371677A (en) Processing of substrate for photoelectric conversion device
JPS6132804A (en) Photodetective element united with optical waveguide and its manufacture
JPH03136282A (en) Photodiode
JPH03288476A (en) Semiconductor device
JPS6244865B2 (en)
JP4027917B2 (en) Semiconductor photo detector
JP2997538B2 (en) Polycrystalline silicon solar cell element
WO2014199573A1 (en) Photoelectric conversion element and method of fabricating photoelectric conversion element
JPH09116178A (en) Photoelectric transfer element, and its manufacture
JP2001358349A (en) Solar battery and its manufacturing method
JPH021180A (en) Photoelectric conversion element and manufacture thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees