JPS6244826B2 - - Google Patents

Info

Publication number
JPS6244826B2
JPS6244826B2 JP56085248A JP8524881A JPS6244826B2 JP S6244826 B2 JPS6244826 B2 JP S6244826B2 JP 56085248 A JP56085248 A JP 56085248A JP 8524881 A JP8524881 A JP 8524881A JP S6244826 B2 JPS6244826 B2 JP S6244826B2
Authority
JP
Japan
Prior art keywords
metal
schottky
silicide
film
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56085248A
Other languages
Japanese (ja)
Other versions
JPS57199274A (en
Inventor
Masaaki Kimata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56085248A priority Critical patent/JPS57199274A/en
Publication of JPS57199274A publication Critical patent/JPS57199274A/en
Publication of JPS6244826B2 publication Critical patent/JPS6244826B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 この発明はシヨツトキー・バリヤ・ダイオード
を用いた光検出素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photodetecting element using a Schottky barrier diode.

一般に、シヨツトキー・バリヤ・ダイオードは
特に赤外領域の光検出素子として使用されること
が多く、シリコンのLSI技術を利用して、電荷結
合素子などと組合わせることにより、一次元また
は二次元の撮像素子を形成することができる。
In general, Schottky barrier diodes are often used as photodetecting elements, especially in the infrared region, and can be used to capture one-dimensional or two-dimensional images by using silicon LSI technology and combining them with charge-coupled devices. elements can be formed.

第1図は従来のシヨツトキー型赤外光検出素子
を示す概略断面図である。同図において、1は数
Ωcm〜数十ΩcmのP型シリコン基板、2はこのP
型シリコン基板1の第1主面上に金(Au)、白金
硅化物、パラジウム硅化物、インジウム硅化物な
どの金属または金属硅化物を形成したシヨツトキ
ー接合の金属側電極、3は前記P型シリコン基板
1とこの金属側電極2との界面に形成したシヨツ
トキー接合、4はこのシヨツトキー接合3の周辺
における電気的耐圧低下を防止し、もれ電流を小
さくするために設けたN型不純物領域のガードリ
ング、5は素子間分離のための絶縁膜、6は前記
金属側電極2を外部と接続するために設け、通常
はアルミニウム、モリブデン、タングステンなど
による金属配線、7は入射赤外光である。
FIG. 1 is a schematic cross-sectional view showing a conventional Schottky type infrared light detection element. In the figure, 1 is a P-type silicon substrate of several Ωcm to several tens of Ωcm, and 2 is this P-type silicon substrate.
A metal side electrode of a Schottky junction in which a metal or metal silicide such as gold (Au), platinum silicide, palladium silicide, or indium silicide is formed on the first main surface of a silicon substrate 1; 3 is the P-type silicon; A shot key junction 4 is formed at the interface between the substrate 1 and the metal side electrode 2, and 4 is a guard for an N-type impurity region provided to prevent a drop in electrical withstand voltage and reduce leakage current around this shot key junction 3. A ring, 5 is an insulating film for isolation between elements, 6 is a metal wiring provided to connect the metal side electrode 2 to the outside, and is usually made of aluminum, molybdenum, tungsten, etc., and 7 is incident infrared light.

なお、前記N型不純物領域4および絶縁膜5は
光検出素子の動作には本質的な影響を与えるもの
ではない。また、金属配線6は金属側電極2の周
辺のみ接続してもよいし、全面で接続してもよい
ことはもちろんである。
Note that the N-type impurity region 4 and the insulating film 5 have no essential influence on the operation of the photodetecting element. Further, it goes without saying that the metal wiring 6 may be connected only to the periphery of the metal side electrode 2, or may be connected to the entire surface.

次に、上記構成によるシヨツトキー型光検出素
子の動作について説明する。まず、赤外光は第2
主面側から入射する。この入射光の波長は赤外領
域であるため、P型シリコン基板1ではほとんど
吸収されずに金属側電極2に到達する。したがつ
て、この金属側電極2に赤外光が入射すると、こ
の金属中でホツト・ホール(熱い正孔)が形成さ
れる。このホツト・ホールのうち、シヨツトキー
接合3のバリヤをこえるエネルギーをもつたもの
だけが、P型シリコン基板1側に流れ込み、光電
流となる。この光電流は同一入射光に対して大き
いほどよく、このため多くの工夫がなされてい
る。例えば第2図は金属電極2として白金シリサ
イドを用いたものであり、横軸は白金シリサイド
形成前の白金の膜厚であり、熱処理をして、白金
シリサイドを形成すると、白金シリサイドの膜厚
は前記白金の膜厚の2倍程度となる。縦軸は光電
流の値である。この第2図からわかるように、光
電流を大きくするためには白金の膜厚(同じ意味
で白金シリサイドの膜厚)を薄くすればよいこと
がわかる。したがつて、製造プロセス上、許され
る範囲で、できるだけ薄い金属電極を用いる必要
がある。一方、この非常に薄い金属電極を用いる
場合、入射光はすべて金属電極に吸収されるわけ
ではなく、一部は透過してホツト・ホールの形成
には寄与しない部分がでてくる。第3図はこの様
子を示すものである。例えば金属電極として白金
シリサイドを用いた場合であり、横軸に白金膜厚
をとり、縦軸に入射光に対する白金シリサイドを
通した透過光の割合、すなわち透過率である。こ
の第3図によれば波長が3μmでは白金膜厚が
150Åのとき、約25%の光は透過してしまい、白
金膜厚をさらに薄くすれば透過する光は更に増大
する。
Next, the operation of the Schottky type photodetecting element having the above configuration will be explained. First, infrared light
The light enters from the main surface side. Since the wavelength of this incident light is in the infrared region, it reaches the metal side electrode 2 without being absorbed by the P-type silicon substrate 1 . Therefore, when infrared light is incident on this metal side electrode 2, hot holes are formed in this metal. Of these hot holes, only those with energy exceeding the barrier of the Schottky junction 3 flow into the P-type silicon substrate 1 side and become photocurrent. The larger the photocurrent is for the same amount of incident light, the better, and for this reason many ideas have been devised. For example, in Fig. 2, platinum silicide is used as the metal electrode 2, and the horizontal axis is the thickness of the platinum film before forming the platinum silicide.When the platinum silicide is formed by heat treatment, the film thickness of the platinum silicide increases. The thickness is approximately twice that of the platinum film. The vertical axis is the value of photocurrent. As can be seen from FIG. 2, in order to increase the photocurrent, the thickness of the platinum film (in the same sense, the thickness of the platinum silicide film) needs to be reduced. Therefore, it is necessary to use as thin a metal electrode as possible within the manufacturing process. On the other hand, when this very thin metal electrode is used, not all of the incident light is absorbed by the metal electrode, and some of the incident light is transmitted and does not contribute to the formation of hot holes. FIG. 3 shows this situation. For example, when platinum silicide is used as the metal electrode, the horizontal axis represents the platinum film thickness, and the vertical axis represents the ratio of light transmitted through the platinum silicide to the incident light, that is, the transmittance. According to this figure 3, when the wavelength is 3 μm, the platinum film thickness is
At 150 Å, about 25% of the light is transmitted, and if the platinum film thickness is made even thinner, the amount of light transmitted will further increase.

このように、従来のシヨツトキー型光検出素子
では光電流を大きくするためには薄い金属電極を
用いることが必要であるが、薄くなるほど、入射
光に対する透過光が増大し、感度を高くすること
ができない欠点があつた。
In this way, in conventional Schottky-type photodetectors, it is necessary to use thin metal electrodes in order to increase the photocurrent, but the thinner the electrode, the more light is transmitted relative to the incident light, making it possible to increase the sensitivity. There was a drawback that I couldn't do it.

したがつて、この発明の目的は透過光を有効に
利用して、素子の面積を増大させることなく、光
電流を増加させ、感度の高いシヨツトキー型光検
出素子を提供するものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a Schottky type photodetecting element with high sensitivity by effectively utilizing transmitted light and increasing photocurrent without increasing the area of the element.

このような目的を達成するため、この発明は金
属または金属硅化物上に形成した電気的絶縁膜
と、この電気的絶縁膜上に形成した反射膜とを備
えるものであり、以下実施例を用いて詳細に説明
する。
In order to achieve such an object, the present invention includes an electrically insulating film formed on a metal or metal silicide, and a reflective film formed on this electrically insulating film. This will be explained in detail.

第4図はこの発明に係るシヨツトキー型光検出
素子の一実施例を示す概略断面図である。同図に
おいて、8は前記金属側電極2上に形成したシリ
コン酸化膜、シリコン窒化膜などからなる電気的
絶縁膜、9はこの電気的絶縁膜8上に形成したア
ルミニウム、モリブデン、タングステン、金、白
金などの金属からなる反射膜である。
FIG. 4 is a schematic sectional view showing an embodiment of the Schottky type photodetecting element according to the present invention. In the figure, 8 is an electrical insulating film formed on the metal side electrode 2, such as a silicon oxide film or a silicon nitride film; 9 is an electrically insulating film formed on the electrically insulating film 8, such as aluminum, molybdenum, tungsten, A reflective film made of metal such as platinum.

なお、この反射膜9は光検出部のみをおおうよ
うに図示したが、全面をおおうようにしてもよい
ことはもちろんである。
Although this reflective film 9 is illustrated so as to cover only the photodetecting section, it is of course possible to cover the entire surface.

次に、上記構成によるシヨツトキー型光検出素
子の動作について説明する。まず、第2主面から
入射した光はP型シリコン基板1を通つて金属側
電極2に達する。したがつて、この入射した光が
金属側電極2に入射すると、この金属中でホツ
ト・ホールが形成される。このホツト・ホールの
うち、シヨツトキー接合3のバリヤをこえるエネ
ルギーをもつたものだけがP型シリコン基板1側
に流れ込み光電流となる。一方、入射した光の一
部は金属側電極2を通り過ぎて絶縁膜8中に入
る。この絶縁膜8に入つた光は反射膜9によつて
反射され、再び金属側電極2に入る。この場合、
通常入射光は非干渉性であるから、反射光と入射
光は干渉することなく、独立に金属電極2の中に
ホツト・ホールを作り、光電流を形成する。した
がつて、この反射膜9によつて反射された光によ
つて生ずる光電流の分だけ、光電流が大きくな
り、感度を高めることになる。いいかえれば、素
子の面積を増加させることなく、光電流を増加さ
せることができる。
Next, the operation of the Schottky type photodetecting element having the above configuration will be explained. First, light incident from the second principal surface passes through the P-type silicon substrate 1 and reaches the metal side electrode 2. Therefore, when this incident light enters the metal side electrode 2, a hot hole is formed in this metal. Of these hot holes, only those with energy exceeding the barrier of the Schottky junction 3 flow into the P-type silicon substrate 1 side and become a photocurrent. On the other hand, a part of the incident light passes through the metal side electrode 2 and enters the insulating film 8. The light entering the insulating film 8 is reflected by the reflective film 9 and enters the metal side electrode 2 again. in this case,
Since the incident light is normally incoherent, the reflected light and the incident light independently create hot holes in the metal electrode 2 and form photocurrents without interfering with each other. Therefore, the photocurrent increases by the amount of photocurrent generated by the light reflected by the reflective film 9, thereby increasing the sensitivity. In other words, the photocurrent can be increased without increasing the area of the element.

なお、この反射膜9が金属で構成されているた
め、この反射膜9に、固定された電位を与えるこ
とにより、外部雑音からの静電しやへいの効果が
期待できる。また、以上の実施例ではP型シリコ
ンを用いた赤外検出器について説明したが、これ
に限定せず、シヨツトキー・バリヤ・ダイオード
を用いた光検出素子であれば導電型、基板材料、
受光波長によらず適用できることはもちろんであ
る。
Note that since this reflective film 9 is made of metal, by applying a fixed potential to this reflective film 9, an effect of electrostatic shielding from external noise can be expected. In addition, in the above embodiment, an infrared detector using P-type silicon was explained, but the invention is not limited to this, and if the photodetecting element uses a Schottky barrier diode, the conductivity type, substrate material,
Of course, this method can be applied regardless of the receiving wavelength.

以上、詳細に説明したように、この発明に係る
シヨツトキー型光検出素子によれば透過光を有効
に利用するため、素子の面積を増大させることな
しに、光電流を増加させることができ、感度を高
めることができるなどの効果がある。
As described above in detail, the Schottky type photodetector according to the present invention makes effective use of transmitted light, so the photocurrent can be increased without increasing the area of the element, and the sensitivity can be increased. It has the effect of increasing the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のシヨツトキー型赤外光検出素子
を示す概略断面図、第2図は第1図に示すシヨツ
トキー型赤外光検出素子の光電流−白金膜厚との
測定結果を示す図、第3図は第1図のシヨツトキ
ー型赤外光検出素子の透過率−白金膜厚との測定
結果を示す図、第4図はこの発明に係るシヨツト
キー型光検出素子の一実施例を示す概略断面図で
ある。 1……P型シリコン基板、2……金属側電極、
3……シヨツトキー接合、4……ガードリング、
5……絶縁膜、6……金属配線、7……入射赤外
光、8……電気的絶縁膜、9……反射膜。なお、
図中、同一符号は同一または相当部分を示す。
FIG. 1 is a schematic cross-sectional view showing a conventional Schottky-type infrared light detection element, and FIG. 2 is a diagram showing measurement results of photocurrent versus platinum film thickness of the Schottky-type infrared light detection element shown in FIG. 1. FIG. 3 is a diagram showing the measurement results of transmittance versus platinum film thickness of the Schottky type infrared light detection element shown in FIG. 1, and FIG. 4 is a schematic diagram showing one embodiment of the Schottky type light detection element according to the present invention FIG. 1... P-type silicon substrate, 2... Metal side electrode,
3... shot key joint, 4... guard ring,
5... Insulating film, 6... Metal wiring, 7... Incident infrared light, 8... Electrical insulating film, 9... Reflective film. In addition,
In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 半導体と金属または金属硅化物で形成される
シヨツトキー接合によつて、半導体側から入射す
る光を検出するシヨツトキー型光検出素子におい
て、この金属または金属硅化物上に形成した電気
的絶縁膜と、この電気的絶縁膜上に形成した反射
膜とを備えたことを特徴とするシヨツトキー型光
検出素子。 2 前記半導体がシリコンであり、前記金属また
は金属硅化物が金、白金硅化物、インジウム硅化
物、またはパラジウム硅化物であることを特徴と
する特許請求の範囲第1項記載のシヨツトキー型
光検出素子。 3 前記電気的絶縁膜がシリコン酸化膜またはシ
リコン窒化膜であり、前記反射膜がアルミニウ
ム、モリブデン、タングステン、金または白金で
あることを特徴とする特許請求の範囲第1項記載
のシヨツトキー型光検出素子。 4 前記反射膜に所定の電位を与えて、静電しや
へいすることを特徴とする特許請求の範囲第1項
記載のシヨツトキー型光検出素子。
[Scope of Claims] 1. In a Schottky type photodetecting element that detects light incident from the semiconductor side by a Schottky junction formed of a semiconductor and a metal or metal silicide, A Schottky type photodetecting element comprising an electrically insulating film and a reflective film formed on the electrically insulating film. 2. The Schottky type photodetecting element according to claim 1, wherein the semiconductor is silicon, and the metal or metal silicide is gold, platinum silicide, indium silicide, or palladium silicide. . 3. The Schottky photodetector according to claim 1, wherein the electrically insulating film is a silicon oxide film or a silicon nitride film, and the reflective film is aluminum, molybdenum, tungsten, gold, or platinum. element. 4. The Schottky type photodetecting element according to claim 1, wherein a predetermined potential is applied to the reflective film to reduce static electricity.
JP56085248A 1981-06-01 1981-06-01 Schottky type light detecting element Granted JPS57199274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56085248A JPS57199274A (en) 1981-06-01 1981-06-01 Schottky type light detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56085248A JPS57199274A (en) 1981-06-01 1981-06-01 Schottky type light detecting element

Publications (2)

Publication Number Publication Date
JPS57199274A JPS57199274A (en) 1982-12-07
JPS6244826B2 true JPS6244826B2 (en) 1987-09-22

Family

ID=13853262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56085248A Granted JPS57199274A (en) 1981-06-01 1981-06-01 Schottky type light detecting element

Country Status (1)

Country Link
JP (1) JPS57199274A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4876586A (en) * 1987-12-21 1989-10-24 Sangamo-Weston, Incorporated Grooved Schottky barrier photodiode for infrared sensing
US5179430A (en) * 1988-05-24 1993-01-12 Nec Corporation Planar type heterojunction avalanche photodiode

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF APPLIED PHYSICS=1971 *
O.S.HEAVENS OPTICAL PROPERTIES OF THIN SOLID FILMS=1955 *

Also Published As

Publication number Publication date
JPS57199274A (en) 1982-12-07

Similar Documents

Publication Publication Date Title
US6346700B1 (en) Delta-doped hybrid advanced detector for low energy particle detection
US5859450A (en) Dark current reducing guard ring
JPH022692A (en) Infrared detecting trenched schottky barrier photodiode
US5101255A (en) Amorphous photoelectric conversion device with avalanche
US5047622A (en) Long wavelength infrared detector with heterojunction
JPS6244826B2 (en)
GB2100511A (en) Detector for responding to light at a predetermined wavelength, and method of making the detector
US8120078B2 (en) Photodiode structure
JP2998646B2 (en) Light receiving operation element
JP2773930B2 (en) Light detection device
JPH0524671B2 (en)
JPS6035834B2 (en) Semiconductor device for radiation detection
TW202114188A (en) Image sensor
JPS6214765B2 (en)
JPH0521353B2 (en)
JPS59143382A (en) Infrared ray detecting element
JPS6222405B2 (en)
JPH0527990B2 (en)
JPS6260827B2 (en)
JPH04241458A (en) Semiconductor optical detector
JPH0567800A (en) Optical semiconductor device
JPH04158575A (en) Solid-state image sensing device
JPH1050966A (en) Optical semiconductor integrated circuit
JPH02294070A (en) Photodetector built-in integrated circuit device
JPS6355982A (en) Photodetector