JPS6244712B2 - - Google Patents

Info

Publication number
JPS6244712B2
JPS6244712B2 JP55111339A JP11133980A JPS6244712B2 JP S6244712 B2 JPS6244712 B2 JP S6244712B2 JP 55111339 A JP55111339 A JP 55111339A JP 11133980 A JP11133980 A JP 11133980A JP S6244712 B2 JPS6244712 B2 JP S6244712B2
Authority
JP
Japan
Prior art keywords
semiconductor
photoelectric conversion
conversion device
conductivity type
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55111339A
Other languages
Japanese (ja)
Other versions
JPS5736875A (en
Inventor
Eiichi Yamaguchi
Takeshi Kobayashi
Yoshitaka Furukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11133980A priority Critical patent/JPS5736875A/en
Publication of JPS5736875A publication Critical patent/JPS5736875A/en
Publication of JPS6244712B2 publication Critical patent/JPS6244712B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 本発明は半導体光電変換装置に関する。[Detailed description of the invention] The present invention relates to a semiconductor photoelectric conversion device.

半導体光電変換装置として従来、第1図に示す
如く、例えばP型の半導体基板1内の主面2側に
N型の半導体領域3及び4がそれ等間に夫々PN
接合5及び6を介して半導体基板1による半導体
領域7が形成されるべく形成され、又半導体領域
7の主面2側の面上に透光性を有する絶縁層8を
介して透光性を有する電極9が配され、而して半
導体領域3及び4間に、それ等半導体領域3及び
4に予めオーミツクに附された電極10及び11
を介して動作電源12を負荷13を通じて接続し
且電極10及び9間にバイアス用電極14を電極
9側を正として接続せる状態で、半導体領域7に
電極9及び絶縁層8を通じて電極9側の外部より
光15を照射せしめた場合、その光の強さに応じ
た電流が負荷13に供給されるという、光電変換
機能の得られる構成のものが提案されている。
Conventionally, as a semiconductor photoelectric conversion device, as shown in FIG.
A semiconductor region 7 is formed by the semiconductor substrate 1 through the junctions 5 and 6, and a light-transmitting insulating layer 8 is formed on the main surface 2 side of the semiconductor region 7. An electrode 9 is arranged between the semiconductor regions 3 and 4, and electrodes 10 and 11 which have been ohmicly applied to the semiconductor regions 3 and 4 in advance are arranged between the semiconductor regions 3 and 4.
The operating power supply 12 is connected through the load 13 and the bias electrode 14 is connected between the electrodes 10 and 9 with the electrode 9 side being positive. A structure has been proposed that provides a photoelectric conversion function, in which when light 15 is irradiated from the outside, a current corresponding to the intensity of the light is supplied to the load 13.

所で斯る半導体光電変換装置の場合、その半導
体領域7の主面2側に半導体領域3及び4間に延
長せるN型の反転層が形成され即ちチヤンネルが
形成されている状態で、そのチヤンネルがそれへ
の光15の入射により生起する少数キヤリアに応
じた導電度を呈するという機構で上述せる光電変
換機能が得られるものであり、従つて第1図にて
上述せる従来の半導体光電変換装置は所謂MIS型
半導体光電変換装置と称し得るものであるが、そ
の光電変換機能が上述せる機構で得られるので、
その光電変換機能が、PN又はPIN接合を有し、
それを横切つて光の強さに応じた起電力を生ぜし
めるという機構で光電変換機能を得る様になされ
た所謂PN又はPIN接合型の半導体光電変換装置
の場合に比し、高速応答性を以つて得られる等、
PN又はPIN接合型半導体光電変換装置の場合に
比し優れた特性を以つて得られるものである。然
し乍ら第1図にて上述せる半導体光電変換装置の
場合、電極9がその全域に亘つて透光性を有する
ので、光15がPN接合5及び6の半導体領域7
側の部5a及び6aにも入射し、又半導体領域7
に光15の照射に基き生起せる少数キヤリアが
PN接合5及び6の部5a及び6aに拡散するの
で、PN接合5及び6の夫々を横切つて光15の
強さに応じた起電力が生じ、この為MIS型半導体
光電変換装置の構成を有して前述せる機構で得ら
れる光電変換機能がPN又はPIN接合型半導体光
電変換装置で得られると同様の光電変換機能に影
響されて得られ、依つてこの分MIS型半導体光電
変換装置の構成を有して得られる光電変換機能が
所期の優れた特性を以つて得られないという欠点
を有していた。
In the case of such a semiconductor photoelectric conversion device, an N-type inversion layer extending between the semiconductor regions 3 and 4 is formed on the main surface 2 side of the semiconductor region 7, that is, a channel is formed. The above-mentioned photoelectric conversion function is obtained through a mechanism in which the semiconductor photoelectric conversion device exhibits a conductivity corresponding to the minority carriers generated by the incidence of light 15 on it, and therefore, the conventional semiconductor photoelectric conversion device described above in FIG. can be called a so-called MIS type semiconductor photoelectric conversion device, and its photoelectric conversion function is obtained by the mechanism described above.
Its photoelectric conversion function has a PN or PIN junction,
Compared to the so-called PN or PIN junction type semiconductor photoelectric conversion device, which obtains the photoelectric conversion function by generating an electromotive force according to the intensity of light across it, it has a high-speed response. etc. obtained by
This provides superior characteristics compared to PN or PIN junction type semiconductor photoelectric conversion devices. However, in the case of the semiconductor photoelectric conversion device described above in FIG.
It also enters the side parts 5a and 6a, and also the semiconductor region 7.
The minority carriers that can be generated based on the irradiation of light 15 are
Since the light is diffused into the parts 5a and 6a of the PN junctions 5 and 6, an electromotive force corresponding to the intensity of the light 15 is generated across the PN junctions 5 and 6, respectively. The photoelectric conversion function obtained by the above-mentioned mechanism is obtained by being influenced by the same photoelectric conversion function as that obtained by the PN or PIN junction type semiconductor photoelectric conversion device, and therefore the configuration of the MIS type semiconductor photoelectric conversion device is The drawback is that the photoelectric conversion function obtained with this method cannot have the desired excellent characteristics.

依つて本発明は第1図にて上述せる従来の半導
体光電変換装置を基礎とするも、上述せる欠点の
ない新規な半導体光電変換装置を提案せんとする
もので、以下詳述する所より明らかとなるであろ
う。
Therefore, although the present invention is based on the conventional semiconductor photoelectric conversion device shown in FIG. It will be.

第2図は本発明による半導体光電変換装置の一
例を示し、第1図との対応部分には同一符号を附
し詳細説明はこれを省略するも、第1図にて上述
せる構成に於て、その半導体基板1の半導体領域
3及び4間の領域たる半導体領域7上に絶縁層8
を介して配された電極9が、その全域に亘つて透
光性であるに代え、半導体領域3及び4側の不透
光性電極部9a及び9bとそれ等不透光性電極部
9a及び9b間の透光性電極部9cとよりなり、
そしてこの場合、不透光性電極部9a及び9bが
それ等のPN接合5及び6の半導体領域7側の端
に対応する位置より透光性電極部9c側の長さ
L1及びL2をして、半導体領域7内に光15の照
射に基き生起する少数キヤリアの拡散長以上の長
さを有する事を除いては第1図の場合と同様の構
成を有する。尚斯る電極9は、絶縁層8上に導電
性金属例えば金でなる導電性層を100Å程度の如
く比較的薄く蒸着により附し、次でその導電性層
上の半導体領域3及び4側にそれと同じ導電性金
属層を3000Å程度の如く比較的厚く蒸着により附
すことにより形成し得る。
FIG. 2 shows an example of a semiconductor photoelectric conversion device according to the present invention. Parts corresponding to those in FIG. , an insulating layer 8 is formed on the semiconductor region 7 which is the region between the semiconductor regions 3 and 4 of the semiconductor substrate 1.
The electrodes 9 disposed through the electrodes are translucent over the entire area, but the electrodes 9a and 9b on the semiconductor regions 3 and 4 side and the non-transparent electrode parts 9a and 9b are translucent. It consists of a translucent electrode part 9c between 9b,
In this case, the length of the non-transparent electrode parts 9a and 9b from the position corresponding to the end of the semiconductor region 7 side of the PN junctions 5 and 6 on the transparent electrode part 9c side.
The structure is similar to that of FIG. 1, except that L 1 and L 2 have a length equal to or longer than the diffusion length of minority carriers generated in the semiconductor region 7 upon irradiation of the light 15. The electrode 9 is formed by depositing a conductive layer made of a conductive metal, such as gold, on the insulating layer 8 to a relatively thin thickness of about 100 Å, and then depositing a conductive layer on the semiconductor regions 3 and 4 on the conductive layer. The same conductive metal layer can be formed by vapor deposition to a relatively thick thickness, such as on the order of 3000 Å.

以上が本発明による半導体光電変換装置の一実
施例構成であるが、斯る構成によれば、それが上
述せる事項を除いては第1図に上述せる従来の半
導体光電変換装置と同様の構成を有するので、第
1図にて前述せる従来の半導体光電変換装置の場
合と同様に、半導体領域3及び4間に電極10及
び11を介して動作電源12を負荷13を通じて
接続し且電極10及び9間にバイアス用電極14
を接続せる状態で、半導体領域7に光15を電極
9及び絶縁層8を通じて照射した場合、半導体領
域7の主面2側にチヤンネルが形成されている状
態で、そのチヤンネルがそれへの光15の入射に
より生起する少数キヤリアに応じた導電度を呈す
るという機構で光電変換機能が得られること明ら
かであり、又斯る光電変換機能の得られる本発明
による半導体光電変換装置は第1図にて上述せる
従来の半導体光電変換装置の場合と同様に所謂
MIS型半導体光電変換装置と称し得ること明らか
である。
The above is an embodiment of the configuration of a semiconductor photoelectric conversion device according to the present invention. According to this configuration, it has the same configuration as the conventional semiconductor photoelectric conversion device shown in FIG. 1, except for the matters mentioned above. Therefore, as in the case of the conventional semiconductor photoelectric conversion device described above in FIG. Bias electrode 14 between 9
When the semiconductor region 7 is irradiated with light 15 through the electrode 9 and the insulating layer 8 with the semiconductor region 7 connected to the It is clear that a photoelectric conversion function can be obtained by a mechanism that exhibits conductivity according to minority carriers generated by the incidence of As in the case of the conventional semiconductor photoelectric conversion device mentioned above, the so-called
It is clear that it can be called an MIS type semiconductor photoelectric conversion device.

然し乍ら本発明による半導体光電変換装置の場
合、電極9の半導体領域3及び4側が不透光性電
極部9a及び9bであることにより、光15が
PN接合5及び6の半導体領域7側の部5a及び
6aに入射することがなく、又電極9の不透光性
電極部9a及び9bが、そのPN接合5及び6の
半導体領域7側の端に対応する位置より透光性電
極部9c側の長さL1及びL2をして、半導体領域
7内に光15の照射に基き生起する少数キヤリア
の拡散長以上の長さを有することにより、半導体
領域7内に光15の照射に基き生起する少数キヤ
リアがPN接合5及び6の部5a及び6aに拡散
することが実質的になく、依つて、第1図にて上
述せる従来の半導体光電変換装置の場合の如く
に、PN接合5及び6の夫々を横切つて光15の
強さに応じた起電力が生ずるということが実質的
にないものである。
However, in the case of the semiconductor photoelectric conversion device according to the present invention, since the semiconductor regions 3 and 4 sides of the electrode 9 are non-transparent electrode parts 9a and 9b, the light 15 is not transmitted.
It does not enter the parts 5a and 6a of the PN junctions 5 and 6 on the semiconductor region 7 side, and the non-transparent electrode parts 9a and 9b of the electrodes 9 do not enter the ends of the PN junctions 5 and 6 on the semiconductor region 7 side. By making the lengths L 1 and L 2 from the position corresponding to the transparent electrode part 9c side equal to or longer than the diffusion length of the minority carriers generated in the semiconductor region 7 due to the irradiation of the light 15. , the minority carriers generated in the semiconductor region 7 due to the irradiation of the light 15 are not substantially diffused into the parts 5a and 6a of the PN junctions 5 and 6, and therefore, the conventional semiconductor described above in FIG. Unlike in the case of a photoelectric conversion device, there is substantially no possibility that an electromotive force is generated across each of the PN junctions 5 and 6 in accordance with the intensity of the light 15.

この為第2図に示す本発明による半導体光電変
換装置の場合、MIS型半導体光電変換装置の構成
を有して前述せる機構で得られる光電変換機能
が、第1図にて上述せる従来の半導体光電変換装
置の場合の如くにPN又はPIN接合型半導体光電
変換装置で得られると同様の光電変換機能に影響
されて得られるということがなく、依つてMIS型
半導体光電変換装置の構成を有して得られる光電
変換機能が所期の優れた特性を以つて得られると
いう大なる特徴を有するものである。因みに半導
体基板1がシリコンでなり、半導体領域3及び4
間の半導体領域7が15μmの長さを有し、絶縁層
8がSiO2でなり、電極9が前述せる具体例を以
つて構成されてなる構成を有する場合に於て、電
源12の電圧VDを2V、光15の波長を6328Åと
せる状態で、電源14の電圧Vgに対する光電流
増幅率Mの関係を測定した結果、第3図に示す結
果が得られた。これよりしても本発明による半導
体光電変換装置によれば、優れた特性を以つて光
電変換機能の得られることが明らかであろう。
Therefore, in the case of the semiconductor photoelectric conversion device according to the present invention shown in FIG. 2, the photoelectric conversion function obtained by the above-mentioned mechanism with the configuration of the MIS type semiconductor photoelectric conversion device is different from that of the conventional semiconductor photoelectric conversion device shown in FIG. Unlike a photoelectric conversion device, the photoelectric conversion function obtained by a PN or PIN junction type semiconductor photoelectric conversion device is not affected and obtained, and it has the configuration of an MIS type semiconductor photoelectric conversion device. It has the great feature that the photoelectric conversion function obtained by the method can be obtained with the expected excellent characteristics. Incidentally, the semiconductor substrate 1 is made of silicon, and the semiconductor regions 3 and 4 are
In the case where the semiconductor region 7 between has a length of 15 μm, the insulating layer 8 is made of SiO 2 , and the electrode 9 is configured according to the specific example described above, the voltage V of the power source 12 The relationship between the photocurrent amplification factor M and the voltage V g of the power source 14 was measured with D being 2 V and the wavelength of the light 15 being 6328 Å, and the results shown in FIG. 3 were obtained. From this, it is clear that the semiconductor photoelectric conversion device according to the present invention can provide a photoelectric conversion function with excellent characteristics.

尚上述に於ては本発明の一例を示したに留ま
り、上述せる構成に於てその半導体基板1をN
型、半導体領域3及び4をP型とすることも出
来、その他本発明の精神を脱することなしに種々
の変型変更をなし得るであろう。
It should be noted that the above description is merely an example of the present invention, and the semiconductor substrate 1 in the above-mentioned configuration is
The semiconductor regions 3 and 4 could be of P type, and various other modifications could be made without departing from the spirit of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体光電変換装置を示す略線
的断面図、第2図は本発明による半導体光電変換
装置の一例を示す略線的断面図、第3図はその説
明に供する特性曲線図である。 図中1は半導体基板、2は主面、3,4及び7
は半導体領域、5及び6はPN接合、8は絶縁
層、9は電極、9a,9bは不透光性電極部、9
cは透光性電極部を夫々示す。
FIG. 1 is a schematic cross-sectional view showing a conventional semiconductor photoelectric conversion device, FIG. 2 is a schematic cross-sectional view showing an example of a semiconductor photoelectric conversion device according to the present invention, and FIG. 3 is a characteristic curve diagram for explaining the device. It is. In the figure, 1 is the semiconductor substrate, 2 is the main surface, 3, 4 and 7
are semiconductor regions, 5 and 6 are PN junctions, 8 is an insulating layer, 9 is an electrode, 9a and 9b are non-transparent electrode parts, 9
c indicates a translucent electrode portion, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 第1の導電型を有する半導体基板内の主面側
に第1の導電型とは逆の第2の導電型を有する第
1及び第2の半導体領域がそれ等間に夫々第1及
び第2のPN接合を介して上記半導体基板による
第3の半導体領域を形成すべく形成され、上記第
3の半導体領域の上記主面側の面上に透光性を有
する絶縁層を介して電極が配され、該電極が上記
第1及び第2の半導体領域側の第1及び第2の不
透光性電極部と該第1及び第2の不透光性電極部
間の透光性電極部とよりなり、上記第1及び第2
の不透光性電極部が、それ等の上記第1及び第2
のPN接合の上記第3の半導体領域側の端に対応
する位置より上記透光性電極部側の長さをして、
上記第3の半導体領域に光照射に基き生起する少
数キヤリアの拡散長以上の長さを有する事を特徴
とする半導体光電変換装置。
1 First and second semiconductor regions having a second conductivity type opposite to the first conductivity type are provided on the main surface side of a semiconductor substrate having a first conductivity type, and first and second semiconductor regions having a second conductivity type opposite to the first conductivity type are disposed between the first and second semiconductor regions, respectively. A third semiconductor region is formed by the semiconductor substrate through a PN junction of 2, and an electrode is formed on the main surface side of the third semiconductor region through a light-transmitting insulating layer. and the electrode includes first and second non-transparent electrode portions on the side of the first and second semiconductor regions and a translucent electrode portion between the first and second non-transparent electrode portions. Therefore, the above first and second
The non-transparent electrode portions are connected to the first and second electrode portions.
The length from the position corresponding to the end of the PN junction on the third semiconductor region side to the transparent electrode part side,
A semiconductor photoelectric conversion device characterized in that the third semiconductor region has a length equal to or longer than the diffusion length of minority carriers generated upon light irradiation.
JP11133980A 1980-08-13 1980-08-13 Semiconductor photoelectric converter Granted JPS5736875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11133980A JPS5736875A (en) 1980-08-13 1980-08-13 Semiconductor photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11133980A JPS5736875A (en) 1980-08-13 1980-08-13 Semiconductor photoelectric converter

Publications (2)

Publication Number Publication Date
JPS5736875A JPS5736875A (en) 1982-02-27
JPS6244712B2 true JPS6244712B2 (en) 1987-09-22

Family

ID=14558682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11133980A Granted JPS5736875A (en) 1980-08-13 1980-08-13 Semiconductor photoelectric converter

Country Status (1)

Country Link
JP (1) JPS5736875A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3413222C2 (en) * 1984-04-07 1995-02-09 Kolbus Gmbh & Co Kg Method for transferring book blocks into the transport means of a book binding machine and device for carrying out the method
JP2009065858A (en) * 2007-09-11 2009-04-02 Daiwa Seiko Inc Fishing reel

Also Published As

Publication number Publication date
JPS5736875A (en) 1982-02-27

Similar Documents

Publication Publication Date Title
JPH022692A (en) Infrared detecting trenched schottky barrier photodiode
JPH05506332A (en) Semiconductor device with silicon layer
US4144094A (en) Radiation responsive current generating cell and method of forming same
JP3646940B2 (en) Solar cell
US4482807A (en) Imaging devices and systems
US4244750A (en) Photovoltaic generator
JPH03185879A (en) Photoelectric converter
US4383267A (en) Avalanche photodiode and method of making same
JPS5812377A (en) High speed photoelectric detecting element and method of producing same
US4525593A (en) Inverted, optically enhanced solar cell
JP2002026366A (en) Semiconductor device
JPS6244712B2 (en)
KR20040049123A (en) Pin photo diode
JPS6231834B2 (en)
JPH0818091A (en) Semiconductor photoelectric transducer with plurality of photodiodes
JPH01216581A (en) Semiconductor device
KR100237183B1 (en) Metal-semiconductor photoelectronic device
GB2149572A (en) Semiconductor diode lasers
JP2583032B2 (en) Light receiving element
JPS5913724B2 (en) light control circuit
JPH03132080A (en) Photovoltaic device
JPS61185979A (en) Integrated photoelectric conversion element
JPH09186355A (en) Photodetector
JPS6015005B2 (en) Photovoltaic infrared sensing element
JPS6140148B2 (en)