JPS6244571B2 - - Google Patents

Info

Publication number
JPS6244571B2
JPS6244571B2 JP53076366A JP7636678A JPS6244571B2 JP S6244571 B2 JPS6244571 B2 JP S6244571B2 JP 53076366 A JP53076366 A JP 53076366A JP 7636678 A JP7636678 A JP 7636678A JP S6244571 B2 JPS6244571 B2 JP S6244571B2
Authority
JP
Japan
Prior art keywords
mixture
molded
glass fibers
resin
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53076366A
Other languages
Japanese (ja)
Other versions
JPS5411174A (en
Inventor
Reohorudo Edoaado Ban Gatsuse Ren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stamicarbon BV
Original Assignee
Stamicarbon BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stamicarbon BV filed Critical Stamicarbon BV
Publication of JPS5411174A publication Critical patent/JPS5411174A/en
Publication of JPS6244571B2 publication Critical patent/JPS6244571B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • B29C67/242Moulding mineral aggregates bonded with resin, e.g. resin concrete
    • B29C67/243Moulding mineral aggregates bonded with resin, e.g. resin concrete for making articles of definite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • B29C70/021Combinations of fibrous reinforcement and non-fibrous material
    • B29C70/025Combinations of fibrous reinforcement and non-fibrous material with particular filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/06Unsaturated polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0854Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns in the form of a non-woven mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、不飽和ポリエステル樹脂と鉱物質
充填材と酸化マグネシウムとを混合し、かくして
得られた混合物をガラス繊維の存在の下に増粘
し、増粘した混合物の一部を高温で加圧成形する
ことにより成形品を製造する方法に関する。 不飽和ポリエステル樹脂と鉱物質充填材とガラ
ス繊維とを含む多く用いられる加圧成形素材は
「混練した成形用コンパウンド」(DMC)として
従前から市場で知られている。この成形素材は比
較的多量の樹脂と比較的長い結束されたガラス繊
維を含有している。この成形素材は任意の形状に
成形したり強く曲げたりできる壁厚の小さな成形
品を製造するには適当な素材と言えない。ガラス
繊維は加圧成形中に所定の方向に配向されるため
重合クリンプが一様に補償されなくなり、強度お
よび弾性の分布が不均等になる。更に成形品の表
面に存在するガラス繊維束は毛管のように作用
し、水分の多い環境では製品の質が低下する。成
形素材には多量の空気が取入れられているため成
形素材を所望のように成形された薄肉の成形品に
加工することは困難である。更に樹脂含有量が多
いため成形品が高価になる。 「シート状の成形用コンパウンド」“SMC”と
いう名称で知られている別の加圧成形素材は、前
記の成分の他に酸化マグネシウムを含有してい
る。この混合物はポリエチレンはくの間でガラス
繊維層の存在の下に増粘させる。次にその加圧成
形素材またはその一部をガラス繊維層と共に型に
入れ、高温の下に全体を加圧成形する。このよう
な加圧成形素材の加工にはかなり複雑な操作が必
要である。更にガラス繊維と樹脂含有量が高いの
で成形品が高価になる。 「バルク成形用コンパウンド」“BMC”として
知られる別の加圧成形素材は上述のSMCと同じ
組成であるが、混練機で製造され、ガラス繊維の
含有量が高いため、DMCと同じ欠陥を有する。 本発明の課題は、上述の各混合物に比べて加工
性がよく廉価でしかもそれらと同等または以上の
弾性係数を有する前記の組成の混合物から成形品
を製造する方法を提供することにある。 この目的は本発明によれば、不飽和ポリエステ
ル樹脂と鉱物質充填材と酸化マグネシウムとを混
合し、かくして得られた混合物をガラス繊維の存
在の下に増粘し、増粘した混合物の一部を高温で
加圧成形することにより成形品を製造する方法に
おいて、該混合物が不飽和ポリエステル樹脂の他
に、大体において500μ未満の粒径を有する無機
充填材80〜95重量%と、全混合物に対して1〜5
重量%のカラス繊維と、不飽和ポリエステル樹脂
に関して0.5〜5重量%の増粘剤としてのアルカ
リ土類金属の酸化物特に酸化マグネシウムとを含
み、ガラス繊維の少くとも3/4は15mm未満の長さ
を有し、ランダムに分布させた単繊維として存在
していることと、該混合物が均密になりほとんど
空気を含まなくなるまで該混合物を増粘すること
を特徴とする成形品の製造方法により達成され
る。 本発明は、充填材の含有量が非常に高く且つ所
望の形状の高品質の薄肉成形品に非常に良く成形
できる加圧成形素材の製造が可能であるというこ
との認識に基づいている。そのための前提はガラ
ス繊維が特定の形状および量において存在するこ
とである。樹脂とガラス繊維の含有量が少ないた
め、従来の混合物を用いた場合に比べて、成形品
の製造コストが減少する。本発明の製造方法の第
2の前提は、加圧成形の前に加圧成形素材を均密
にしほとんど空気を含まないようにすることであ
る。 ガラス繊維を存在させるのは重合クリンプを補
償するために必要である。重合クリンプを良好に
分布させるにはガラス繊維は加圧成形素材中に単
繊維としてランダムに分布させなければならな
い。また加圧成形時にガラス繊維をランダムに分
布させるにはガラス繊維が比較的短かいことが必
要である。ガラス繊維の含有量が上述の値より少
ないと増粘のための混合物の加工が困難になるこ
とも判明している。成形品はガラス繊維量が少な
いのに十分高い弾性係数を有する。1〜2.5重量
%より高くないガラス繊維含有量によつて非常に
よい結果が得られる。単繊維の形状のガラス繊維
が加圧成形素材中に組込まれているので水分の作
用は生じない。 大部分のガラス繊維の好適な長さは6〜12mm、
平均長さは約9mmである。ガラス繊維は所望によ
り集束された状態で混合装置に導いてもよいが、
最終的にランダムに分布された状態でガラス繊維
が混合物中に存在するに至るまで撹拌を続けなけ
ればならない。ガラス繊維がランダムに分布され
ているため、強く曲げた個所でも重合クリンプが
十分に分配され、成形品の弾性係数はすべての方
向において同じ値になる。 充填材には炭酸カルシウムマグネシウム(ドロ
マイト)、炭酸カルシウム、石英粉末、タルク、
各種の粘土などの無機充填材が適当である。大部
分の充填材の粒径を500μ未満特に200μ未満にす
ると壁厚が例えば5〜10mmのように大きすぎない
成形品のための加圧成形性のよい素材が得られ
る。 不飽和ポリエステル樹脂には多価アルコールお
よび多価不飽和酸または酸無水物の任意の適当な
反応生成物を使用し得る。多価アルコールにはプ
ロピレングリコール、エチレングリコール、ペン
タンジオール、ブタンジオール、ブチレングリコ
ールおよびジプロピレングリコールがあり、酸お
よび酸無水物には無水マレイン酸、無水フタル
酸、無水イソフタル酸およびアジピン酸がある。 不飽和ポリエステル樹脂は通常は網状結合させ
る。この目的にはスチレン、メチルメタクリレー
ト、酢酸ビニルおよびジアリルフタレートが適当
である。網状結合の触媒には常用されるペルオキ
シド例えばベンゾイルペルオキシドまたは第3ブ
チルペルベンゾエートを使用し得る。水和ビスフ
エノールAと触媒から成る製品(商品名、シノラ
イト373)もこの目的に使用し得る。 上述の樹脂と充填材とガラス繊維との混合物は
粘稠な液状である。本発明の好ましい実施態様に
よればその混合物は容器に注入して増粘し、ほと
んど空気を含まない均密な加圧成形素材とする。
本明細書中において「均密な加圧成形素材」と
は、与えられた形状をほとんど失わず切断により
いくつかの単体に分離できる程度の粘性を有する
濃密なパテ状の物質を意味する。この増粘は混入
される酸化マグネシウムの作用に基づいて行われ
る。増粘された物質から必要な量を切出して加圧
成形型またはマトリツクス中に入れ、高温の下に
加圧成形を行つて所望の成形品とする。従来の加
圧成形素材とは対照的に、空気を含まない均密な
加圧成形素材が得られることは非常に重要であ
る。 素材の加圧成形中の温度および圧力は重要でな
く、特に最適の加圧成形時間および触媒に関連し
て所望の成形品の壁厚により規定される。普通の
温度は100〜250℃、普通の圧力は3〜20Kg/cm2
ある。また加圧成形時間は通常0.5〜30分特に1.5
〜6分である。 上述の製造方法により製造された成形品には加
圧成形時またはその直後に硬調の表面層または装
飾表面層を付与し得る。加圧成形の直後にまだ熱
く完全には硬化してない成形品を樹脂粉末で処理
してもよい。この目的のためメチロール基または
フエノール基のような遊離ヒドロキシル基を含む
エポキシ樹脂、不飽和ポリエステル樹脂またはそ
れらの樹脂の混合物を使用し得る。それによりま
だ完全には硬化していない成形品のまだ遊離して
いるヒドロキシル基が3次元網状化結合作用を行
い、表面層と成形品とが完全に付着する。成形品
がまだ最低150℃好ましくは175〜200℃の温度を
有している時にこの処理方法を適用すると有利で
ある。この場合本発明による成形品が無機充填材
を多く含有することにより大きな熱容量を有する
ことは利点になる。 樹脂粉末による処理は、射出、静電噴霧、ある
いは樹脂粉末の流動床中の浸漬によつて行い得
る。その場合1m3当り50〜300gの樹脂粉末を付
与できる。 硬調の表面層を形成する別の方法は予含浸させ
た1または複数のガラス繊維フリースを適用する
ことである。その場合加圧成形素材を加圧成形型
あるいはマトリツクス中に注入する前に、エポキ
シ樹脂、ポリエステル樹脂またはそれらの混合物
中に含浸させたしまたは複数のガラス繊維フリー
スを加圧成形型あるいはマトリツクス中に装入す
る。透明あるいは半透明の層が所望の場合には硬
化後の樹脂の屈折率をガラス繊維フリースの屈折
率にほぼ対応させると有利である。 2枚のガラス繊維フリースの間に装飾を入れる
ときれいな外観が得られる。この装飾を形成する
可能性は多くあり、例えばフリースの間に微細に
分割された有機物質または無機物質を配設しても
よい。これらの物質には金属粉末、有色鉱物、重
合体粒子などがある。更に好ましくは着色樹脂に
より一方のフリースにモチーフを印刷してもよ
く、上記2つの方法を組合わせて使用することも
できる。 オランダ特許願7305807号に記載された方法に
従つて成形品に装飾をほどこすこともできる。 また構造化した壁体を有する成形型を利用して
表面を構造化することもできる。 硬調の表面層として1または複数のガラス繊維
フリースを用いる場合には成形品の他側にも1枚
のフリースを配設すると有利である。 次に実施例について説明する。 実施例 水和されたビスフエニルA1.5モル、プロピレ
ングリコール1.5モル、無水フタル酸0.5モル、無
水マレイン酸1モルおよび無水フマル酸1モルか
ら成る重縮合生成物を不飽和ポリエステル樹脂と
して使用した。この樹脂650部をスチレン単量体
235重量部、ジアリルフタレート100重量部、第3
ブチルペルベンゾエート10重量部および水5重量
部と混合した。得られた樹脂混合物に酸化マグネ
シウム1重量%を添加した。 得られた混合物から、混合物の全量に対して粒
径0〜200μの炭酸カルシウムマグネシウム85重
量%および大部分の長さが6〜9mmのガラス繊維
1.5重量%を含有する混合物を調製した。得られ
た粘着性の混合物を容器中に注入した。混合物は
24時間後に増粘され、ほとんど空気を含まない裁
断可能な均密な加圧成形素材となつた。 この加圧成形素材から切出した一部を200℃の
温度と150Kg/cm2(15MPa)の圧力で1分30秒間
マトリツクス中で加圧成形し、厚さ約8mmの板状
体とした。この板状体の弾性係数は同じ方法で加
圧成形された市販のBMCおよびSMCによる板状
体が115.000Kg/cm2(11.5GN/m2)ないし110.000
Kg/cm2(11GN/m2)であるのに対し約150.000
Kg/cm2(15GN/m2)であつた。 板状体の温度がなお190℃である間に着色した
固形のエポキシ樹脂とポリエステル樹脂との混合
物をきわめて微細に分割された状態で板状体の表
面に噴霧によつて1m2当り約200gの割合で付与
した。ゆう薬を塗布した鋳鉄製のドウシユベツケ
ンの表面とほとんど区別できない表面をもつ板状
体が冷却後に得られた。この板状体はドウシユベ
ツケンについての米国商業規格CS222−59をみた
すものであつた。沸騰している水で140時間処理
してもその美麗な外観は変化しなかつた。 未処理表面をもつ同様の板状体を海洋の気候条
件の下に長時間おいた場合にも表面の可視的な変
化は認められなかつた。 同一の加圧成形試験を0.5重量%および6重量
%のガラス繊維含有量として行つた。ガラス繊維
の含有量を0.5重量%とした場合には板状体は非
常に脆くなり、6重量%の場合は混合物を注型し
て空気を含まない均密な加圧成形物とすることは
できなかつた。 上記と同じ重量成分比を有するがガラス繊維の
長さを大にした成形素材は、ランダムに配向させ
た短繊維状のガラス繊維を含有する成形素材より
も、強く曲げられた薄肉の成形品の加圧成形には
適合していないことが明らかになつた。その場合
曲げられた個所の強度は短繊維を使用した場合に
比べて低下することも明らかになつた。強く曲げ
られた個所の破断の可能性は非常に高く、この成
形素材から有用な物品を製造することはできなか
つた。 充填材の含有量は実験上95重量%まで高くする
ことができたが、それ以上の含有量とすると凝集
力が全く失われた。 市場で入手できるバルク成形用コンパウンド
(BMC)、シート成形用コンパウンド(SMC)お
よび本発明による成形素材の組成、コストおよび
弾性係数を下表に示す。
This invention involves mixing an unsaturated polyester resin, a mineral filler and magnesium oxide, thickening the mixture thus obtained in the presence of glass fibers, and pressuring a portion of the thickened mixture at high temperatures. This invention relates to a method of manufacturing a molded article by molding. Commonly used pressure molding materials containing unsaturated polyester resins, mineral fillers, and glass fibers have traditionally been known in the market as "mixed molding compounds" (DMC). This molding material contains a relatively large amount of resin and a relatively long length of bound glass fibers. This molding material is not suitable for producing molded products with small wall thickness that can be molded into arbitrary shapes or strongly bent. Because the glass fibers are oriented in a predetermined direction during pressing, the polymerization crimp is not uniformly compensated for, resulting in an uneven distribution of strength and elasticity. Furthermore, the glass fiber bundles present on the surface of the molded article act like capillaries, and the quality of the product deteriorates in a humid environment. Since a large amount of air is introduced into the molding material, it is difficult to process the molding material into a thin-walled molded product shaped as desired. Furthermore, the high resin content makes the molded product expensive. Another pressure molding material known under the name "sheet molding compound""SMC" contains magnesium oxide in addition to the above-mentioned components. This mixture is thickened in the presence of a glass fiber layer between polyethylene foils. Next, the press-formed material or a portion thereof is placed in a mold together with a glass fiber layer, and the whole is press-formed under high temperature. Processing such pressure-formed materials requires quite complex operations. Moreover, the high glass fiber and resin content makes the molded parts expensive. Another pressure-molded material known as "bulk molding compound""BMC" has the same composition as the SMC mentioned above, but is produced in a kneader and has a higher content of glass fibers, so it has the same deficiencies as DMC. . An object of the present invention is to provide a method for producing a molded article from a mixture having the above-mentioned composition, which has better processability and is less expensive than the above-mentioned mixtures, and has an elastic modulus equal to or higher than that of the above-mentioned mixtures. This purpose, according to the invention, is achieved by mixing an unsaturated polyester resin, a mineral filler and magnesium oxide, thickening the mixture thus obtained in the presence of glass fibers, and forming a part of the thickened mixture. A process for producing molded articles by pressure molding at high temperatures, the mixture comprising, in addition to the unsaturated polyester resin, 80 to 95% by weight of an inorganic filler having a particle size of approximately less than 500 μm, in the total mixture. 1-5 against
% by weight of glass fibers and 0.5 to 5% by weight of oxides of alkaline earth metals as thickeners, especially magnesium oxide, with respect to the unsaturated polyester resin, at least 3/4 of the glass fibers having a length of less than 15 mm. A method for producing a molded article, characterized in that the mixture is homogeneous and contains almost no air; achieved. The invention is based on the recognition that it is possible to produce pressed blanks which have a very high filler content and which are very well formed into high-quality, thin-walled molded parts of the desired shape. The prerequisite for this is that the glass fibers are present in a specific shape and quantity. Due to the lower content of resin and glass fibers, the manufacturing cost of the molded article is reduced compared to when using conventional mixtures. The second premise of the manufacturing method of the present invention is that the press-formed material is made homogeneous so that it contains almost no air before press-forming. The presence of glass fibers is necessary to compensate for polymerization crimp. To achieve good distribution of the polymer crimp, the glass fibers must be randomly distributed as single fibers in the compacted mass. Furthermore, in order to randomly distribute the glass fibers during pressure molding, it is necessary that the glass fibers be relatively short. It has also been found that if the content of glass fibers is less than the abovementioned values, the processing of the mixture for thickening becomes difficult. The molded article has a sufficiently high elastic modulus despite the low amount of glass fiber. Very good results are obtained with a glass fiber content of no higher than 1-2.5% by weight. Since the glass fibers in monofilament form are incorporated into the pressed material, no moisture action occurs. The preferred length of most glass fibers is 6-12mm;
The average length is approximately 9 mm. The glass fibers may be guided to the mixing device in a focused state if desired;
Stirring must be continued until the glass fibers are finally present in the mixture in a randomly distributed manner. Due to the random distribution of the glass fibers, the polymerization crimp is well distributed even at strongly bent locations, and the elastic modulus of the molded part is the same in all directions. Filling materials include calcium magnesium carbonate (dolomite), calcium carbonate, quartz powder, talc,
Inorganic fillers such as various clays are suitable. If the particle size of the bulk filler is less than 500 .mu.m, especially less than 200 .mu.m, a material with good pressability for moldings with wall thicknesses not too large, for example from 5 to 10 mm, is obtained. Any suitable reaction product of a polyhydric alcohol and a polyunsaturated acid or anhydride may be used for the unsaturated polyester resin. Polyhydric alcohols include propylene glycol, ethylene glycol, pentanediol, butanediol, butylene glycol, and dipropylene glycol; acids and acid anhydrides include maleic anhydride, phthalic anhydride, isophthalic anhydride, and adipic acid. Unsaturated polyester resins are usually network bonded. Styrene, methyl methacrylate, vinyl acetate and diallyl phthalate are suitable for this purpose. Customary peroxides such as benzoyl peroxide or tert-butyl perbenzoate can be used to catalyst the network. A product consisting of hydrated bisphenol A and a catalyst (trade name Sinolite 373) can also be used for this purpose. The mixture of the resin, filler and glass fibers described above is a viscous liquid. According to a preferred embodiment of the invention, the mixture is poured into a container and thickened to form a homogeneous press-formed mass containing almost no air.
As used herein, the term "homogeneous pressure-molded material" refers to a dense putty-like material that has a viscosity that allows it to be separated into several individual pieces by cutting without nearly losing its given shape. This thickening takes place on the basis of the action of the magnesium oxide mixed in. The required amount is cut out from the thickened material, placed in a pressure mold or matrix, and pressure molded at high temperature to form the desired molded product. In contrast to conventional pressure-formed materials, it is of great importance that air-free, homogeneous pressure-formed materials can be obtained. The temperature and pressure during pressing of the blank are not critical and are determined by the desired wall thickness of the molded part, especially in relation to the optimum pressing time and catalyst. The normal temperature is 100~250°C and the normal pressure is 3~20Kg/ cm2 . In addition, the pressure molding time is usually 0.5 to 30 minutes, especially 1.5
~6 minutes. A high-contrast surface layer or a decorative surface layer can be provided to the molded article produced by the above-mentioned production method during or immediately after pressure molding. Immediately after pressure molding, a molded article that is still hot and not completely cured may be treated with resin powder. Epoxy resins, unsaturated polyester resins or mixtures of these resins containing free hydroxyl groups such as methylol or phenol groups may be used for this purpose. As a result, the still free hydroxyl groups of the not yet completely cured molded article perform a three-dimensional network bonding action, resulting in complete adhesion of the surface layer and the molded article. It is advantageous to apply this treatment method when the molded article still has a temperature of at least 150°C, preferably 175-200°C. In this case, it is an advantage that the molded article according to the invention has a large heat capacity due to its high content of inorganic filler. Treatment with resin powder can be carried out by injection, electrostatic spraying, or immersion of the resin powder in a fluidized bed. In that case, 50 to 300 g of resin powder can be applied per 1 m 3 . Another method of forming a high contrast surface layer is to apply one or more pre-impregnated glass fiber fleeces. In that case, before the pressing material is poured into the pressing mold or matrix, it is impregnated with an epoxy resin, a polyester resin or a mixture thereof, or a plurality of glass fiber fleeces are placed in the pressing mold or matrix. Charge. If a transparent or translucent layer is desired, it is advantageous for the refractive index of the cured resin to approximately correspond to the refractive index of the glass fiber fleece. Adding decorations between two pieces of fiberglass fleece gives it a nice look. There are many possibilities for forming this decoration, for example finely divided organic or inorganic substances may be arranged between the fleece. These materials include metal powders, colored minerals, and polymer particles. More preferably, a motif may be printed on one of the fleeces using a colored resin, and the above two methods may also be used in combination. It is also possible to decorate the molded article according to the method described in Dutch Patent Application No. 7305807. It is also possible to structure the surface using molds with structured walls. If one or more glass fiber fleeces are used as the high-contrast surface layer, it is advantageous to arrange one fleece on the other side of the molded article as well. Next, an example will be described. EXAMPLE A polycondensation product consisting of 1.5 mol of hydrated bisphenyl A, 1.5 mol of propylene glycol, 0.5 mol of phthalic anhydride, 1 mol of maleic anhydride and 1 mol of fumaric anhydride was used as unsaturated polyester resin. 650 parts of this resin was added to styrene monomer.
235 parts by weight, 100 parts by weight of diallyl phthalate, 3rd
It was mixed with 10 parts by weight of butyl perbenzoate and 5 parts by weight of water. 1% by weight of magnesium oxide was added to the resulting resin mixture. From the mixture obtained, 85% by weight of calcium magnesium carbonate with a particle size of 0 to 200 μ and a majority of glass fibers with a length of 6 to 9 mm, based on the total amount of the mixture.
A mixture containing 1.5% by weight was prepared. The resulting sticky mixture was poured into a container. The mixture is
After 24 hours, the viscosity increased and the material became a homogeneous, press-formed material that contained almost no air and was cuttable. A portion cut out from this pressure-molded material was pressure-molded in a matrix at a temperature of 200° C. and a pressure of 150 kg/cm 2 (15 MPa) for 1 minute and 30 seconds to form a plate-shaped body approximately 8 mm thick. The elastic modulus of this plate is 115.000Kg/cm 2 (11.5GN/m 2 ) to 110.000 for commercially available BMC and SMC plates pressure-formed using the same method.
Kg/cm 2 (11GN/m 2 ) but about 150.000
Kg/cm 2 (15GN/m 2 ). While the temperature of the plate is still 190°C, a very finely divided mixture of colored solid epoxy resin and polyester resin is sprayed onto the surface of the plate at a rate of about 200 g per 1 m 2 . Granted as a percentage. After cooling, a plate-like body was obtained whose surface was almost indistinguishable from that of a coated cast iron dowel. This plate complied with US Commercial Standard CS222-59 for dosing. Even after being treated with boiling water for 140 hours, its beautiful appearance remained unchanged. When a similar plate with an untreated surface was exposed to marine climatic conditions for an extended period of time, no visible changes in the surface were observed. Identical pressure molding tests were conducted with glass fiber contents of 0.5% and 6% by weight. When the glass fiber content is 0.5% by weight, the plate becomes extremely brittle, and when the content is 6% by weight, it is impossible to cast the mixture into a homogeneous pressure-molded product that does not contain air. I couldn't do it. A molding material with the same weight component ratio as above but with longer glass fibers produces a more strongly bent, thin-walled molded product than a molding material containing short, randomly oriented glass fibers. It became clear that it was not suitable for pressure molding. It has also become clear that in this case, the strength at the bent portion is lower than when short fibers are used. The possibility of breakage at strongly bent locations was very high, and it was not possible to produce useful articles from this molded material. The filler content could be increased up to 95% by weight in experiments, but if the content was higher than that, the cohesive force was completely lost. The composition, cost and elastic modulus of commercially available bulk molding compounds (BMC), sheet molding compounds (SMC) and molding materials according to the invention are shown in the table below.

【表】【table】

【表】 青銅粉末をその間にあらかじめ噴霧により付着
させた2枚の予含浸ガラス繊維フリースを加圧成
形過程中に装飾として配設することもきわめて容
易にできることが判明した。等量の粉末を同じ方
法で付着させた場合には装飾の再現可能性も良好
であつた。 本発明は比較的複雑な成形品だけでなく、フリ
ースや壁板のような比較的簡単な成形品にも適用
される。改質エポキシ樹脂は単色でなくともよ
く、任意または系統的にその色相を変化させても
よい。
It has been found that it is also very easy to arrange two pre-impregnated glass fiber fleeces, between which bronze powder has been previously applied by spraying, as a decoration during the pressing process. The reproducibility of the decoration was also good when equal amounts of powder were applied in the same way. The invention applies not only to relatively complex molded articles, but also to relatively simple molded articles such as fleeces and wallboards. The modified epoxy resin does not have to be monochromatic, and its hue may be changed arbitrarily or systematically.

Claims (1)

【特許請求の範囲】 1 不飽和ポリエステル樹脂と鉱物質充填材と酸
化マグネシウムとを混合し、かくして得られた混
合物をガラス繊維の存在の下に増粘し、増粘した
混合物の一部を高温で加圧成形することにより成
形品を製造する方法において、該混合物が不飽和
ポリエステル樹脂の他に、大体において500μ未
満の粒径を有する無機充填材80〜95重量%と、全
混合物に対して1〜5重量%のガラス繊維と、不
飽和ポリエステル樹脂に関して0.5〜5重量%の
増粘剤としてのアルカリ土類金属の酸化物特に酸
化マグネシウムとを含み、ガラス繊維の少くとも
3/4は15mm未満の長さを有し、ランダムに分布さ
せた単繊維として存在していることと、該混合物
が均密になりほとんど空気を含まなくなるまで該
混合物を増粘することを特徴とする成形品の製造
方法。 2 1〜2.5重量%のガラス繊維を存在させる特
許請求の範囲第1項記載の方法。 3 大部分のガラス繊維が6〜12mmの長さを有す
る特許請求の範囲第1項または第2項記載の方
法。 4 ガラス繊維の平均長さが約9mmである特許請
求の範囲第1項から第3項までのいずれか1項記
載の方法。 5 大部分の充填材の粒径が200μ未満である特
許請求の範囲第1項から第4項までのいずれか1
項記載の方法。 6 混合物を1〜48時間で増粘し均密な空気をほ
とんど含まない加圧成形素材とする特許請求の範
囲第1項から第5項までのいずれか1項記載の方
法。 7 濃縮した加圧成形素材を100〜250℃の温度と
30〜200Kg/cm2の圧力で加圧成形する特許請求の
範囲第1項から第6項までのいずれか1項記載の
方法。 8 完全には硬化していない状態の成形品を少く
とも150℃の温度で樹脂紛末で処理する特許請求
の範囲第1項から第7項までのいずれか1項記載
の方法。 9 遊離ヒドロキシル基を含むエポキシ樹脂、不
飽和ポリエステル樹脂またはエポキシ樹脂とポリ
エステル樹脂との混合物を樹脂として使用する特
許請求の範囲第1項から第9項までのいずれか1
項記載の方法。 10 処理中の温度を175〜200℃とする特許請求
の範囲第8項または第9項記載の方法。 11 加圧成形素材を成形型に収納する前にエポ
キシ樹脂またはポリエステル樹脂またはそれらの
混合物を含浸させた1または複数のガラスフリー
ズを存在させる特許請求の範囲第1項から第7項
までのいずれか1項記載の方法。 12 装飾をその間に介住させた2枚のガラスフ
リーズを存在させる特許請求の範囲第11項記載
の方法。 13 装飾が微細に分割された有機物質または無
機物質から成る特許請求の範囲第12項記載の方
法。 14 装飾が着色樹脂から成る特許請求の範囲第
12項記載の方法。
[Claims] 1. Mix an unsaturated polyester resin, a mineral filler, and magnesium oxide, thicken the mixture thus obtained in the presence of glass fibers, and heat a portion of the thickened mixture at a high temperature. A method for producing molded articles by pressure molding in which the mixture contains, in addition to the unsaturated polyester resin, 80 to 95% by weight of an inorganic filler having a particle size of approximately less than 500 μm, based on the total mixture. 1 to 5% by weight of glass fibers and 0.5 to 5% by weight of an oxide of an alkaline earth metal, especially magnesium oxide, as a thickening agent with respect to the unsaturated polyester resin;
3/4 is characterized by having a length of less than 15 mm and being present as randomly distributed single fibers, and by thickening the mixture until it becomes homogeneous and contains almost no air. A method of manufacturing a molded product. 2. A method according to claim 1, in which 1 to 2.5% by weight of glass fibers are present. 3. A method according to claim 1 or 2, in which most of the glass fibers have a length of 6 to 12 mm. 4. The method according to any one of claims 1 to 3, wherein the average length of the glass fibers is about 9 mm. 5. Any one of claims 1 to 4, in which the particle size of most of the fillers is less than 200μ.
The method described in section. 6. The method according to any one of claims 1 to 5, wherein the mixture is thickened in 1 to 48 hours to form a homogeneous pressure-molded material containing almost no air. 7 The concentrated pressure-molded material is heated to a temperature of 100 to 250℃.
The method according to any one of claims 1 to 6, wherein the method is press-molded at a pressure of 30 to 200 kg/cm 2 . 8. The method according to any one of claims 1 to 7, wherein the molded article in a not completely cured state is treated with resin powder at a temperature of at least 150°C. 9. Any one of claims 1 to 9 in which an epoxy resin containing free hydroxyl groups, an unsaturated polyester resin, or a mixture of an epoxy resin and a polyester resin is used as the resin.
The method described in section. 10. The method according to claim 8 or 9, wherein the temperature during treatment is 175 to 200°C. 11. Any one of claims 1 to 7, in which one or more glass friezes impregnated with epoxy resin or polyester resin or a mixture thereof are present before the pressure-molded material is placed in the mold. The method described in Section 1. 12. The method according to claim 11, in which there are two glass friezes with a decoration interposed between them. 13. The method of claim 12, wherein the decoration comprises finely divided organic or inorganic material. 14. The method of claim 12, wherein the decoration comprises colored resin.
JP7636678A 1977-06-24 1978-06-23 Manufacture of moldings Granted JPS5411174A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NLAANVRAGE7706997,A NL186016C (en) 1977-06-24 1977-06-24 PROCESS FOR MANUFACTURING ARTICLES BY MIXING UNSATURATED POLYESTER RESIN, MINERAL FILLER AND MAGNESIUM OXIDE.

Publications (2)

Publication Number Publication Date
JPS5411174A JPS5411174A (en) 1979-01-27
JPS6244571B2 true JPS6244571B2 (en) 1987-09-21

Family

ID=19828778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7636678A Granted JPS5411174A (en) 1977-06-24 1978-06-23 Manufacture of moldings

Country Status (5)

Country Link
EP (1) EP0000223B1 (en)
JP (1) JPS5411174A (en)
DE (1) DE2862193D1 (en)
IT (1) IT1105043B (en)
NL (1) NL186016C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2861438D1 (en) 1977-11-03 1982-02-04 Stamicarbon Process for making objects from mineral fillers bonded with a thermosetting resin
JPS5949240A (en) * 1982-09-16 1984-03-21 Dainippon Ink & Chem Inc Prepreg with both high workability and compression moldability
NL8600487A (en) * 1986-02-27 1987-09-16 Dsm Resins Bv SHEET MOLDING COMPOUND AND A TOP LAYER FOR THIS.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1466894A (en) * 1965-02-05 1967-01-20 Bayer Ag Process for the preparation of strips in molding masses of polyesters containing fillers
US3631217A (en) * 1967-03-09 1971-12-28 Ppg Industries Inc Process for increasing the viscosity of polyester resins and products obtained thereby
JPS5242838B2 (en) * 1971-10-26 1977-10-26
IT1004335B (en) * 1973-03-15 1976-07-10 Koppers Co Inc COMPOSITION FROM MOLDING OF FLAME RETARDING POLYESTER
DE2509236A1 (en) * 1975-03-04 1976-09-16 Bayer Ag Low shrinkage moulding compsn - contg unsatd polyester, glass fibres and diatomaceous earth
US3986992A (en) * 1975-04-16 1976-10-19 Scm Corporation Low shrink thermosetting polyesters

Also Published As

Publication number Publication date
NL186016C (en) 1990-09-03
DE2862193D1 (en) 1983-04-07
IT7850016A0 (en) 1978-06-23
IT1105043B (en) 1985-10-28
NL7706997A (en) 1978-12-28
JPS5411174A (en) 1979-01-27
EP0000223A1 (en) 1979-01-10
EP0000223B1 (en) 1983-03-02

Similar Documents

Publication Publication Date Title
US4137215A (en) Process for preparing decorative plastics articles, as well as products prepared according to the process
US3184527A (en) Squeeze-coating process
US4592887A (en) Method of producing shaped resinous articles
GB2079667A (en) Plastic moulded part
US2610957A (en) Interbonded fibrous glass
DE1239850B (en) Process for the production of organosilicon binders
JPS6244571B2 (en)
JPS6144747A (en) Manufacture of artificial marble
EP0918602B1 (en) Composite product
US4144305A (en) Method of obtaining interface adhesion between thermosetting layers which contain mold release agents
KR100920451B1 (en) The synthetic resin composition for decorative interior materials of function and the method of comprising it
JPS587308A (en) Manufacture of decorative wood
JPH0716850A (en) Production of artificial stone decorative panel
RU2046719C1 (en) Method of obtaining polymeric coating on surface of building products
SU1025705A1 (en) Method for producing acoustical and heat insulating materials
JPH07164440A (en) Sheet molding compound, and artificial marble using the compound
JPH054204B2 (en)
KR0145105B1 (en) Method of producing artifial marble panel
GB1588132A (en) Resinous moulding compositions containing reinforcing material
CA1039469A (en) Process for preparing decorative plastics articles, as well as products prepared according to the process
SU559574A1 (en) Polymer moulding composition
JPH03150244A (en) Natural stone-like artificial marble and production thereof
DE1015599B (en) Process for the preparation of polymerization products
JPH07290479A (en) Production of thermosetting resin molded object
JPH03170356A (en) Grained artificial marble and its production