JPS6244467A - Perforated type thermal head and its preparation - Google Patents

Perforated type thermal head and its preparation

Info

Publication number
JPS6244467A
JPS6244467A JP18527085A JP18527085A JPS6244467A JP S6244467 A JPS6244467 A JP S6244467A JP 18527085 A JP18527085 A JP 18527085A JP 18527085 A JP18527085 A JP 18527085A JP S6244467 A JPS6244467 A JP S6244467A
Authority
JP
Japan
Prior art keywords
heating element
substrate
film
thermal head
element substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18527085A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yamaguchi
博幸 山口
Takashi Saito
隆 斉藤
Kunio Koyabu
小藪 国夫
Junji Watanabe
純二 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP18527085A priority Critical patent/JPS6244467A/en
Publication of JPS6244467A publication Critical patent/JPS6244467A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14088Structure of heating means
    • B41J2/14112Resistive element
    • B41J2/14129Layer structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14088Structure of heating means
    • B41J2/14112Resistive element
    • B41J2/14137Resistor surrounding the nozzle opening

Abstract

PURPOSE:To provide a perforated type thermal head capable of obtaining good image quality when adapated to thermography, by providing a large number of ink passing holes to a heat generator substrate composed of a material having high rigidity and good heat conductivity so as to pierce through the groove part of flat surface part of said substrate and mounting a heat generator onto the substrate the peripheral edge of each ink passing hole. CONSTITUTION:A perforated type thermal head is prepared as follows. A groove 15 adjusting the thickness of a heat generator ceramic substrate having a thickness of 1mmm to 100mum is formed to the region including a heat generator forming scheduled position on said substrate 10. The output of laser beam is enhanced by a lens to form seven clear columnar ink passing holes 7 each having a diameter of 10mum and free of the formation of a molten substance at the heat generator forming scheduled position. Next, the substrate is washed and a SiO2 film 14 is subsequently adhered onto the heat generator forming scheduled surface of the heat generator substrate 10 in a thickness of 1-10mum. This SiO2 film 14 functions as the insulating layer of the heat generator substrate 10 when said substrate 10 has electric conductivity. A resistance film 11 is formed o the SiO2 film 14 and a lead film 12 comprising, for example, Ni, Cr or Au is formed on said resistance film 11.

Description

【発明の詳細な説明】 (技術分野) 本発明は、ファクシミリ、プリンター等の記録装置に用
いらえている熱転写記録方法で必要であったインクフィ
ルムの除去を可能ならしめる、新しい記録方法であるサ
ーマルレオグラフィに適する多孔形サーマルヘッド及び
その製造方法に関づるものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a new recording method, thermal rheophotography, which makes it possible to remove the ink film that is necessary in thermal transfer recording methods used in recording devices such as facsimiles and printers. The present invention relates to a porous thermal head suitable for photography and a method for manufacturing the same.

(従来の技術) 第11図は従来の熱転写記録方法の原理を示す説明図で
、1は転写フィルム、2は記録紙(記録媒体)、3はサ
ーマルヘッド、4は発熱体、5は圧接ローラである。図
に示すように転写フィルム1はマイラーフィルム、コン
デンサ紙等のベースフィルム1aにインクff1bを塗
工したもので、サーマルヘッド3、転写フィルム1、記
録紙2は圧接ローラ5により圧接されており、サーマル
ヘッド3中の発熱体4が画信号に応じて発熱すると、発
熱体4に近接するインク層1bが溶融し、記録紙2にイ
ンクが転位される。この結果、記録紙2上にインク層が
形成される。なお記録紙2の走行と同時に、転写フィル
ム1も走行し、常に新しいインク層が繰り出される。
(Prior Art) Fig. 11 is an explanatory diagram showing the principle of a conventional thermal transfer recording method, in which 1 is a transfer film, 2 is a recording paper (recording medium), 3 is a thermal head, 4 is a heating element, and 5 is a pressure roller. It is. As shown in the figure, the transfer film 1 is a base film 1a such as Mylar film or capacitor paper coated with ink ff1b, and the thermal head 3, transfer film 1, and recording paper 2 are pressed together by a pressure roller 5. When the heating element 4 in the thermal head 3 generates heat in response to the image signal, the ink layer 1b adjacent to the heating element 4 melts, and the ink is transferred onto the recording paper 2. As a result, an ink layer is formed on the recording paper 2. Note that at the same time as the recording paper 2 runs, the transfer film 1 also runs, and a new ink layer is always fed out.

ところで、この従来の熱転写記録方法の場合、常に転写
フィルム1を繰り出すために、所望の記録面を得る毎に
使用済みの転写フィルムが発生する。従って装置として
は、この使用済みの転写フィルム1を巻き取る機構を内
蔵するか、または1通毎に使用済みの転写フィルム1を
装置外に廃棄する必要がある。また記録紙2は普通紙で
よく低価格であるものの、転写フィルム1は高価で、結
局1通当りの記録コストは高価であるとともに、転写フ
ィルム1の装着、廃棄に手間がかかるという問題点があ
った。
By the way, in the case of this conventional thermal transfer recording method, since the transfer film 1 is constantly fed out, a used transfer film is generated every time a desired recording surface is obtained. Therefore, it is necessary for the device to have a built-in mechanism for winding up the used transfer film 1, or to dispose of the used transfer film 1 after each transfer outside the device. Furthermore, although the recording paper 2 is plain paper and is often inexpensive, the transfer film 1 is expensive, and the recording cost per copy is high, and there are problems in that it takes time and effort to attach and dispose of the transfer film 1. there were.

そこで本発明者らは、先に転写フィルムを除去できる新
しい記録方法を発明した(以下、サーマルレオグラフィ
と称する)。
Therefore, the present inventors invented a new recording method that allows the transfer film to be removed first (hereinafter referred to as thermal rheography).

第12図はサーマルレオグラフィの構成例である。図中
、6は多孔形サーマルヘッド、7はインク通過孔、8は
インク容器、9はインクである。
FIG. 12 shows an example of the configuration of thermal rheography. In the figure, 6 is a porous thermal head, 7 is an ink passage hole, 8 is an ink container, and 9 is ink.

多孔形サーマルヘッド6は、サーマルヘッドの発熱体中
にインクを通過せしめる様に孔を形成したものであり、
その構成例の拡大図を第13図に示す。第13図中、1
0は基板、11は抵抗体、12はリード、13は保護膜
である。インク9は、加熱によりその流動性が著しく変
化する半固体インクである。圧接ローラ5は、記録紙2
を多孔形サーマルヘッド6のインク通過孔7と接触させ
るために用いられる。
The porous thermal head 6 has holes formed in the heating element of the thermal head to allow ink to pass through.
An enlarged view of an example of the configuration is shown in FIG. In Figure 13, 1
0 is a substrate, 11 is a resistor, 12 is a lead, and 13 is a protective film. Ink 9 is a semi-solid ink whose fluidity changes significantly upon heating. The pressure roller 5 presses the recording paper 2
It is used to bring the ink passage hole 7 of the porous thermal head 6 into contact with the ink passage hole 7 of the porous thermal head 6.

第12図を用いてサーマルレオグラフィの記録原理を説
明する。通常、半固体インク9はインク容器8と多孔形
サーマルヘッド6により保持されており、記録紙2上に
半固体インク9は転移しないが、画信号に応じた多孔形
サーマルヘッド6の発熱体4への選択的な通電・加熱で
、発熱体4近傍の半固体インク9は加熱・溶融し、その
流動性が著しく向上し、溶融したインクはインク通過孔
7を通過し、記録紙2上に付着・吸収される。これによ
って所望の記録面が得られる。なお、記録後、発熱体4
の近傍で、半固体インク9が不足するが、これは周囲の
インクより補給される。このために、該インクは、常温
で若干の流動性を有する半固体インクが用いられる。ま
た、インクの補給を円滑に行うためインク容器8の上方
より半固体インク9に加圧を行う。
The recording principle of thermal rheography will be explained using FIG. 12. Normally, the semi-solid ink 9 is held by the ink container 8 and the porous thermal head 6, and the semi-solid ink 9 is not transferred onto the recording paper 2, but the heating element 4 of the porous thermal head 6 responds to the image signal. By selectively applying electricity and heating, the semi-solid ink 9 near the heating element 4 is heated and melted, its fluidity is significantly improved, and the molten ink passes through the ink passage hole 7 and is deposited on the recording paper 2. Attaches and absorbs. With this, a desired recording surface can be obtained. In addition, after recording, the heating element 4
There is a shortage of semi-solid ink 9 in the vicinity of , but this is replenished from surrounding ink. For this purpose, a semi-solid ink is used which has some fluidity at room temperature. Further, in order to smoothly replenish the ink, pressure is applied to the semi-solid ink 9 from above the ink container 8.

第13図に示す具体例として本発明者らは、特願昭59
−116685、特願昭59−197964において基
板10がそれぞれSi及びポリイミド樹脂である多孔形
サーマルヘッドとその製造方法を発明している。
As a specific example shown in FIG.
-116685 and Japanese Patent Application No. 59-197964, he invented a porous thermal head in which the substrate 10 is made of Si and polyimide resin, respectively, and a method for manufacturing the same.

(発明が解決しようとする問題点) しかしながら、前述した多孔形す〜マルヘッドでは、 基板10が3iの場合、その単結晶のウェハーはへき開
性がありその加コニ及び製造時に慎重な取扱いを行わね
ばならないこと、 ポリイミド樹脂の場合、その熱伝導率が低く基板10へ
の熱放散を良好にづるには基板10の厚ざを薄くせねば
らぬが、これには技術的な困難が伴うこと、 及び従来の多孔形サーマルヘッドの製造方法では、 基板10が3iの場合、単に基板10にレーザ光を照射
しただけの溶融加工方法であったため、溶融物等の生成
によりインク通過孔7の形状が明確でなくインク通過孔
7の間口部には溶融物(酸化物)が堆積しやすく、この
部分に発熱体4を形成することが難しいこと、また形成
後に加工を行うと発熱体の一部が酸化し抵抗値がふぞろ
いになりやすいということ、 基板10がポリイミド樹脂の場合、エツチング液にヒド
ラジン等を用いた非方向性エツチングであるため、サイ
ドエッチが起こり、基板10中の孔形状がすりばち状と
なるため、一つの発熱体4中に微細な任意の形状のイン
ク通過孔7を形成しにくいという問題点があり、画品質
が劣化するという問題点があった。
(Problems to be Solved by the Invention) However, in the case of the above-mentioned porous-type multi-head, when the substrate 10 is 3i, the single crystal wafer has a cleavage property and must be carefully handled during its cracking and manufacturing. In the case of polyimide resin, its thermal conductivity is low, and in order to improve heat dissipation to the substrate 10, the thickness of the substrate 10 must be made thin, but this is accompanied by technical difficulties; In the conventional manufacturing method of a porous thermal head, when the substrate 10 is 3i, the shape of the ink passage hole 7 is changed due to the generation of molten material etc., because the melt processing method is simply irradiating the substrate 10 with a laser beam. It is difficult to form the heating element 4 in this area because it is not clear and molten material (oxide) tends to accumulate at the frontage of the ink passage hole 7. Also, if the heating element 4 is processed after formation, a part of the heating element may be damaged. When the substrate 10 is made of polyimide resin, side etching occurs due to non-directional etching using hydrazine or the like as an etching solution, and the pores in the substrate 10 become dovetail-like. Therefore, there is a problem that it is difficult to form fine ink passage holes 7 of arbitrary shapes in one heating element 4, and there is a problem that image quality deteriorates.

(発明の目的) 本発明の目的は、これらの問題点を除去するために、サ
ーマルグラフィに適用しで、良好な画品質が得られる多
孔形サーマルヘッドとその製造方法を提供することにあ
る。
(Object of the Invention) In order to eliminate these problems, the object of the present invention is to provide a porous thermal head that can be applied to thermal photography and obtain good image quality, and a method for manufacturing the same.

(問題点を解決するための手段) 第1の発明は上記目的を達成するため、剛性が高くかつ
熱伝導が良好な材料よりなる発熱体基板と、該基板の溝
部あるいは平面部を貫通する如く設けた多数のインク通
過孔と、該各インク通過孔の少なくとも周縁の基板上に
設けた絶縁膜、抵抗膜及び該抵抗膜に接続したリード膜
からなる発熱体とを備えたことを特徴とする。また、第
2の発明は剛性が高くかつ熱伝導が良好な材料よりなる
発熱体基板の一方に溝加工あるいは平面加工する工程と
、上記発熱体基板上の発熱体形成位置にインク通過孔を
形成する工程と、上記発熱体基板上の一方の面に絶縁膜
を形成する工程と、上記絶縁膜上に抵抗膜とリード膜を
付着し、インク通過孔との位置合せの後、発熱体8丁と
リード群を形成する工程と、上記発熱体群を保護ザる′
M摩耗保護膜を形成する工程とを具備したことを特徴と
する。
(Means for Solving the Problems) In order to achieve the above object, the first invention includes a heating element substrate made of a material having high rigidity and good thermal conductivity, and a heating element substrate made of a material having high rigidity and good thermal conductivity, The invention is characterized by comprising a large number of ink passage holes provided, and a heating element made of an insulating film, a resistive film, and a lead film connected to the resistive film provided on a substrate at least at the periphery of each ink passing hole. . Further, the second invention includes a step of forming a groove or a flat surface on one side of a heating element substrate made of a material with high rigidity and good thermal conductivity, and forming an ink passage hole at a position where the heating element is formed on the heating element substrate. a step of forming an insulating film on one side of the heating element substrate, a step of attaching a resistive film and a lead film on the insulating film, and alignment with the ink passage holes, and then inserting the eight heating elements. and the step of forming a lead group, and the process of protecting the heating element group.
The method is characterized by comprising a step of forming a wear protection film.

(作用) 第1の発明に係る多孔形サーマルヘッドによれば、基板
に剛性が高くかつ熱伝導が良好な材料を用いているため
、微細な孔であるインク通過孔の形状の変形がなく明確
であると共に発熱体の熱立ち下がりが良いので、良好な
画品質の記録側が得られる。第2の発明に係る多孔形サ
ーマルヘッドの製造方法によれば、発熱体の酸化あるい
は腐蝕等が起こらずかつ発熱体中の所望の位置に微細な
インク通過孔を明確に形成せしめ、かつ最も短時間の工
程で、使用して良好な画品質が得られる多孔サーマルヘ
ッドが製造できる。
(Function) According to the porous thermal head according to the first invention, since the substrate is made of a material with high rigidity and good heat conduction, the shape of the ink passage holes, which are minute holes, is not deformed and is clearly defined. At the same time, since the heating element has a good heat decay, a recording side with good image quality can be obtained. According to the method for manufacturing a porous thermal head according to the second invention, oxidation or corrosion of the heating element does not occur, fine ink passage holes are clearly formed at desired positions in the heating element, and the shortest possible time is achieved. In a time process, a porous thermal head can be produced that can be used to obtain good image quality.

(実施例) 第1図は本発明により製造した多孔形サーマルヘッドの
第1の実施例を説明する断面図であって、従来例と同一
構成部分は同一符号をもって表す。
(Example) FIG. 1 is a sectional view illustrating a first example of a porous thermal head manufactured according to the present invention, and the same components as those of the conventional example are denoted by the same reference numerals.

すなわち、7はインク通過孔、8はインク容器、10は
発熱体基板で、Si3N4よりなる。14は例えば5i
02よりなる絶縁膜で、基板10の下面に設けられる。
That is, 7 is an ink passage hole, 8 is an ink container, and 10 is a heating element substrate, which is made of Si3N4. For example, 14 is 5i
An insulating film made of 0.02 is provided on the lower surface of the substrate 10.

11は抵抗膜よりなる発熱体で、例えばTa−8iO2
等よりなり、上記絶縁膜14の上に設けられる。12は
抵抗膜11上に施されたリード膜で、例えばAI、Au
、Ni等よりなる。13はTaO2等の耐摩耗保護膜、
15は溝である。第2図は第1図の保護膜13を除去し
た状態の底面図である。
11 is a heating element made of a resistive film, for example Ta-8iO2
etc., and is provided on the insulating film 14. 12 is a lead film formed on the resistive film 11, for example, AI, Au.
, Ni, etc. 13 is a wear-resistant protective film such as TaO2,
15 is a groove. FIG. 2 is a bottom view with the protective film 13 of FIG. 1 removed.

これを動作さけるには、リード膜12を通して発熱体1
1に通電すればよく、記録原理は既に記述している。ま
た図上には示していないが、発熱体基板10上に発熱体
の駆動用ICを搭載させ、多数のリード膜群を通じて多
数の発熱体群細々に画信号に応じた選択的な通電を行い
駆動する。
To avoid this, it is necessary to pass the heating element 1 through the lead film 12.
1, and the recording principle has already been described. Although not shown in the figure, a heating element driving IC is mounted on the heating element substrate 10, and selectively energizes a large number of heating element groups according to image signals through a large number of lead film groups. drive

次に上記多孔形サーマルヘッドの製造方法を説明する第
3図は発熱体基板10へ溝15あるいはインク通過孔7
を形成するのに用いる装置の1つの構成例である。16
はエツチング液貯蔵器、17はレーザ発振器、18は半
透明鏡、19は凸レンズ;20はテレビモータ、21は
エツチング加工容器、22はテーブル、23はXYステ
ージ、24はバリアプル弁、25は分岐管、26はエツ
チング液送出管、27はポンプ、28はバリアプル弁、
29はエツチング液送入管、30はエツチング液である
。エツチング液としては例えばKO日溶液を用いる。化
学雰囲気が気体の場合は、ポンプ27、エツチング液貯
蔵槽16を取り除き、エツチング液送出管26に直接、
減圧弁及び気体ボンベを、エツチング液挿入管29にバ
ルブ及び真空ポンプをそれぞれ接続する。
Next, FIG. 3 for explaining the manufacturing method of the above-mentioned porous thermal head shows grooves 15 or ink passage holes 7 in the heating element substrate 10.
This is one configuration example of an apparatus used to form a . 16
17 is an etching liquid reservoir, 17 is a laser oscillator, 18 is a translucent mirror, 19 is a convex lens; 20 is a television motor, 21 is an etching processing container, 22 is a table, 23 is an XY stage, 24 is a barrier pull valve, and 25 is a branch pipe. , 26 is an etching liquid delivery pipe, 27 is a pump, 28 is a barrier pull valve,
29 is an etching liquid supply pipe, and 30 is an etching liquid. For example, KO day solution is used as the etching solution. If the chemical atmosphere is a gas, remove the pump 27 and etching liquid storage tank 16 and directly supply the etching liquid to the etching liquid delivery pipe 26.
A pressure reducing valve and a gas cylinder are connected to the etching liquid insertion tube 29, and a valve and a vacuum pump are connected, respectively.

第3図の装置を動作させるには、エツチング液30を循
環させながらレーザ発振器17より発熱体基板10上に
レーザ光を照射すればよい。これにより照射箇所に所定
の加工速度で加工がなされる。例えばX−Yステージ2
3により、基板10上のレーザ照射箇所を移動Jること
で、任意の形状の溝及びインク通過孔が形成出来る。
To operate the apparatus shown in FIG. 3, it is sufficient to irradiate laser light onto the heating element substrate 10 from the laser oscillator 17 while circulating the etching liquid 30. As a result, the irradiated area is processed at a predetermined processing speed. For example, X-Y stage 2
3, by moving the laser irradiation location on the substrate 10, grooves and ink passage holes of arbitrary shapes can be formed.

°第1図及び第2図に示す多孔形サーマルヘッドは例え
ば次の様にして製造Jる。厚味1mmのセラミックスの
発熱体基板10を第3図の説明のとおりの加工手順で、
まず基板10上の発熱体形成予定位置を包含する領域で
基板10の厚味が100μmとなる溝15を形成し、次
にレンズ19により特にレーザビーム直径を絞り、しか
も単位面積当りのレーザ光出力を高くして、第3図の手
順で加工すると第2図に示した通り直径10μmで、溶
融物が形成されない明確な円柱状のインク通過孔7を発
熱体形成予定位置中に7個秩序良く形成することが出来
た。加工出来た基板10を第3図の装置より取り外し、
溝加工及びインク通過孔加工工程を終了づる。次に基板
洗浄の後に発熱体基板10の発熱体形成予定面上に1〜
10μmの厚味でSiO2膜14膜付4する。このS 
i O2膜14は発熱体基板10に電気伝導性があると
きにその絶縁層とtJ、’U m能する。5i02膜1
4上に例えばTa−3h02等を数千への厚みでスパッ
ター蒸着させ抵抗膜11を形成し、この上に例えばNi
、Cr、Au等より成るリード膜12を記述類にあるい
は単体で形成し、これを加工して個々の発熱体群及びリ
ード群に仕上げ、さらに発熱体の酸化及び摩耗を防止す
るために、例えば5i02等よりなる耐摩耗保護膜13
を付着させて工程を終了し、更に駆動用ICを個々のリ
ードに接続し、インク容器9を基板10に接着して、発
熱体個数18個、有効記録幅約4mmの多孔形サーマル
ヘッドを製造出来た。
The porous thermal head shown in FIGS. 1 and 2 is manufactured, for example, in the following manner. A ceramic heating element substrate 10 with a thickness of 1 mm is processed according to the processing procedure as explained in FIG.
First, a groove 15 is formed on the substrate 10 so that the thickness of the substrate 10 is 100 μm in an area that includes the planned position of the heating element, and then the laser beam diameter is narrowed down using a lens 19, and the laser beam output per unit area is reduced. By increasing the height and processing according to the procedure shown in Figure 3, as shown in Figure 2, seven well-ordered cylindrical ink passage holes 7 with a diameter of 10 μm and no molten material are formed in the position where the heating element is to be formed. was able to form. The processed substrate 10 is removed from the apparatus shown in FIG.
The groove machining and ink passage hole machining processes are completed. Next, after cleaning the substrate, 1 to 1
A SiO2 film 4 with a thickness of 10 μm is attached. This S
When the heating element substrate 10 is electrically conductive, the iO2 film 14 functions as an insulating layer thereof. 5i02 membrane 1
4, a resistive film 11 is formed by sputter-depositing, for example, Ta-3h02, etc. to a thickness of several thousand, and on top of this, a resistive film 11 is formed, for example, Ni.
A lead film 12 made of , Cr, Au, etc. is formed on a sheet or alone, and processed to form individual heating element groups and lead groups. Furthermore, in order to prevent oxidation and wear of the heating elements, for example, Wear-resistant protective film 13 made of 5i02 etc.
Then, the driving IC is connected to each lead, and the ink container 9 is bonded to the substrate 10, thereby producing a porous thermal head with 18 heating elements and an effective recording width of about 4 mm. done.

以上の製造工程から明らかな様に、本発明の多孔サーマ
ルヘッドの製造方法によると、第1にセラミックスの発
熱体基板上に加工が出来る。第2にインク通過孔形成工
程で溶融物等が生成しないため、明確な開孔が形成出来
、微aな任意の形状のイク通過孔が形成出来る。第3に
8 + 02膜14、抵抗膜11、耐摩耗保護膜13へ
の穿孔工程を必要としない。すなわち、本発明の製造工
程を用いると、基板10のインク通過孔7の位置には前
記の3膜の膜形成が行われず、工程の翔縮が出来ること
、第4に発熱体形成に先立って溝及びインク通過孔加工
を行っているので、製造工程の切り分けが出来、より簡
潔な工程となっているので製造工程の管理が行いやすい
こと等の効果がある。
As is clear from the above manufacturing process, according to the method for manufacturing a porous thermal head of the present invention, first, processing can be performed on a ceramic heating element substrate. Secondly, since no melt or the like is generated in the step of forming ink passage holes, clear openings can be formed, and ink passage holes with a small aperture of any shape can be formed. Thirdly, there is no need for a drilling process for the 8+02 film 14, the resistive film 11, and the wear-resistant protective film 13. That is, when the manufacturing process of the present invention is used, the above-mentioned three films are not formed at the positions of the ink passage holes 7 of the substrate 10, and the process can be reduced.Fourthly, prior to the formation of the heating element Since the grooves and ink passage holes are processed, the manufacturing process can be separated and the process is simpler, making it easier to manage the manufacturing process.

この多孔形サーマルヘッドを用いて第12図で承り構成
で記録実験を行ったところ、尾引き、かぶりがない良好
な記録画を得た。
When a recording experiment was conducted using this porous thermal head in the configuration shown in FIG. 12, good recorded images were obtained with no trailing or fogging.

また、従来のポリイミド樹脂を基板とする多孔形サーマ
ルヘッドでは、基板の耐熱性が悪いため、インク9をイ
ンク容器8に入れない状態で発熱体4に通電(空だき動
作)すると、基板が溶融し、多孔形サーマルヘッドを破
損する恐れがあった。
In addition, in conventional porous thermal heads that use polyimide resin as a substrate, the substrate has poor heat resistance, so if the heating element 4 is energized (dry operation) without ink 9 in the ink container 8, the substrate will melt. However, there was a risk of damaging the porous thermal head.

ところが、本発明の多孔形サーマルヘッドでは、基板の
融点は非常に高<(1000°C以上)、空だき動作に
よる多孔形サーマルヘッドの破損の恐れはほとんどない
。しかも、本発明の多孔サ−マルヘッドにインクを入れ
ない状態で、発熱体へのパルス状の通電を行い、発熱体
での温度変化を測定した所、熱パルスの立ち下がりは記
録速度に充分追随できるものであることがわかった。こ
れは本発明において、発熱体基板を良熱伝導体であるセ
ラミックスとし、溝及びインク通過孔を所期の形状でし
かも実際に、本発明の製造方法で良好に製造出来たため
である。
However, in the porous thermal head of the present invention, the melting point of the substrate is very high (1000° C. or higher), and there is almost no risk of damage to the porous thermal head due to the dry firing operation. Moreover, when we measured the temperature change at the heating element by applying pulsed current to the heating element without ink in the porous thermal head of the present invention, the fall of the thermal pulse sufficiently followed the recording speed. I found out that it is possible. This is because, in the present invention, the heating element substrate is made of ceramic, which is a good thermal conductor, and the grooves and ink passage holes are formed in the desired shape, and can be manufactured satisfactorily using the manufacturing method of the present invention.

(実施例2) 第4図は本発明より製造した多孔形サーマルヘッドの第
2の実施例の断面図であり、第5図は第2図と同様の図
である。図中の発熱体基板10には実施例1と同じセラ
ミックスである厚味0.7mmのAt203’TiCを
用い、溝15の部分での基板10の厚みが100μm1
穿孔は約150μmx20t1mの長穴を1つの発熱体
11中に3個形成している。この長孔形のインク通過孔
7を形成し、その間隔を調整することで、発熱体11内
での温度分布を調整し、隣接する発熱体11への熱のも
れを調整出来る利点がある。第5図の構成で尾引き、か
ぶりのない良好な記録側を得た。
(Example 2) FIG. 4 is a sectional view of a second example of a porous thermal head manufactured according to the present invention, and FIG. 5 is a view similar to FIG. 2. The heating element substrate 10 in the figure is made of At203'TiC with a thickness of 0.7 mm, which is the same ceramic as in Example 1, and the thickness of the substrate 10 at the groove 15 is 100 μm1.
Three elongated holes of about 150 μm x 20 t1 m are formed in one heating element 11. By forming the elongated ink passage holes 7 and adjusting their intervals, there is an advantage that the temperature distribution within the heating element 11 can be adjusted and the leakage of heat to the adjacent heating element 11 can be adjusted. . With the configuration shown in FIG. 5, a good recording side without trailing or fogging was obtained.

(実施例3) 第6図は多孔サーマルヘッドの第3の実施例を説明ザる
第5図と同様の図である。発熱体基板10は実流例と同
じ<AI□03・TiCを用いている。200μmx3
0μmの長穴形状のインク通過孔7を3本形成したこと
によって、1本のリード12に4個の発熱体11が並列
に接続される形状となっている。本実施例のヘッドで、
記録実験を行ったところ、実施例1,2と同様に、尾引
き、かぶりのない良好な記録画像を得た。
(Embodiment 3) FIG. 6 is a diagram similar to FIG. 5 for explaining a third embodiment of the porous thermal head. The heating element substrate 10 uses <AI□03・TiC, which is the same as in the actual flow example. 200μm x 3
By forming three ink passage holes 7 in the form of elongated holes of 0 μm, the shape is such that four heating elements 11 are connected in parallel to one lead 12. In the head of this example,
When a recording experiment was conducted, good recorded images with no trailing or fogging were obtained as in Examples 1 and 2.

発熱体基板10への溝及びインク通過孔の加工は次の手
順で実施した。まず、第3図と同様の装置で、PZTの
薄板に第6図のインク通過孔7の形状、ピッチ及び配列
が同等の穿孔を形成したマスクを予め作成しておく。こ
のマスクの材料は多孔形サーマルヘッドの発熱体10の
材料よりも加工速度が遅い材質であることが望ましい。
Grooves and ink passage holes were formed in the heating element substrate 10 using the following procedure. First, using an apparatus similar to that shown in FIG. 3, a mask is prepared in advance in which perforations having the same shape, pitch, and arrangement as the ink passage holes 7 shown in FIG. 6 are formed in a thin PZT plate. It is desirable that the material of this mask is a material whose processing speed is slower than that of the material of the heating element 10 of the porous thermal head.

この観点よりマスクの材料としてPZTを選択したが、
マスクの厚味が、インク通過孔7の深さに比べて厚けれ
ば、マスクへの加工速度が同等のマスクの材料を用いて
もかまわない。発熱体基板10への加工を次に行う。ま
ず、△1□03・TiCの薄板を研磨等により200μ
mの厚味に仕上げ、第3図の基本構成の加工装置で基板
厚みが30μmとなる迄溝加工する。次に基板10の溝
の加工していない面に、位置合けの後、上記記述のPZ
Tマスクを接着剤(例えば商品名:セラボンド)等で接
着する。PZTマスクを接着する代わりに化学的に安定
でかつ不透明な膜を発熱体基板10表面に被覆づるのも
効果的である。P Z Tマスク側にす、第3図と同様
の装置で、レーザ光線を照射すると共にXYステージ2
3を移動して、マスク全面にわたってレーザ光線を走査
することにより、マスク上の穿孔部分のみ、発熱体基板
10にインク通過孔7が形成される。エツチング液中よ
り発熱体基板10を取り出し、接着剤を剥離剤により取
り除いて、発熱体基板10とマスクを分離させ、洗浄し
て、次に実施例1.2と同じ<5tO2膜14、抵抗膜
11.リード膜12を付着ののち個々の発熱体とリード
を加工し、耐摩耗保護膜13を付着してヘッド製造を完
了する。
From this point of view, PZT was selected as the material for the mask, but
As long as the thickness of the mask is thicker than the depth of the ink passage hole 7, a material for the mask that can be processed at the same speed as the mask may be used. Next, the heating element substrate 10 is processed. First, a thin plate of △1□03・TiC was polished to a thickness of 20μ.
The substrate is finished to a thickness of m, and grooves are processed using a processing apparatus having the basic configuration shown in FIG. 3 until the substrate thickness reaches 30 μm. Next, after alignment, the PZ described above is placed on the unprocessed surface of the groove of the substrate 10.
Adhere the T-mask with an adhesive (for example, trade name: Cerabond). It is also effective to cover the surface of the heating element substrate 10 with a chemically stable and opaque film instead of adhering the PZT mask. On the PZT mask side, a laser beam is irradiated and the XY stage 2 is
3 to scan the entire surface of the mask with a laser beam, ink passage holes 7 are formed in the heating element substrate 10 only in the perforated portions on the mask. The heating element substrate 10 is taken out from the etching solution, the adhesive is removed with a release agent, the heating element substrate 10 and the mask are separated, and the mask is washed. 11. After depositing the lead film 12, the individual heating elements and leads are processed, and the wear-resistant protective film 13 is deposited to complete head manufacture.

本実施例で、多孔形サーマルヘッド製造にPZ丁マスク
を用いたが、この利点は、PZTマスクを一度精度よく
作製すると、あとは高能率で同じ精度の多孔形サーマル
ヘッドが多数製造できる事である。またインク通過孔7
の位置に、発熱体を精度良くしかも簡単に位置合せして
加工するために、PZTマスク上にインク通過孔7とは
異なった位置に、発熱体加工位置合せのための穿孔を形
成し、このマスク上の穿孔を用いて発熱体基板10に位
置合せマーカとなる溝あるいは十字溝を形成するのも効
果的である。
In this example, a PZT mask was used to manufacture the porous thermal head, but the advantage of this is that once the PZT mask is manufactured with high precision, a large number of porous thermal heads with the same precision can be manufactured with high efficiency. be. Also, the ink passage hole 7
In order to accurately and easily align the heating element at the position shown in FIG. It is also effective to form grooves or cross grooves to serve as alignment markers in the heating element substrate 10 using perforations on the mask.

(実施例4) 第7図は本発明による多孔形サーマルヘッドの第4の実
施例の断面図であり、TiCを基板10の材料として用
いている。第8図に保護膜13を取り除いた状態の平面
図を示す。この様に100μmx50μmの長穴形のイ
ンク通過孔7を発熱体11中に形成することが出来た。
(Embodiment 4) FIG. 7 is a sectional view of a fourth embodiment of the porous thermal head according to the present invention, in which TiC is used as the material of the substrate 10. FIG. 8 shows a plan view with the protective film 13 removed. In this way, the elongated ink passage hole 7 of 100 μm x 50 μm could be formed in the heating element 11.

製造は次のとおりである。まず研磨等により基板10を
30μmの厚味に仕上げた後に、インク通過孔7を形成
し、SiO2膜4、抵抗膜11、リード膜12を付着後
、個々の発熱体及びリードを加工し、すの後に耐摩耗保
護膜13を付着、各リードに駆動ICを接続し、耐摩耗
保護膜13側にインク容器8を接着し多孔形サーマルヘ
ッドを完成する。本実施例によると、発熱体はインク容
器側すなわちインク側を向いており、記録エネルギーが
小さくてよいという特徴がある。また、第7図の他に、
第9図の如く溝15を形成した構成とすることも効果的
である。
The manufacturing process is as follows. First, after polishing the substrate 10 to a thickness of 30 μm, ink passage holes 7 are formed, and after attaching the SiO2 film 4, the resistive film 11, and the lead film 12, the individual heating elements and leads are processed. After that, a wear-resistant protective film 13 is attached, a drive IC is connected to each lead, and an ink container 8 is adhered to the wear-resistant protective film 13 side to complete a porous thermal head. According to this embodiment, the heating element faces the ink container side, that is, the ink side, and is characterized in that the recording energy is small. In addition to Figure 7,
It is also effective to adopt a structure in which grooves 15 are formed as shown in FIG.

本発明の多孔形サーマルヘッドの製造方法は、発熱体基
板10の材質はセラミックスとして他にSiC等、又金
属としてTa、Fe、N i等半導体として$1等が、
これまで示した材質のセラミックスの他に利用できる。
In the method of manufacturing a porous thermal head of the present invention, the material of the heating element substrate 10 may be ceramics such as SiC, metals such as Ta, Fe, Ni, etc., or semiconductors such as $1, etc.
It can be used in addition to the ceramic materials shown above.

また、反応性ガスとしてはCF 、SF6等が利用でき
る。
Furthermore, CF, SF6, etc. can be used as the reactive gas.

(実施例5) 第10図は本発明の第5の実施例の断面図である。基板
10は感光性材料(例えば商品名:PEG−3,フォト
セラム、フォトフオーム等)である。製造は、まず、基
板10に溝15を露光により形成し厚味を50μmとし
、次に基板10に7M15と反対側より露光し直径30
μmのインク通過孔7を露光により形成し、現像処理を
行う。更にS + 02 IJl 4、抵抗膜11.リ
ード膜12を付着し、個々の発熱体群とリード群を加工
し、耐摩耗保WIII113を付着後、各リードに駆動
ICを接続し、インク容器8を接着して仕上げる。本実
施例の多孔形サーマルヘッドを用い記録実験を行ったと
ころ、他の実施例と同様、良好な画品質を得ることが出
来た。
(Embodiment 5) FIG. 10 is a sectional view of a fifth embodiment of the present invention. The substrate 10 is a photosensitive material (eg, trade name: PEG-3, Photoceram, Photoform, etc.). In manufacturing, first, a groove 15 is formed on the substrate 10 by exposure to a thickness of 50 μm, and then the substrate 10 is exposed from the side opposite to the 7M15 to form a groove 15 with a diameter of 30 μm.
Ink passage holes 7 of .mu.m are formed by exposure and development processing is performed. Furthermore, S + 02 IJl 4, resistive film 11. After attaching the lead film 12, processing the individual heating element groups and lead groups, and attaching the abrasion resistant WIII 113, the drive IC is connected to each lead, and the ink container 8 is bonded to finish. When a recording experiment was conducted using the porous thermal head of this example, good image quality could be obtained as in the other examples.

(発明の効果) 以上説明したように、第1の発明によれば、基板に剛性
が高くかつ熱伝導が良好な材料を用いているため、微細
な孔であるインク通過孔の形状の変形がなく明確である
と共に発熱体の熱立ち下がりが良いので、尾引き、かぶ
り、地汚れのない良好な記録側が得られる利点がある。
(Effects of the Invention) As explained above, according to the first invention, since the substrate is made of a material with high rigidity and good heat conduction, the shape of the ink passage hole, which is a fine hole, is not deformed. It has the advantage that it is possible to obtain a good recording side without trailing, fogging, or scumming because the heating element has a good heat decay.

また、第2の発明によれば、発熱体の酸化あるいは腐蝕
等が起こらずかつ発熱体中の所望の位置に微細なインク
通過孔を明確に形成せしめ、かつ最も短時間の工程で、
使用して良好な画品質が得られる多孔サーマルヘッドが
製造できる利点がある。
Further, according to the second invention, oxidation or corrosion of the heating element does not occur, fine ink passage holes are clearly formed at desired positions in the heating element, and the process is the shortest.
There is an advantage that a porous thermal head that can be used to obtain good image quality can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す多孔形サーマルヘ
ッドの断面図、第2図は第1の実施例の保v!!膜を取
り除いた底面図、第3図は多孔形サーマルヘッドの製造
で用いた装置の概略構成図、第4図は第2の実施例を示
す多孔形サーマルヘッドの断面図、第5図は第2の実施
例の第2図と同様の図、第6図は第3の実施例を示す多
孔形サーマルヘッドの断面図、第7図は第4の実施例を
示す多孔形サーマルヘッドの断面図、第8図は第4の実
施例の保護膜を取り除いた状態の平面図、第9図は第4
の実施例の他の変形例を示す断面図、第10図は第5の
実施例を示す多孔形サーマルヘッドの断面図、第11図
は熱転写記録方法の基本構成図、第12図はサーマルク
ラフィのH4成図、第13図は多孔形サーマルヘッドの
基本構成図である。 7・・・インク通過孔、8・・・インク容器、9・・・
半固体インク、10・・・発熱体基板、11・・・抵抗
膜、12・・・リード膜、13・・・耐摩耗保護膜、1
4・・・絶縁膜、15・・・溝、16・・・エツチング
液貯蔵槽、17・・・レーザ発振器、18・・・半透明
鏡、19・・・凸レンズ、20・・・テレビモータ、2
1・・・エツチング加工容器、22・・・テーブル、2
3・・・XYステージ、24・・・バリアプル弁、25
・・・分岐管、26・・・エツチング液送出管、27・
・・ポンプ、28・・・バリアプル弁、29・・・エツ
チング液送入管、30・・・エツチング液。
FIG. 1 is a sectional view of a porous thermal head showing a first embodiment of the present invention, and FIG. 2 is a cross-sectional view of a porous thermal head showing a first embodiment of the present invention. ! 3 is a schematic configuration diagram of the apparatus used in manufacturing the porous thermal head, FIG. 4 is a sectional view of the porous thermal head showing the second embodiment, and FIG. 5 is a bottom view with the membrane removed. FIG. 6 is a cross-sectional view of a porous thermal head showing the third embodiment; FIG. 7 is a cross-sectional view of the porous thermal head showing the fourth embodiment. , FIG. 8 is a plan view of the fourth embodiment with the protective film removed, and FIG. 9 is a plan view of the fourth embodiment.
10 is a sectional view of a porous thermal head showing the fifth embodiment, FIG. 11 is a basic configuration diagram of a thermal transfer recording method, and FIG. 12 is a diagram of a thermal transfer recording method. FIG. 13 is a basic configuration diagram of a porous thermal head. 7... Ink passage hole, 8... Ink container, 9...
Semi-solid ink, 10... Heating element substrate, 11... Resistance film, 12... Lead film, 13... Wear-resistant protective film, 1
4... Insulating film, 15... Groove, 16... Etching liquid storage tank, 17... Laser oscillator, 18... Semi-transparent mirror, 19... Convex lens, 20... Television motor, 2
1... Etched container, 22... Table, 2
3... XY stage, 24... Barrier pull valve, 25
... Branch pipe, 26... Etching liquid delivery pipe, 27.
... Pump, 28... Barrier pull valve, 29... Etching liquid supply pipe, 30... Etching liquid.

Claims (7)

【特許請求の範囲】[Claims] (1)剛性が高くかつ熱伝導が良好な材料よりなる発熱
体基板と、該基板の溝部あるいは平面部を貫通する如く
設けた多数のインク通過孔と、該各インク通過孔の少な
くとも周縁の基板上に設けた絶縁膜、抵抗膜及び該抵抗
膜に接続したリード膜からなる発熱体とを備えたことを
特徴とする多孔形サーマルヘッド。
(1) A heating element substrate made of a material with high rigidity and good thermal conductivity, a large number of ink passage holes provided so as to pass through the grooves or plane parts of the substrate, and a substrate at least at the periphery of each of the ink passage holes. A porous thermal head comprising: an insulating film provided thereon, a resistive film, and a heating element formed of a lead film connected to the resistive film.
(2)発熱体基板としてセラミックスを用いたことを特
徴とする特許請求の範囲第1項記載の多孔形サーマルヘ
ッド。
(2) A porous thermal head according to claim 1, characterized in that ceramic is used as the heating element substrate.
(3)発熱体基板として感光性材料を用いたことを特徴
とする特許請求の範囲第1項記載の多孔形サーマルヘッ
ド。
(3) A porous thermal head according to claim 1, characterized in that a photosensitive material is used as the heating element substrate.
(4)剛性が高くかつ熱伝導が良好な材料よりなる発熱
体基板の一方に溝加工あるいは平面加工する工程と、上
記発熱体基板上の発熱体形成位置にインク通過孔を形成
する工程と、上記発熱体基板上の一方の面に絶縁膜を形
成する工程と、上記絶縁膜上に抵抗膜とリード膜を付着
し、インク通過孔との位置合せの後、発熱体群とリード
群を形成する工程と、上記発熱体群を保護する耐摩耗保
護膜を形成する工程とを具備したことを特徴とする多孔
形サーマルヘッドの製造方法。
(4) forming grooves or flat surfaces on one side of a heating element substrate made of a material with high rigidity and good thermal conductivity, and forming an ink passage hole at a position where the heating element is formed on the heating element substrate; After forming an insulating film on one surface of the heating element substrate, attaching a resistive film and a lead film on the insulating film, and aligning with the ink passage holes, a heating element group and a lead group are formed. 1. A method for manufacturing a porous thermal head, comprising: a step of forming a wear-resistant protective film for protecting the heating element group.
(5)上記発熱体基板に対する溝加工、平面加工あるい
はインク通過孔加工工程において、上記発熱体基板を化
学雰囲気中に固定し、上記基板表面をレーザー光で走査
することにより所定形状の溝、平面あるいはインク通過
孔を形成することを特徴とする特許請求の範囲第4項記
載の多孔形サーマルヘッドの製造方法。
(5) In the groove machining, flat surface machining, or ink passage hole machining process for the heating element substrate, the heating element substrate is fixed in a chemical atmosphere, and the surface of the substrate is scanned with a laser beam to form grooves and flat surfaces of a predetermined shape. 5. The method of manufacturing a porous thermal head according to claim 4, further comprising forming ink passage holes.
(6)上記発熱体基板に対する溝、平面加工あるいはイ
ンク通過孔加工工程において、上記発熱体基板表面に、
化学的で、安定かつ不透明な材料によりなる所望の溝、
平面あるいはインク通過孔のパターンを形成したマスク
あるいは膜を被膜させ、その後に、発熱体基板を化学雰
囲気中に固定し、この上よりレーザ光を照射・走査し、
所定形状の溝、平面あるいはインク通過孔を形成するこ
とを特徴とする特許請求の範囲第4項記載の多孔形サー
マルヘッドの製造方法。
(6) In the groove, plane processing or ink passage hole processing process for the heating element substrate, on the surface of the heating element substrate,
a desired groove made of chemical, stable and opaque material;
A mask or film is coated with a plane or a pattern of ink passage holes, and then the heating element substrate is fixed in a chemical atmosphere, and a laser beam is irradiated and scanned from above,
5. The method of manufacturing a porous thermal head according to claim 4, wherein grooves, planes, or ink passage holes having a predetermined shape are formed.
(7)上記発熱体基板に感光性材料を用い、上記発熱体
基板に対する溝、平面あるいはインク通過孔加工をフォ
トリソグラフィにより形成することを特徴とする特許請
求の範囲第4項記載の多孔形サーマルヘッドの製造方法
(7) A porous type thermal sensor according to claim 4, wherein a photosensitive material is used for the heating element substrate, and grooves, flat surfaces, or ink passage holes are formed on the heating element substrate by photolithography. Head manufacturing method.
JP18527085A 1985-08-23 1985-08-23 Perforated type thermal head and its preparation Pending JPS6244467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18527085A JPS6244467A (en) 1985-08-23 1985-08-23 Perforated type thermal head and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18527085A JPS6244467A (en) 1985-08-23 1985-08-23 Perforated type thermal head and its preparation

Publications (1)

Publication Number Publication Date
JPS6244467A true JPS6244467A (en) 1987-02-26

Family

ID=16167886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18527085A Pending JPS6244467A (en) 1985-08-23 1985-08-23 Perforated type thermal head and its preparation

Country Status (1)

Country Link
JP (1) JPS6244467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1484178A1 (en) * 2003-06-05 2004-12-08 Samsung Electronics Co., Ltd. Monolithic ink-jet printhead and method of manufacuturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140257A (en) * 1982-02-15 1983-08-19 Yokogawa Hokushin Electric Corp Recorder
JPS60145893A (en) * 1984-01-07 1985-08-01 Nippon Telegr & Teleph Corp <Ntt> Thermal recording method by direct use of ink

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140257A (en) * 1982-02-15 1983-08-19 Yokogawa Hokushin Electric Corp Recorder
JPS60145893A (en) * 1984-01-07 1985-08-01 Nippon Telegr & Teleph Corp <Ntt> Thermal recording method by direct use of ink

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1484178A1 (en) * 2003-06-05 2004-12-08 Samsung Electronics Co., Ltd. Monolithic ink-jet printhead and method of manufacuturing the same
US7178905B2 (en) 2003-06-05 2007-02-20 Samsung Electronics Co., Ltd. Monolithic ink-jet printhead
US7334335B2 (en) 2003-06-05 2008-02-26 Samsung Electronics Co., Ltd. Method of manufacturing a monolithic ink-jet printhead

Similar Documents

Publication Publication Date Title
JP6145564B2 (en) Object holder for use in a lithographic apparatus and method for manufacturing an object holder
US4119480A (en) Method of manufacturing thick-film circuit devices
JPS5842031B2 (en) Nozzle array manufacturing method for inkjet printers
KR100661343B1 (en) Plotting device and plotting method
TWI273983B (en) Liquid ejection element and manufacturing method therefor
JPH01123792A (en) Method of transferring metallic image
JPS6244467A (en) Perforated type thermal head and its preparation
WO1997046390A1 (en) Ink jet head and method of manufacturing same
JP6181572B2 (en) Adhesive sheet for electrostatic chuck and method for manufacturing the same
JP3230017B2 (en) Method of manufacturing inkjet head
US5317342A (en) High-density print head
US4897676A (en) High-density circuit and method of its manufacture
JP3360282B2 (en) Manufacturing method of microstructure
JP3532680B2 (en) Method of manufacturing inkjet head
JP2000216110A (en) Metallic-pattern forming method by optical recording, and electronic and optical elements using the same
JP3958830B2 (en) Manufacturing method of magnetic head slider
JP3400487B2 (en) Inkjet printer and its print head
JPH0264543A (en) Formation of pattern to curved surface
JPH0714137A (en) Method for working slider of thin-film magnetic head
JP2012166409A (en) Method for manufacturing thermal head
JP2891538B2 (en) Manufacturing method of wiring board
JP2004063694A (en) Pattern transfer film, manufacture thereof, functional mask and manufacture of functional mask
JPH0263750A (en) Thermal printing head
JPS6156317B2 (en)
JPS61125857A (en) Ink jet recording head