JPS6244432A - Molding method of frp pipe with non-slip - Google Patents

Molding method of frp pipe with non-slip

Info

Publication number
JPS6244432A
JPS6244432A JP60185402A JP18540285A JPS6244432A JP S6244432 A JPS6244432 A JP S6244432A JP 60185402 A JP60185402 A JP 60185402A JP 18540285 A JP18540285 A JP 18540285A JP S6244432 A JPS6244432 A JP S6244432A
Authority
JP
Japan
Prior art keywords
pipe
frp
vinyl chloride
cure
glass roving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60185402A
Other languages
Japanese (ja)
Other versions
JPH0374905B2 (en
Inventor
Yoki Koga
古賀 洋喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU SEKISUI KOGYO KK
Original Assignee
KYUSHU SEKISUI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU SEKISUI KOGYO KK filed Critical KYUSHU SEKISUI KOGYO KK
Priority to JP60185402A priority Critical patent/JPS6244432A/en
Publication of JPS6244432A publication Critical patent/JPS6244432A/en
Publication of JPH0374905B2 publication Critical patent/JPH0374905B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To apply a non-slip on the surface of the titled pipe, by a method wherein only a surface layer of a FRP layer is cured with ultraviolet rays, the surface of which is surrounded with a resin composite, with which a granular matter is mixed, and cure, and an inner layer part is cured further with far infrared rays. CONSTITUTION:A vinyl chloride pipe is extruded through an extrusion machine 1, which is made to cure within a cooling tank 2 and pulled out from a pulling machine 3. In succession to the above, glass roving 5 is fitted to the external circumference of the vinyl chloride pipe P1 and to run along the same so that the same is surrounded with the glass roving 5 to be impregnated to an impregnation device 6. Then after an external form has been adjusted by a shaping die 13, glass roving 17 is wound round the external circumference of a pipe P2 slantwise by shifting the shaped thing to a winder 14, which is pressed by rubber boards 21, 21 and impregnated with unsaturated polyester resin. Then after a surface layer of a pipe P3, which has been regulated to a circular state by a shaping ring device 23, has been made to cure by passing the same through ultraviolet curing furnaces 28, 29, 30, the pipe P3 is shifted to an application device 234 and a granular substance is stuck to the outside. This FRP pipe P is shifted to a far infrared curing furnace 41 and the inside of a resin layer is made to cure by heating the same. With this construction, the FRP pipe which has stabilized quality and is capable of using as a commodity immediately after production can be produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、FRP管の製造分野において利用され、特に
表面に滑り止めを施したFRP管を効率よく生産するこ
とができるFRP管の成形方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is utilized in the field of manufacturing FRP pipes, and in particular provides a method for forming FRP pipes that can efficiently produce FRP pipes with anti-slip surfaces. Regarding.

(従来の技術とその問題点) 従来、FRP管の引抜成形方法は、多数公開されている
が、これらの成形方法で成形したFRP管はいずれも表
面層が平滑であるため、FRP管の上面が滑りやすく用
途によっては不都合な場合がある。
(Prior art and its problems) Many pultrusion methods for FRP pipes have been published, but since all FRP pipes formed using these methods have a smooth surface layer, the top surface of the FRP pipe is The surface may be slippery, which may be inconvenient depending on the application.

例えば、海洋部門で使用される魚の養殖生簀に利用され
るFRP管では、表面が水に濡れると滑るため、生簀上
で作業者が作業しに〈<、又、カ午や真珠養殖用筏等に
使う場合にも、水に濡れると筏の上面が滑りやすくなっ
て1作業性が悪く。
For example, the surface of FRP pipes used for fish culture cages used in the marine sector slips when wet with water, making it difficult for workers to work on the fish cages. Even when used for water, the top surface of the raft becomes slippery when it gets wet, making work difficult.

かつ安全性を欠くことになる。And it will lack safety.

(問題点を解決するための手段) 本発明は、かかる従来の問題点を解決するためになされ
たもので、その目的とするところは1表面層が滑りに〈
〈、シかも外形寸法の精度がすぐれたFRP管を連続的
に成形できる成形方法を提供することにあり、この[I
的達成のための技術的手段として、本発明では、押出成
形により芯材を連続的に成形する内芯層成形工程と、含
浸槽内にて熱硬化性樹脂組成物を含浸させたガラスロー
ビングを1記芯材の外周に軸方向に沿って囲繞させ、次
いでこの上からガラス繊維を斜め方向に捲回し紫外線硬
化炉で硬化効果処理し、続いて塗布装置に通して粒状物
と熱硬化性樹脂とを混合してなる混合樹脂組成物を表面
に塗布硬化し、遠赤外線硬化炉を通して内面を硬化処理
するFRP層成形工程と、FRP管を一定の長さに切断
する切断工程と、切断したFRP管を完全硬化に近い硬
度まで硬化させる後硬化工程との連続する一連の工程か
らなる成形方法を採用した。
(Means for Solving the Problems) The present invention was made to solve these conventional problems, and its purpose is to prevent one surface layer from slipping.
〈The purpose of this [I
As a technical means to achieve this goal, the present invention includes an inner core layer forming step in which the core material is continuously formed by extrusion molding, and a glass roving impregnated with a thermosetting resin composition in an impregnating tank. 1) Surround the outer periphery of the core material along the axial direction, then wind the glass fiber diagonally on top of it, cure it in an ultraviolet curing oven, and then pass it through a coating device to coat the granules and thermosetting resin. an FRP layer forming process in which a mixed resin composition made by mixing the above is applied and cured on the surface, and the inner surface is cured in a far infrared curing furnace; a cutting process in which the FRP pipe is cut into a certain length; and the cut FRP We adopted a forming method that consists of a series of continuous steps including a post-curing step in which the tube is hardened to a hardness close to completely hardened.

(作用効果) したがって、本発明では、紫外線硬化炉でFRP層の表
面層だけを硬化させるようにし、塗布装置でもって前記
硬化処理したFRP管の表面に粒状物と熱硬化性樹脂と
を混合してなる混合樹脂組成物を囲繞争硬化させ、引き
続き遠赤外線硬化炉でもってFRPの内層部を硬化させ
ているので、表面のみざらざらした滑り止めを施した従
来にない新しいFRP管を精度よく、しかも線速度を高
めながら連続的に生産することができる。
(Operation and Effect) Therefore, in the present invention, only the surface layer of the FRP layer is cured in an ultraviolet curing furnace, and the granules and thermosetting resin are mixed on the surface of the cured FRP pipe with a coating device. By curing the mixed resin composition made by surrounding heat, and then curing the inner layer of FRP in a far-infrared curing furnace, we can produce a new type of FRP pipe with a rough, non-slip surface that has never been seen before. It can be produced continuously while increasing the linear speed.

(実施例) 以下に、本発明、のFRP管の成形方法についてその実
施例を説明する。
(Example) Examples of the method for molding an FRP pipe according to the present invention will be described below.

内芯層成形工程は、押出成形により熱可塑性樹脂管を連
続的に製造し、次いで、水冷により冷却し、間管を一定
速度で引き取る工程を言う。
The inner core layer forming process is a process in which a thermoplastic resin tube is continuously produced by extrusion molding, then cooled by water cooling, and the inner tube is taken off at a constant speed.

ここで、熱可塑性樹脂管は、ABS481脂管、AS樹
脂管、ポリエチレン樹脂管、塩化ビニル樹脂管等の耐熱
性の高い押出成形管をいう。
Here, the thermoplastic resin pipe refers to an extruded pipe with high heat resistance such as ABS481 resin pipe, AS resin pipe, polyethylene resin pipe, and vinyl chloride resin pipe.

次に、FRP層成形工程と、熱硬化性樹脂に触媒や硬化
剤を添加して自動的に混合して供給する樹脂自動供給装
置から熱硬化性樹脂組成物を含浸槽に供給し、この含浸
槽内を通して熱硬化性樹脂組成物を含浸させたガラスロ
ービングを前記内芯層の外周に軸方向に沿って囲繞し、
賦形ダイスを通して内芯層上にガラスロービングを密着
させ、次いでその上から斜め方向に別のガラス!a維を
捲回し、次いで弾性のある賦形リング装置を通して外形
を整え、引つづき紫外線ランプ(高圧水銀灯)を装備し
た紫外線硬化炉に通して表面を硬化させ、更に熱硬化性
樹脂と粒状物とを混合した混合樹脂組成物を塗布する塗
布装置に通し外表面−Fに均一な凹凸模様を施こした後
、遠赤外線により内部硬化を施こす工程をいう。
Next, in the FRP layer forming process, the thermosetting resin composition is supplied to the impregnation tank from the resin automatic supply device that automatically mixes and supplies the thermosetting resin with a catalyst and curing agent. a glass roving impregnated with a thermosetting resin composition that passes through the tank and surrounds the outer periphery of the inner core layer along the axial direction;
A glass roving is closely attached to the inner core layer through a shaping die, and then another glass is applied diagonally from above! The A-fiber is wound, then passed through an elastic shaping ring device to shape its outer shape, and then passed through an ultraviolet curing oven equipped with an ultraviolet lamp (high-pressure mercury lamp) to harden the surface, and then heat-cured with thermosetting resin and granules. This is a process in which a mixed resin composition mixed with is passed through a coating device to form a uniform uneven pattern on the outer surface -F, and then internally cured by far infrared rays.

ここで、熱硬化性樹脂としては、不飽和ポリエステル樹
脂、不飽和モノカルボン酸ビニルエステル樹脂、不飽和
エポキシ樹脂のポリマーとスチレン等との液状物が通常
用いられる。
Here, as the thermosetting resin, a liquid material of a polymer of an unsaturated polyester resin, an unsaturated monocarboxylic acid vinyl ester resin, an unsaturated epoxy resin, and styrene or the like is usually used.

そして、本発明に用いる添加剤としては、紫外線による
表面硬化のための光重合開始剤として、ベンゾイル系、
アゾ系、ジフェニルサルファイド系でJ41.スチレン
モノマー31 ffi M%、トルエン14屯州%、フ
タル酸ジオクチル29重州%、エーテル及びカルポキシ
ルノ、(を有するモノ置換ベンゼン化合物26玉に%の
混合物が好適に使用される。
Additives used in the present invention include benzoyl-based,
Azo type, diphenyl sulfide type J41. A mixture of styrene monomers 31% ffi M, toluene 14%, dioctyl phthalate 29%, ether and carpoxyl, 26% monosubstituted benzene compound is preferably used.

又、組合促進剤及び硬化触媒としては、第三級アミン類
、ナフテン酸コバルト等の金属触媒等、重合触媒として
は、E−ブチルパーアセテート、t−ブチルパービバレ
ート、t−ブチルパーイソブチレート、メチルエチルパ
ーオキサイド、ベンゾイルパーオキサイド、し−ブチル
パーベンゾエート等が挙げられる。
Examples of combination accelerators and curing catalysts include tertiary amines and metal catalysts such as cobalt naphthenate, and examples of polymerization catalysts include E-butyl peracetate, t-butyl pervivalate, and t-butyl perisobutyl. ester, methyl ethyl peroxide, benzoyl peroxide, and butyl perbenzoate.

叉、硬化の際の収縮を小さくするために低収縮剤として
飽和ポリエステル、ポリメタクリル醜メチル及び共重合
体、ポリ酢酸ビニル及び共重合体等が挙げられる。
In order to reduce shrinkage during curing, low-shrinkage agents include saturated polyester, polymethacrylic methyl and copolymers, polyvinyl acetate and copolymers, and the like.

又1本発明の要部をなす熱硬化性樹脂と粒状物との混合
樹脂組成物としては、不飽和ポリエステル樹脂を代表と
する熱硬化性樹脂に、砂利や砕砂あるいはセラミックス
の粉砕物や粒状物をlO〜60重琶%はど混合したもの
を使用し、粒度分布のバラツキを小さくして熱硬化性樹
脂との混合を均一にできるようにし、これらの混合物を
塗布装置に供給し、紫外線硬化炉より出て来た強化パイ
プの外周面上に均一にこの混合樹脂組成物を塗布して硬
化させ賦形シリンダーに通して外形を整え遠赤外線硬化
炉に通して内層を硬化させる。
In addition, the mixed resin composition of thermosetting resin and granular material, which is the main part of the present invention, includes a thermosetting resin represented by unsaturated polyester resin, gravel, crushed sand, crushed ceramics, and granular material. A mixture of 1O to 60% by weight is used to reduce the variation in particle size distribution so that the mixture with the thermosetting resin can be uniform, and the mixture is supplied to a coating device for ultraviolet curing. This mixed resin composition is uniformly applied onto the outer peripheral surface of the reinforcing pipe that comes out of the furnace and cured, passed through a shaping cylinder to shape the outer shape, and passed through a far infrared curing oven to harden the inner layer.

次に切断工程は、前述した複合管を一定の長さに自動切
断するものである。
Next, in the cutting step, the above-mentioned composite pipe is automatically cut into a certain length.

次に、後硬化工程は、切断したFRP管を完全硬化に近
い硬度まで硬化させ、諸物性を安定させるものであり、
8〜15mのトンネル型の後硬化炉を使用し、炉内温度
を50〜65℃に保持し、この炉内にFRP管をlO〜
14時間位入れておく工程をいうものである。
Next, the post-curing process is to harden the cut FRP pipe to a hardness close to completely hardened, and stabilize various physical properties.
A tunnel-type post-hardening furnace with a length of 8 to 15 m is used, and the temperature inside the furnace is maintained at 50 to 65°C.
This is a process of leaving it in for about 14 hours.

以上、本発明のFRP管の成形方法について説明したが
、本発明によればFRP管の外表面−hに粒状物を分散
させ、この粒状物を熱硬化性樹脂でもって強化パイプの
外側に固着してFRP管の表面に滑り抵抗をもたせ、尚
かつ、賦形シリンダーにて外形を真円状に整え、後硬化
炉に於て、FRP管を完全硬化させているため、生産後
すぐに商品として使用できる特徴を有し、又滑り市め効
果を十分に発揮できるので、海洋分野にて利用される各
種の養殖用役や組を商品に使用すれば、作業者の足もと
が滑って怪我をするといった基数もなく、安全性の確保
が十分に行ない得るものである。
The method for molding an FRP pipe according to the present invention has been described above. According to the present invention, particulate matter is dispersed on the outer surface -h of the FRP pipe, and this particulate matter is fixed to the outside of the reinforced pipe with a thermosetting resin. The surface of the FRP pipe is made to have slip resistance, and the outer shape is made into a perfect circle using a shaping cylinder, and the FRP pipe is completely cured in a post-curing furnace, so it can be manufactured immediately after production. It also has the characteristic of being able to be used as a slip market, so if various aquaculture tools and sets used in the marine field are used in products, workers' feet will not slip and cause injuries. There is no radix, and security can be sufficiently ensured.

又、陸上に於ても建築の足場部材等には足下がしっかり
するためより好適に利用することができる。
Moreover, even on land, it can be used more suitably as a scaffolding member for construction, etc., since it provides a secure footing.

次に、本発明方法の具体的実施の一例を図面に基いて説
明すると、押出機1より外径40■園、肉厚1.5a+
sの塩化ビニル管を6m/分の速度で押し出し、冷却槽
2内の水中を通してサイジングを行ないながら円形に硬
化させ、引張機3より引き出す。
Next, an example of a specific implementation of the method of the present invention will be explained based on the drawings.
A vinyl chloride pipe of s is extruded at a speed of 6 m/min, passed through water in a cooling tank 2 while being sized and hardened into a circular shape, and then pulled out from a tensile machine 3.

続いて、ガラスロービング架台4に架設したガラスロー
ビング5をそれぞれ74本づつ塩化ビニル管P、の軸方
向に外周を囲繞させるように添装させ、このガラスロー
ビングを含浸装置6に含浸させる。尚、この含浸装置6
に臨設して、不飽和ポリエステル樹脂と硬化促進剤、触
媒等を自動計量して混合する自動原料供給装置(図示せ
ず)を設置している。
Subsequently, 74 glass rovings 5 installed on the glass roving frame 4 are attached so as to surround the outer periphery of the vinyl chloride pipe P in the axial direction, and the impregnating device 6 is impregnated with the glass rovings. In addition, this impregnation device 6
An automatic raw material supply device (not shown) is installed on site to automatically measure and mix unsaturated polyester resin, curing accelerator, catalyst, etc.

」−記含浸装置6の最前部には格子状架台7を立設し、
その後方に、第2図に示すように、中央部に塩化ビニル
管P、を通す貫通穴8と、この貫通穴8の外周上に均等
間隔でもってガラスロービング5を集束させる小孔9を
多数環状に穿設した集束板10を立設し、この集束板1
0の後方に含浸槽11を設置している。
” - A lattice-shaped pedestal 7 is set up at the forefront of the impregnating device 6,
Behind it, as shown in FIG. 2, there is a through hole 8 in the center through which the vinyl chloride pipe P is passed, and a large number of small holes 9 on the outer periphery of this through hole 8 that converge the glass rovings 5 at equal intervals. A focusing plate 10 with an annular hole is provided upright, and this focusing plate 1
An impregnating tank 11 is installed behind 0.

含浸槽11は、第3図に示すように略筺状体に形成させ
た底部を設け、L面を開口し国内にはガラスロービング
5に引張力を加える張圧板12を2ケ所に設け、その後
方に賦形ダイス13を装着している。
As shown in FIG. 3, the impregnation tank 11 has a bottom formed into a substantially housing-like body, and has an open L side. A shaping die 13 is attached to one side.

賦形ダイス13は、第4図に示すように、長さ55■層
、ダイス内径41腸−φ、絞り角度5度のものを使用し
、ダイス入rl 13 aより塩化ビニル管外周上に熱
硬化性樹脂を含浸したガラスロービング5を囲繞した状
態にて挿入し、ダイス内部13bで樹脂層を絞りながら
樹脂中に含まれる空気を抜きとると共に余分な樹脂を絞
り取りながら、はぼ真円状に樹脂及びガラスロービング
を塩化ビニル管上に圧着させて賦形するものである。
As shown in Fig. 4, the shaping die 13 has a length of 55 cm, a die inner diameter of 41 mm, and a drawing angle of 5 degrees. A glass roving 5 impregnated with a curable resin is inserted in a surrounding state, and the resin layer is squeezed with the inside of the die 13b to remove air contained in the resin and squeeze out excess resin, forming a nearly perfect circle. The resin and glass roving are then pressed onto a vinyl chloride pipe to shape it.

次に、賦形ダイス13で外形を整えた後、ワイングー(
捲回機)14へ移行させる。
Next, after adjusting the outer shape with the shaping die 13, wine goo (
winding machine) 14.

ワイングー(捲回fi)14は、含浸装置6の賦形ダイ
ス13から出た強化塩化ビニル管P2を軸にして回転す
るように構成しており基端の支持板15より側方に突設
した支持杆16には、ガラスロービング17を捲き付け
たボビン18.18を回動できるように装着し、後方に
は、強化塩化ビニル管P1を軸として回転するガラス押
え装置19を装着している。
The wine goo (winding fi) 14 is configured to rotate around the reinforced vinyl chloride pipe P2 coming out of the shaping die 13 of the impregnating device 6, and is provided to protrude laterally from the support plate 15 at the base end. A bobbin 18, 18 wound with a glass roving 17 is rotatably mounted on the support rod 16, and a glass holding device 19 that rotates around the reinforced vinyl chloride pipe P1 is mounted at the rear.

このガラス押え装2t19は、基端20より内側方向に
ゴム板21.21を固着した押え板22゜22を突設さ
せており、このゴム板21.21は強化塩化ビニル管P
2を軸にして回動し、ガラスロービング17をトから軽
く押圧させて回動するものである。
This glass holding device 2t19 has a holding plate 22°22 protruding inward from the base end 20 to which a rubber plate 21.21 is fixed, and this rubber plate 21.21 is attached to a reinforced vinyl chloride pipe P.
2 as an axis, and the glass roving 17 is rotated by being lightly pressed from the top.

従って、ワイング−(捲回機)14に移行してきた強化
塩化ビニル管P、の外周Eには管軸に対して略60[の
角度でもって、ガラスロービング17が捲回され、ゴム
板21.21によって押圧されるため、ガラスロービン
グ17にも不飽和ポリエステル樹脂が含浸する。
Therefore, a glass roving 17 is wound around the outer periphery E of the reinforced vinyl chloride pipe P, which has been transferred to the winding machine 14, at an angle of about 60 [to the pipe axis], and a rubber plate 21. 21, the glass roving 17 is also impregnated with the unsaturated polyester resin.

そして、この強化塩化ビニル管P2の外形を完全に整え
る。
Then, the outer shape of this reinforced vinyl chloride pipe P2 is perfectly adjusted.

賦形リング装置23は、第5図に示したように、架台2
4上に略100m5間隔で支持板25,25を取り付け
、この支持板25に略35■層の賦形孔26を前回した
ゴム板27を取り付けている。
The shaping ring device 23, as shown in FIG.
4, support plates 25, 25 are attached at an interval of approximately 100 m5, and to this support plate 25 is attached a rubber plate 27 with approximately 35 layers of shaping holes 26 previously formed.

この賦形リング装置23に上記した強化塩化ビニル管P
、を通すと、ゴム板27の賦形孔26を強化塩化ビニル
管P、の外径より小さく形成しているため、ゴム板27
の弾性力が作用して強化塩化ビニル管P、上の余分な樹
脂を除去し、捲回したガラスロービング17の凹凸を平
滑にして強化塩化ビニル管PJの外形を円形状に調整す
る。
This shaping ring device 23 has the above-mentioned reinforced vinyl chloride pipe P.
When passing through the rubber plate 27, the forming hole 26 of the rubber plate 27 is formed smaller than the outer diameter of the reinforced vinyl chloride pipe P.
The elastic force acts to remove excess resin on the reinforced vinyl chloride pipe P, smooth the unevenness of the wound glass roving 17, and adjust the outer shape of the reinforced vinyl chloride pipe PJ to a circular shape.

次に前記賦形リング装置23で円形状に調整した強化塩
化ビニル管Pjを紫外線硬化炉28,29.30に通す
Next, the reinforced vinyl chloride pipe Pj adjusted into a circular shape by the shaping ring device 23 is passed through the ultraviolet curing furnaces 28, 29, and 30.

この時、本実施例では、パイプを6m/分で移行させ、
290℃の紫外線硬化炉28に通し1次いで310℃の
紫外線硬化炉29に移行させ、次いで320℃の紫外線
硬化炉30に移して強化塩化ビニル管P、に含浸された
不飽和ポリエステル樹脂の表層を数秒以内で硬化させる
At this time, in this example, the pipe is moved at a rate of 6 m/min,
The surface layer of the unsaturated polyester resin impregnated into the reinforced vinyl chloride pipe P was passed through an ultraviolet curing oven 28 at 290°C, then transferred to an ultraviolet curing oven 29 at 310°C, and then transferred to an ultraviolet curing oven 30 at 320°C. Hardens within seconds.

1)11記紫外線硬化炉28は、第6図(a)に示すよ
うに、4個の高圧水銀灯31を強化塩化ビニル管P、の
対角方向に4本設置して紫外線にて不飽和ポリエステル
樹脂の表層を硬化させるようにしており、紫外線硬化炉
29は、第6図(b)に示すように左右2か所に高圧水
銀灯32を2本設置し、紫外線硬化炉30は、第6図(
e)に示すように上下2ケ所に高圧水銀灯33を2本設
置している。
1) As shown in FIG. 6(a), the ultraviolet curing furnace 28 No. 11 is constructed by installing four high-pressure mercury lamps 31 in diagonal directions of a reinforced vinyl chloride tube P to cure unsaturated polyester with ultraviolet rays. The surface layer of the resin is cured, and the ultraviolet curing furnace 29 has two high-pressure mercury lamps 32 installed at two places on the left and right as shown in FIG. 6(b). (
As shown in e), two high-pressure mercury lamps 33 are installed at the upper and lower locations.

次に1強化塩化ビニル管P、の表層を硬化させた後、塗
布装置34に移行し、ここで強化塩化ビニル管P3の外
側面に粒状物を固着する。
Next, after hardening the surface layer of the reinforced vinyl chloride pipe P1, the process moves to the coating device 34, where the granules are fixed on the outer surface of the reinforced vinyl chloride pipe P3.

紫外線硬化炉30の後部に設置された塗布装置34は、
前部シリンダー35と1:部ホッパー36それに後部賦
形シリンダー37とよりなり、前部シリンダー35から
L部ホッパー36の基端部38は冷却水によって冷却さ
れ、後部賦形シリンダー37にはTL熱ヒーター39を
装着している。ヒ部ホッパー36内には熱硬化性樹脂と
粒状物との混合樹脂組成物40が充填されており、前部
シリンダー35より挿入ぎれだ強化塩化ビニル管P、は
一ヒ部ホッパー36の基端部38に達すると、ホッパー
36内の混合樹脂組成物40が流下されて強化塩化ビニ
ル管Pjの外周を囲繞するようにして後部賦形シリンダ
ー37へ達する。この賦形シリンダー37は、強化塩化
ビニル管P1の外形より0.5〜2.0 +smはど大
きい内径を有し、強化塩化ビニル管P、と賦形シリンダ
ー内壁37aとの隙間に混合樹脂組成物40が流入し強
化塩化ビニル管PJの外周を囲繞し、強化塩化ビニル管
Rの移行方向に移動しながら電熱ヒーター39の熱エネ
ルギーによって表層を硬化させるように形成している。
The coating device 34 installed at the rear of the ultraviolet curing furnace 30 is
It consists of a front cylinder 35, a 1:1 part hopper 36, and a rear forming cylinder 37. The base end 38 of the L part hopper 36 from the front cylinder 35 is cooled by cooling water, and the rear forming cylinder 37 is provided with TL heat. Heater 39 is installed. The inside of the hopper 36 is filled with a mixed resin composition 40 of a thermosetting resin and granules, and the reinforced vinyl chloride pipe P, which is inserted from the front cylinder 35, is at the base end of the hopper 36. When reaching the part 38, the mixed resin composition 40 in the hopper 36 flows down and reaches the rear shaping cylinder 37 so as to surround the outer periphery of the reinforced vinyl chloride pipe Pj. This shaping cylinder 37 has an inner diameter 0.5 to 2.0 + sm larger than the outer diameter of the reinforced vinyl chloride pipe P1, and contains a mixed resin in the gap between the reinforced vinyl chloride pipe P and the shaping cylinder inner wall 37a. The material 40 is formed so as to flow in, surround the outer periphery of the reinforced vinyl chloride pipe PJ, and harden the surface layer by the thermal energy of the electric heater 39 while moving in the direction of movement of the reinforced vinyl chloride pipe R.

従って、賦形シリンダー37を出て来たFRP管Pは表
面に粒状物Mが均一に散乱し凹凸状の粗面を形成してい
る。このFRP管Pを遠赤外線硬化炉41に移行し、こ
こで第8図に示すような遠赤外線ヒータ42.42をF
RP管Pの軸方向に長く、しかもFRP管Pのヒトに取
り付は不飽和ポリエステル樹脂層の内部を加熱し硬化さ
せる。
Therefore, the FRP pipe P that has come out of the shaping cylinder 37 has the particulate matter M uniformly scattered on its surface, forming an uneven, rough surface. This FRP tube P is transferred to a far infrared curing furnace 41, and here a far infrared heater 42, 42 as shown in FIG.
The RP pipe P is long in the axial direction, and when the FRP pipe P is attached to a person, the inside of the unsaturated polyester resin layer is heated and hardened.

こうして成形したFRP管Pは、第10図に示すように
、内芯層43を塩化ビニル樹脂、中間層44を軸方向に
添着したガラスロービング5と周方向に捲回したガラス
ロービング17に不飽和ポリエステル樹脂を含浸硬化さ
せた強化プラスチック層、外層45を熱硬化性樹脂と粒
状物との混合樹脂組成物でもって被覆した三層構造の複
合管に構成される。この複合管は、切断機46により所
定寸法に切断される。
As shown in FIG. 10, the FRP pipe P thus formed has an inner core layer 43 made of vinyl chloride resin, an intermediate layer 44 attached to the glass roving 5 in the axial direction, and a glass roving 17 wound in the circumferential direction that is unsaturated. It is constructed as a three-layered composite tube in which a reinforced plastic layer is impregnated with a polyester resin and hardened, and an outer layer 45 is coated with a mixed resin composition of a thermosetting resin and granules. This composite pipe is cut into a predetermined size by a cutting machine 46.

尚、後硬化炉47は、混合樹脂組成物を被覆した長さ略
10mのFRP管Pを多数収納するトンネル型の炉本体
48の天井壁面の−・端より空気流通路49を取り出し
、この空気流通路49−ヒにブロアー50、熱交換器5
1それに加熱室52を設け、加熱室52からの空気波通
路49の終端部53を炉本体48の他端天井壁より炉内
に貫通させ、この終端部53にフード54を着脱可能に
取り付け、フード54の先端開口部55内に台車56ヒ
に積載したFRP管Pの管端部を差し込み、開口部55
を締め付けて密月し、55℃の温風Wをフード54を介
して各FRP管Pの管内に押し込み、加熱させながら効
率よく硬化させるように形成している。
In the post-curing furnace 47, an air flow passage 49 is taken out from the end of the ceiling wall surface of a tunnel-shaped furnace body 48 that accommodates a large number of FRP pipes P coated with a mixed resin composition and having a length of approximately 10 m. A blower 50 and a heat exchanger 5 are installed in the flow path 49-hi.
1. A heating chamber 52 is provided therein, a terminal end 53 of the air wave passage 49 from the heating chamber 52 is penetrated into the furnace from the ceiling wall at the other end of the furnace main body 48, and a hood 54 is removably attached to the terminal end 53; Insert the pipe end of the FRP pipe P loaded on the cart 56 into the tip opening 55 of the hood 54, and
The pipes are tightly tightened and hot air W at 55° C. is forced into the inside of each FRP pipe P through the hood 54 to efficiently harden the pipes while heating them.

以上説明したようにして形成されたFRP管Pは、賦形
ダイス、賦形リング及び賦形シリンダーを通すことによ
って、通常の塩化ビニル管の外径精度とほぼ同等に製造
することができ、しかも後硬化炉を使用することによっ
て、生産後すぐに商品として使用できる品質の安定した
FRP管を生産でき、更に、FRP管の表面には、すベ
リ抵抗の大きい粒状物Mを突出固定させているため、滑
り市め効果が大であり、各種の養殖用筏や生簀、それに
陸上での構築物の足場部材等に利用できるものである。
The FRP pipe P formed as described above can be manufactured with almost the same outer diameter accuracy as that of a normal vinyl chloride pipe by passing it through a forming die, a forming ring, and a forming cylinder. By using a post-hardening furnace, it is possible to produce FRP pipes with stable quality that can be used as products immediately after production, and in addition, granules M with high sliding resistance are protruded and fixed on the surface of the FRP pipes. Therefore, it has a great sliding effect and can be used for various aquaculture rafts, fish cages, and scaffolding members for structures on land.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法でFRP管を成形する装置の側面図
、第2図は本発明の集束板の正面図、第3図は含浸槽の
断面拡大図、第4図は本発明の賦形ダイスの側面一部断
面図、第5図は賦形リング装置の断面図、第6図は紫外
線硬化炉の断面図、第7図は塗布装置の断面拡大図、第
8図は遠赤外線硬化炉の断面図、第9図は後硬化炉の側
面一部切欠図、第10図は本発明方法によって成形され
たFRP管の斜視図である。 l:押出機 2:冷却槽 3:引張機 5ニガラスロービング 6:含浸装置 14:ワインダー 17:ガラスロービング 28.29,30 :紫外線硬化炉 34:塗布装置 41:遠赤外線硬化炉 46:切断機 47:後硬化炉 P:FRP管 第4図 第2図 旦 第3図 第5図 第6図 (a)     (b)    (C)第7図 第8図 乙1 tlGIo図 第9図 6、−
Fig. 1 is a side view of an apparatus for forming FRP pipes according to the method of the present invention, Fig. 2 is a front view of a focusing plate of the present invention, Fig. 3 is an enlarged cross-sectional view of an impregnating tank, and Fig. 4 is a view of a device for forming FRP pipes of the present invention. Figure 5 is a cross-sectional view of the shaping ring device, Figure 6 is a cross-sectional view of the ultraviolet curing furnace, Figure 7 is an enlarged cross-sectional view of the coating device, and Figure 8 is far-infrared curing. FIG. 9 is a cross-sectional view of the furnace, FIG. 9 is a partially cutaway side view of the post-hardening furnace, and FIG. 10 is a perspective view of an FRP pipe formed by the method of the present invention. l: Extruder 2: Cooling tank 3: Tensile machine 5 Glass roving 6: Impregnation device 14: Winder 17: Glass roving 28, 29, 30: Ultraviolet curing furnace 34: Coating device 41: Far infrared curing furnace 46: Cutting machine 47: Post-hardening furnace P: FRP pipe Fig. 4 Fig. 2 Fig. 3 Fig. 5 Fig. 6 (a) (b) (C) Fig. 7 Fig. 8 Otsu 1 tlGIo Fig. 9 Fig. 6, -

Claims (1)

【特許請求の範囲】[Claims] 1)押出成形により芯材を連続的に成形する内芯層成形
工程と、含浸槽内にて熱硬化性樹脂組成物を含浸させた
ガラスロービングを上記芯材の外周に軸方向に沿って囲
繞させ、次いでこの上からガラス繊維を斜め方向に捲回
し紫外線硬化炉で表面硬化処理し、続いて塗布装置に通
して粒状物と熱硬化性樹脂とを混合してなる混合樹脂組
成物を表面に塗布硬化し、遠赤外線硬化炉を通して内面
を硬化処理するFRP層成形工程と、FRP管を一定の
長さに切断する切断工程と、切断したFRP管を完全硬
化に近い硬度まで硬化させる後硬化工程との連続する一
連の工程からなる滑り止めを施したFRP管の成形方法
1) An inner core layer forming process in which the core material is continuously formed by extrusion molding, and a glass roving impregnated with a thermosetting resin composition is surrounded along the axial direction around the outer periphery of the core material in an impregnation tank. Next, glass fibers are wound diagonally on top of this and subjected to surface hardening treatment in an ultraviolet curing oven, and then passed through a coating device to coat the surface with a mixed resin composition made by mixing particulate matter and a thermosetting resin. An FRP layer forming process in which the coating is cured and the inner surface is hardened in a far-infrared curing furnace, a cutting process in which the FRP pipe is cut to a certain length, and a post-curing process in which the cut FRP pipe is hardened to a hardness close to fully cured. A method for forming non-slip FRP pipes, which consists of a series of continuous steps.
JP60185402A 1985-08-22 1985-08-22 Molding method of frp pipe with non-slip Granted JPS6244432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60185402A JPS6244432A (en) 1985-08-22 1985-08-22 Molding method of frp pipe with non-slip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60185402A JPS6244432A (en) 1985-08-22 1985-08-22 Molding method of frp pipe with non-slip

Publications (2)

Publication Number Publication Date
JPS6244432A true JPS6244432A (en) 1987-02-26
JPH0374905B2 JPH0374905B2 (en) 1991-11-28

Family

ID=16170164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60185402A Granted JPS6244432A (en) 1985-08-22 1985-08-22 Molding method of frp pipe with non-slip

Country Status (1)

Country Link
JP (1) JPS6244432A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212461A (en) * 1993-01-12 1994-08-02 Kyushu Sekisui Kogyo Kk Resin pipe with copper wire and its molding method
JP2011115983A (en) * 2009-12-01 2011-06-16 Ube Nitto Kasei Co Ltd Filament winding method, method for manufacturing fiber-reinforced plastic long object, and filament winding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212461A (en) * 1993-01-12 1994-08-02 Kyushu Sekisui Kogyo Kk Resin pipe with copper wire and its molding method
JP2011115983A (en) * 2009-12-01 2011-06-16 Ube Nitto Kasei Co Ltd Filament winding method, method for manufacturing fiber-reinforced plastic long object, and filament winding device

Also Published As

Publication number Publication date
JPH0374905B2 (en) 1991-11-28

Similar Documents

Publication Publication Date Title
JP4015809B2 (en) Manufacturing method of fiber-reinforced composite hollow structure and manufacturing apparatus thereof
JPS6244432A (en) Molding method of frp pipe with non-slip
EP0510097A1 (en) Process of forming fiber reinforced molded plastic articles and preforms therefor using a photosetting binder
US3888712A (en) Method for producing fiberglass reinforced plastic composite pipes
US3957942A (en) Process of coating an elongated support
US4153398A (en) Apparatus for producing cast-in-place pipe employing permanent pipe mold
JPS61213136A (en) Continuous pultrusion method of frp pipe
JPS59178235A (en) Extrusion molding method of thermosetting resin
JPS61244533A (en) Continuous draw molding of frp tube
JPH0137259B2 (en)
JPS5948120A (en) Continuous draw forming of heat resisting fiber reinforced plastic pipe
JP3115023B2 (en) Manufacturing method of fiber reinforced resin molded product
JPH0510211B2 (en)
JPS62773B2 (en)
DE2137778A1 (en) Method and apparatus for making fiber reinforced resin articles
HU227555B1 (en) Method for arming composit-fabrication of open-air located objects
GB1037258A (en) Improvements in or relating to the production of sealing materials for repairing punctures and the like
GB759092A (en) A process for the manufacture of moulded articles of reinforced plastic material
JPH0582285B2 (en)
JP2001270005A (en) Producing method for fiber-reinforced resin pipe
JP3496206B2 (en) Manufacturing method of fiber-reinforced plastic molded product
JPH0582286B2 (en)
JP4404535B2 (en) Method for producing fiber-reinforced resin molded body
JPH0424287A (en) Production of fiber reinforcing material
JPH0716938A (en) Production of pultrusion product