JPS6244088A - Controller of induction motor - Google Patents

Controller of induction motor

Info

Publication number
JPS6244088A
JPS6244088A JP60182707A JP18270785A JPS6244088A JP S6244088 A JPS6244088 A JP S6244088A JP 60182707 A JP60182707 A JP 60182707A JP 18270785 A JP18270785 A JP 18270785A JP S6244088 A JPS6244088 A JP S6244088A
Authority
JP
Japan
Prior art keywords
induction motor
secondary winding
current
time constant
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60182707A
Other languages
Japanese (ja)
Inventor
Hidehiko Sugimoto
英彦 杉本
Shinzo Tamai
伸三 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60182707A priority Critical patent/JPS6244088A/en
Publication of JPS6244088A publication Critical patent/JPS6244088A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To compensate a variation in the temperature of the secondary winding time constant of a motor by detecting interlinked magnetic flux of q<e> axis secondary winding, and correcting a slip frequency and the secondary winding time constant, thereby compensating the delay of a controller. CONSTITUTION:A rotary coordinates converter 16 converts an output voltage detected by a search coil wound in the primary winding to voltages vd<e>c, vg<e>c of rotary coordinates. The calculator 17 of secondary interlinked magnetic flux equivalent calculates the secondary interlinked magnetic flux equivalent lambda'g<e>r by the voltages vd<e>c, vg<e>c and the primary winding currents id<e>s, ig<e>g. The secondary winding resistance setter 18 controls the time constant set value of the secondary winding used for calculating in the secondary magnetic flux slip frequency calculator 12 by the equivalent lambda'g<e>r, torque current ig<e>r and synchronizing angle frequency command omega to coincide with the time constant value of the secondary winding of an induction motor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は誘導電動機の内部定数の変化にも安定してト
ルク制御が可能な誘導電動機の制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control device for an induction motor that is capable of stably controlling torque even when internal constants of the induction motor change.

〔従来の技術〕[Conventional technology]

従来のこの種装置として第6図に示すものがあった。図
はベクトル制御誘導電動機のブロック構成図で、図にお
いて、1は三相紡導ili動機、2は三相誘導電動機1
の速度を検出するタコジェネレータ、3は三相父流電力
を誘導電動機に供給する可変電圧可変周波数電力変換装
置、4は電気角速度ωで回転する直交座標軸(df”−
qe軸)上で見た電圧I’deg 、 Vq’lを三札
交流に変換するt圧厘槓変換回路、5は三相交泥−流1
ur ly + 1wk d’−q0軸上に変換してt
流1qea 、 1dei  を得る電流座標変換回路
、6はもれリアクタンスによる。113− q13軸へ
の干渉を補償する非干渉補償回路、7は励磁電流(ld
e+1)制御回路、8は磁束(λd” r ) 1tl
lJ 両回路、8は弱め界磁設定のために速度によって
二次磁束指令(λ(1er)を変化させる弱め界磁設定
回路、10はトルク分電流(iqe、)制御回路、11
は回転角速度(叫)制御回路である。また、12は二次
磁束(λder )すベシ周波数(ω8)演算回路、1
3は角速度ωを積分し、位相θを求める積分器、14は
座標変換のために必安なsinθ、c0817の値を演
算する正弦、余弦発器、15は回転角速度ω1に極対数
ptかける係数器である。
A conventional device of this type is shown in FIG. The figure is a block diagram of a vector control induction motor. In the figure, 1 is a three-phase spinning motor, and 2 is a three-phase induction motor.
3 is a variable voltage variable frequency power converter that supplies three-phase father current power to the induction motor; 4 is a rectangular coordinate axis (df"-) that rotates at an electrical angular velocity ω;
t pressure conversion circuit that converts the voltage I'deg and Vq'l seen on the qe axis) to three-phase alternating current; 5 is a three-phase alternating current 1
ur ly + 1wk Convert onto d'-q0 axis and t
A current coordinate conversion circuit that obtains currents 1qea and 1dei, 6 is due to leakage reactance. 113- A non-interference compensation circuit that compensates for interference to the q13 axis, 7 is an excitation current (ld
e+1) control circuit, 8 is magnetic flux (λd” r ) 1tl
lJ Both circuits, 8 is a field weakening setting circuit that changes the secondary magnetic flux command (λ (1er) depending on the speed for field weakening setting, 10 is a torque component current (iqe,) control circuit, 11
is the rotational angular velocity (scream) control circuit. In addition, 12 is a secondary magnetic flux (λder) frequency (ω8) calculation circuit;
3 is an integrator that integrates the angular velocity ω and calculates the phase θ, 14 is a sine and cosine generator that calculates the value of sin θ and c0817, which are necessary for coordinate transformation, and 15 is a coefficient that multiplies the rotational angular velocity ω1 by the polar logarithm pt. It is a vessel.

次に動作について説明する。まず、第6図において、す
ベクpω8は二次磁束すベク周波数演算回路12甲で以
下の(1)式によって求められる。
Next, the operation will be explained. First, in FIG. 6, the vector pω8 is determined by the following equation (1) in the secondary magnetic flux vector frequency calculation circuit 12A.

従って、電気角速度ωは で制御され、このとき tl 6− q e軸、二次巻
線鎖交磁束λder、λ、er  のうち、qe軸二次
巻緑鎖交磁束λ、e7は零に集束し、二次鎖交磁束の方
向はdf軸に一致する。この時三相誘導を動機1の状態
方程式は(3)式で示される。
Therefore, the electrical angular velocity ω is controlled by tl 6-q At this time, among the e-axis and secondary winding flux linkage λder, λ, er, the qe-axis secondary winding green flux linkage λ, e7 is focused to zero. However, the direction of the secondary flux linkage coincides with the df axis. At this time, the state equation of motive 1 using three-phase induction is shown by equation (3).

ただし、P:微分演算子 R,ニー次巻線抵抗 Rr:二次巻線抵抗 σ:もれ係数 り、ニー次巻線自己インダクタンス Lr:二次巻線自己インダクタンス Mニー次、二次巻線相互インダクタンスVd’s : 
d’軸一次電圧 vq@ 、 ’、 q e軸一次電圧 ここで、入力変数’ ” a + ’Iq(I g  
を(4) 、 (5)式で制御すると、 Vd”s = vaes −ωσLa1q’s    
   ”・”・(4)vqes = vqes+ωσL
s (i dea−λ(16r/M)  ・・・・・・
(5)よって、(3)式の状態方程式は、 となり、励磁電流1des、二次磁束λdeaはv/d
eaによって・ トルク分ili流i qe 、は■(
1eaによって独立に制御できることがわかる。そして
、(4)式、(5)式を実現しているのが非干渉補償回
路6である。
However, P: differential operator R, knee winding resistance Rr: secondary winding resistance σ: leakage coefficient, knee winding self-inductance Lr: secondary winding self-inductance M knee, secondary winding Mutual inductance Vd's:
d'-axis primary voltage vq@, ', q e-axis primary voltage Here, input variable ''' a + 'Iq (I g
When controlled by equations (4) and (5), Vd”s = vaes −ωσLa1q's
"・"・(4) vqes = vqes + ωσL
s (idea−λ(16r/M) ・・・・・・
(5) Therefore, the equation of state of equation (3) is as follows, where the exciting current is 1des and the secondary magnetic flux λdea is v/d
By ea, the torque component ili flow i qe is ■(
It can be seen that it can be independently controlled by 1ea. The non-interference compensation circuit 6 realizes equations (4) and (5).

上記の様に、励磁分とトルク分の電流が独立に制御でき
るため、第6図では励磁電流制御回路Tをマイナールー
ズに持った磁束制御回路8で二次磁束を制御し、トルク
分電流制御回路10をマイナールーズに持った回転角速
度制御回路11で速度制御を行う。また、弱め界磁設定
回路9によって、弱め界磁制御による定出力制御ができ
る。
As mentioned above, since the excitation current and the torque current can be controlled independently, in FIG. Speed control is performed by a rotational angular velocity control circuit 11 having a minor loose circuit 10. Further, the field weakening setting circuit 9 allows constant output control by field weakening control.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の誘導ta機の制御装置は以上のように構成されて
いるので温if化によって電動機の二次時定数T、が変
化すると、(2)式に示す電気角速度ωの演算誤差が大
となる。従って、二次巻線鎖交磁束λ、1er、λqe
 rとdeg O方向が一致しなくな夛、トルクに過渡
退勤や定常偏差が生じる等の問題点があった。
Since the control device of the conventional induction TA machine is configured as described above, when the secondary time constant T of the motor changes due to temperature increase, the calculation error of the electrical angular velocity ω shown in equation (2) becomes large. . Therefore, the secondary winding flux linkage λ, 1er, λqe
There were problems such as the r and degO directions not matching each other, and transient deviations and steady-state deviations occurring in the torque.

この発明は上記のような問題点を解消するためになされ
たもので、電動機の温度変化による二次巻線時定数Tr
の変化を補償できる誘導電動機の制御装置kを得ること
を目的とする。
This invention was made to solve the above-mentioned problems, and the secondary winding time constant Tr due to temperature changes in the motor
An object of the present invention is to obtain a control device k for an induction motor that can compensate for changes in .

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る誘導電動機の制御装置は qe軸二次巻
線鎖交磁束を検出し、それにゲインをかけた値をすペシ
周波数の補正値とするとともに、qe軸二次巻線鎖交磁
束検出値′f:積分した値を二次巻線時定数の補正値と
したものである。
The control device for an induction motor according to the present invention detects the qe-axis secondary winding flux linkage, multiplies the value by a gain, and sets the value as a correction value for the pes frequency, and also detects the qe-axis secondary winding flux linkage. Value 'f: The integrated value is used as a correction value for the secondary winding time constant.

〔作用〕[Effect]

この発明におけるすベシ周波数の補正値は、電力変換装
置および制御回路の遅れを補償し、二次巻線時定数の補
正値は、電動機の二次巻1g11時定数の補正値は、電
動機の二次巻線時定数の温度変化を補償する。
The correction value for the overall frequency in this invention compensates for delays in the power converter and the control circuit, and the correction value for the secondary winding time constant is the correction value for the secondary winding 1g11 time constant of the motor. Compensates for temperature changes in the next winding time constant.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。図中
、第6図と同一の部分は同一の符号をもって図示した第
1図において、16はサーチコイルの出力電圧を回転座
標系に変速する回転座標変換器、17は二次鎖交磁束相
当量演算器、18は二次巻線抵抗設定器である。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, the same parts as in FIG. 6 are shown with the same reference numerals. In FIG. The computing unit 18 is a secondary winding resistance setting device.

次に動作について説明する。まず、回転座標変換器16
に上って座標変換されたサーチコイル電圧ydf3c、
 Vq8(!  は、二次鎖交磁束相当量演算器1Tに
入力され二次鎖交磁束相当の量が演算される。
Next, the operation will be explained. First, the rotational coordinate converter 16
search coil voltage ydf3c, which has been coordinate-transformed by
Vq8(! is input to the secondary flux linkage equivalent amount calculator 1T, and the amount equivalent to the secondary flux linkage is calculated.

その演算式は(7)式のようになる。。The arithmetic expression is as shown in equation (7). .

また、二次鎖交磁束相当量演算器1Tのブロック図は第
2図に示す通シである。
Further, a block diagram of the secondary flux linkage equivalent amount calculator 1T is shown in FIG.

ここで、 P:微分演算子 ’d”c p yqelc’ de軸l qe 軸すf
 :”f ルミ圧M8.M、ニー次、二次巻線とサーチ
コイルの相互インダクタンス Tニー次遅れ時定数 λ5e7.λc1e 、 = 6g軸 qfj軸二次鎖
交磁束相当量λン1.λ6er は真の二次鎖交磁束λ
der *λqerとの間に次のような関係がある。
Here, P: differential operator 'd"c p yqelc' de axis l qe axis f
:"f Lumi pressure M8.M, mutual inductance of knee-order, secondary winding and search coil T knee-order delay time constant λ5e7.λc1e, = 6g axis qfj-axis secondary linkage magnetic flux equivalent amount λn1.λ6er is True secondary flux linkage λ
The following relationship exists between der *λqer.

時定数Tが十分大きく、また、電気角速度ωがある程度
大きな動作点では、(8)式の1/Tが十分小さいと見
て(1/T: O)、λAe−λ、1e、 、λ(le
r−匂e、としてもよい。
At an operating point where the time constant T is sufficiently large and the electrical angular velocity ω is large to a certain extent, considering that 1/T in equation (8) is sufficiently small (1/T: O), λAe-λ, 1e, , λ( le
It may also be taken as r-scent e.

さて、qa軸二次鎖交磁束は、二次巻線抵抗設定値Rr
と実際の二次巻線抵抗値R,とが一致しているときは、
電流の値にかかわらず零でおるが、一致していないとき
は、第3図に示すように、de軸電流1d”lKが正の
値でかつ一定のとき、’ cleB/l deg  K
対して非線形な関係がある。この磁束を検出して、それ
を零にする様に二次巻線抵抗設定器18によりその設定
抵抗値Rrを変化すれば、その設定抵抗値は実際の二次
巻線抵抗値R,に一致し、正砲なトルク制御が可能にな
る。具体的には第3図の各象限に合わせて、 ’qes>oで、かつλ、er〉0のとき(第1象限)
Rr金増加させる ’qea<o テ、かつλqer)Oのとき(第2象限
)R7金減少させる iqe、<oかつλq’r<0のとき  (第3象限)
R,を増加させる ’Qes>0かつλ、科く0のとき  (第4象限)R
rを減少させる ようKすればよい。従って、二次鎖交磁束相当量演算器
1Tの出力であるqe軸二次鎖交磁束相当tλqer 
、!:(lem N流λqe1Bカら二l 巻B抵抗e
QWi 1 Bは上記のアルゴリズムで動作し、二次磁
束すべり周波数演算回路12に二次時定数設定値を与え
る。
Now, the qa-axis secondary flux linkage is determined by the secondary winding resistance setting value Rr
When and the actual secondary winding resistance value R, match,
It remains zero regardless of the current value, but if they do not match, as shown in Figure 3, when the de-axis current 1d"lK is a positive value and constant, 'cleB/l deg K
There is a non-linear relationship. If this magnetic flux is detected and the set resistance value Rr is changed by the secondary winding resistance setter 18 so as to make it zero, the set resistance value becomes equal to the actual secondary winding resistance value R. This allows accurate torque control. Specifically, according to each quadrant in Figure 3, when 'qes>o and λ, er>0 (first quadrant)
Rr Increase gold when 'qea < o te, and λqer) O (second quadrant) R7 Decrease gold when iqe, < o and λq'r < 0 (third quadrant)
Increase R, when Qes > 0 and λ, increases 0 (4th quadrant) R
K should be set to decrease r. Therefore, the qe-axis secondary flux linkage equivalent tλqer, which is the output of the secondary flux linkage equivalent calculation unit 1T,
,! :(lem N flow λqe1B kara 2l winding B resistance e
QWi 1 B operates according to the above algorithm and provides a secondary time constant setting value to the secondary magnetic flux slip frequency calculation circuit 12.

また、二次巻線抵抗設定618の詳細は第4囚に示す通
夛である。この二次巻線抵抗設定器18では、比較器2
9においてλ4e、がλqer&はぼ等しくなる角周波
数ω0と電気角周波数ωを比較し、ω〉ω0の時スイッ
チ回路32に信号を送る。スイッチ回路32は比較回路
2Sからの信号がない時は零を出力し、信号があれば乗
算回路31から入力した信号をそのま1出力する。また
、30は入力信号i、e、の符号を判定し、正ならば+
1 、負ならば−1を出力する比較器である。乗算回路
31の出力はt、・、の符号によって極性が変えられる
ため、第3図の左半面を横軸に対して対称にした特性と
なシ、二次巻線抵抗設定値R7が二次巻線抵抗R,工)
小さいときは入力信号iq%の値にかかわらず正。
Further, the details of the secondary winding resistance setting 618 are the same as shown in the fourth column. In this secondary winding resistance setter 18, the comparator 2
In step 9, the angular frequency ω0 and the electrical angular frequency ω at which λ4e and λqer& are approximately equal are compared, and when ω>ω0, a signal is sent to the switch circuit 32. The switch circuit 32 outputs 0 when there is no signal from the comparator circuit 2S, and outputs 1 as is the signal input from the multiplier circuit 31 when there is a signal. Further, 30 determines the sign of input signals i, e, and if positive, +
1, and if it is negative, it is a comparator that outputs -1. Since the polarity of the output of the multiplier circuit 31 is changed depending on the sign of t, ., the left half of FIG. Winding resistance R, mm)
When it is small, it is positive regardless of the input signal iq% value.

RrがRrよ)大きいときは負になる。従って、そのス
イッチ回路32の出力を積分器33に入力し、二次巻線
抵抗設定値Rrとすれば、RrがRrより小さいときは
R7を増やし、RrがR1より大きいときはR1を減ら
すように触作することにより、二次巻線抵抗設定値Rr
と実際の二次巻線抵抗Rrとは一致する。
When Rr is large (Rr), it becomes negative. Therefore, if the output of the switch circuit 32 is input to the integrator 33 and set as the secondary winding resistance setting value Rr, R7 is increased when Rr is smaller than Rr, and R1 is decreased when Rr is larger than R1. By touching the secondary winding resistance set value Rr
and the actual secondary winding resistance Rr match.

続いて、除算回路34はり、をRrで9)リリ、二次磁
束すベシ周波数演算回路12に二次時定数設定値を出力
する。なお、上記実施例では二次巻線抵抗設定値Rrの
設定に積分器33を用いたが、比例積分器を使えば二次
巻線抵抗Rrの変化の補償速度が速くなる。
Subsequently, the division circuit 34 outputs a secondary time constant setting value to the frequency calculation circuit 12, which calculates the secondary magnetic flux by Rr. In the above embodiment, the integrator 33 is used to set the secondary winding resistance setting value Rr, but if a proportional integrator is used, the speed of compensating for changes in the secondary winding resistance Rr becomes faster.

第5図は他の実施例を示すもので、回路1〜18は第1
図と同一である。ここで、35は比例補償器で、二次鎖
交磁束相当量演算器17の出力のλ4erにゲインをか
けて、同波数補正値として加えている。この理由を以下
に示す。
FIG. 5 shows another embodiment, in which circuits 1 to 18 are the first
Same as figure. Here, 35 is a proportional compensator which multiplies the output λ4er of the secondary flux linkage equivalent amount calculator 17 with a gain and adds it as the same wave number correction value. The reason for this is shown below.

すべ夛周波数pω8はt:desが一定のとき、で表わ
される。これと第3図とより、二次巻線抵抗の変化をす
ペシ周波数で補償するとすると、1qe8〉0で、かつ
λ、Or>Oのとき(第1象限)正のすベフを加える 1q6B<Oで、かつλqer ) Qのとき(第2象
限)正のすベシを加える 1qe8<oで、かつλqer<Oノとき[3&限)負
のすべ9を加える ’qea>oで、かっλqer<oノとき(第4象限)
負のすべりを加える ようにすれはよい。従って、l、e8の符号にかがゎら
ず、λqe2のみによってすべりの補正を行なう。
The smooth frequency pω8 is expressed as when t:des is constant. From this and Fig. 3, if we compensate for the change in the secondary winding resistance with the pes frequency, then when 1qe8>0 and λ, Or>O (first quadrant), we add a positive subeff, 1q6B< O, and λqer) When Q (second quadrant), add the positive sum 1 When qe8<o and λqer<O [3 & limit] Add the negative sum 9, 'qea>o, k λqer< o no time (4th quadrant)
It is good to add negative slip. Therefore, the slip is corrected only by λqe2 without changing the signs of l and e8.

このとき、二次鎖交磁束とde軸の方向は完全((は一
致しない。なぜならば、比例補償器ですべ)の補正値と
しているからである。従って、qe軸二次鎖交磁束も零
にならず、ある値になっているが、この値によって二次
巻線抵抗設定器18のRrの補償が行なわれるため、時
間がたてばqe軸二次鎖交磁束は零になる。この方式で
は、第1図に示した方式より速<d”軸の方向を補正で
きる効果がある。
At this time, the secondary magnetic flux linkage and the direction of the de axis are set as perfect correction values ((do not match, because a proportional compensator can be used). Therefore, the secondary magnetic flux linkage on the qe axis is also zero. However, since this value compensates for Rr of the secondary winding resistance setter 18, the qe-axis secondary flux linkage becomes zero over time. This method has the effect of being able to correct the direction of the speed<d'' axis better than the method shown in FIG.

また、第1図の実施例では、第2図に示すサーチコイル
を用いた二次鎖交磁束相当量演算器17を用いたが、一
次巻線電圧を検出し、一次巻線抵抗及びもれ磁束による
影II!I′t−除いた後の一次巻線電圧を一次遅れ積
分することによって、二次鎖交磁束相当量を求めてもよ
い。この時の式は、以下の様になる。
In addition, in the embodiment shown in FIG. 1, the secondary flux linkage equivalent calculation unit 17 using the search coil shown in FIG. Shadow caused by magnetic flux II! The amount equivalent to the secondary flux linkage may be obtained by performing first-order lag integration on the primary winding voltage after removing I't. The formula at this time is as follows.

また、第1図の実施例では比較器2Sの入力に電気角速
度ωを入力したが、係数器15の出力の機械角速度pω
1でもよい。
Further, in the embodiment shown in FIG. 1, the electrical angular velocity ω is input to the input of the comparator 2S, but the mechanical angular velocity pω of the output of the coefficient unit 15 is
It may be 1.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によればqa軸二次鎖交磁束を
用いて二次巻線抵抗設定器を変化するように回路構成し
たので、二次鎖交磁束とde軸が一致し、正確なトルク
制御が得られる効果がある。
As described above, according to the present invention, the circuit is configured to change the secondary winding resistance setting device using the qa-axis secondary magnetic flux linkage, so the secondary magnetic flux linkage and the de-axis coincide, and accurate This has the effect of providing excellent torque control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による誘導電動機制御装置
のブロック図、第2図は二次鎖交磁束相当舊演算器の詳
細ブロック図、第3図はqe軸二次鎖交磁束の特性図、
第4図はこの発明による二次時定数設定値演算回路のブ
ロック図、第5図はこの発明の他の実施例を示す誘導電
動機制御装置のブロック図、第6図は従来の誘導!動機
制御装置のブロック図である。 図において、1は三相誘導電動機、3は可変電圧可変周
波数電力変換装置、4,5は電圧及び電流座標変換回路
、6は非干渉補償回路、12は二次磁束すべυ周波数演
算回路、13は積分器、14は正弦、余弦波発生器、1
5は係数器、16は回転座標変換器、17は二次鎖交磁
束相当詰演算器、18は二次巻線抵抗設定器、35は比
例補償器である。 詩許出願人    三−L ’J:、j 4,2 、株
式会社代理人 弁理士  [1]  澤 博 昭(外2
名う
Fig. 1 is a block diagram of an induction motor control device according to an embodiment of the present invention, Fig. 2 is a detailed block diagram of a secondary flux linkage equivalent computation unit, and Fig. 3 is a characteristic of the qe-axis secondary flux linkage. figure,
Fig. 4 is a block diagram of a secondary time constant setting value calculation circuit according to the present invention, Fig. 5 is a block diagram of an induction motor control device showing another embodiment of the invention, and Fig. 6 is a block diagram of a conventional induction motor control device. FIG. 2 is a block diagram of a motive control device. In the figure, 1 is a three-phase induction motor, 3 is a variable voltage variable frequency power converter, 4 and 5 are voltage and current coordinate conversion circuits, 6 is a non-interference compensation circuit, 12 is a secondary magnetic flux total υ frequency calculation circuit, 13 is an integrator, 14 is a sine and cosine wave generator, 1
5 is a coefficient unit, 16 is a rotating coordinate converter, 17 is a secondary interlinkage flux equivalent calculation unit, 18 is a secondary winding resistance setting device, and 35 is a proportional compensator. Poetry license applicant 3-L'J:,j 4,2, Co., Ltd. agent Patent attorney [1] Hiroshi Sawa (Other 2
name

Claims (3)

【特許請求の範囲】[Claims] (1)三相誘導電動機の一次巻線に可変電圧可変周波数
電力変換装置によつて制御された交流電力を供給し、前
記可変電圧可変周波数電力変換装置の出力電流の周波数
を該三相誘導電動機の励磁電流制御回路及びトルク分電
流制御回路によつて演算し、かつ、前記出力電流の振幅
を前記三相誘導電動機の磁束指令及びトルク指令によつ
て制御する非干渉補償回路及び電圧、並びに電流座標変
換回路等の制御回路を備えた誘導電動機の制御装置にお
いて、前記制御回路の演算に用いられる前記誘導電動機
の二次巻線の時定数設定値を、一次巻線及び一次巻線に
並列に巻いたサーチコイルで検出し、前記サーチコイル
の出力電圧を回転座標変換器によつて回転座標系に変換
して後、二次鎖交磁束相当量演算器に入力し、前記三相
誘導電動機の一次巻線電流より前記二次鎖交磁束相当量
演算器を介して二次鎖交磁束相当量を演算し、該二次鎖
交磁束相当量のうちトルク分電流の方向と同一方向のベ
クトル成分を使用して前記誘導電動機の二次巻線の時定
数値に一致させるように二次巻線抵抗設定器によつて制
御するようにしたことを特徴とする誘導電動機の制御装
置。
(1) Supplying AC power controlled by a variable voltage variable frequency power converter to the primary winding of a three-phase induction motor, and adjusting the frequency of the output current of the variable voltage variable frequency power converter to the primary winding of the three-phase induction motor. a non-interference compensation circuit, a voltage, and a current which are calculated by an excitation current control circuit and a torque component current control circuit, and which control the amplitude of the output current by a magnetic flux command and a torque command of the three-phase induction motor; In an induction motor control device equipped with a control circuit such as a coordinate conversion circuit, a time constant setting value of a secondary winding of the induction motor used for calculation of the control circuit is set in parallel to a primary winding and a primary winding. The output voltage of the search coil is detected by a wound search coil, and the output voltage of the search coil is converted into a rotating coordinate system by a rotating coordinate converter, and then inputted to a secondary linkage flux equivalent amount calculator to calculate the output voltage of the three-phase induction motor. A secondary flux linkage equivalent is calculated from the primary winding current through the secondary flux linkage equivalent calculation unit, and a vector component of the secondary flux linkage equivalent is in the same direction as the torque component current. 1. A control device for an induction motor, characterized in that control is performed by a secondary winding resistance setter to match a time constant value of a secondary winding of the induction motor.
(2)前記二次鎖交磁束相当量演算器の出力のうちトル
ク分電流の方向と同一ベクトル成分の極性をトルク分電
流の極性によつて変えるようにし、三相誘導電動機の電
気、または機械角速度がある値以上の時は、前記極性の
変えられた二次鎖交磁束相当量のベクトル成分を積分器
を含む二次巻線抵抗設定器を通して二次巻線の時定数設
定値とすることを特徴とする特許請求の範囲第1項記載
の誘導電動機の制御装置。
(2) Out of the output of the secondary flux linkage equivalent amount calculator, the polarity of the vector component that is the same as the direction of the torque component current is changed depending on the polarity of the torque component current, and When the angular velocity is above a certain value, the vector component of the secondary interlinkage magnetic flux whose polarity has been changed is passed through a secondary winding resistance setting device including an integrator to become the time constant setting value of the secondary winding. A control device for an induction motor according to claim 1, characterized in that:
(3)前記二次鎖交磁束相当量演算器の出力のうち、ト
ルク分電流の方向と同一ベクトル成分の極性をトルク分
電流の極性によつて変えるようにし、三相誘導電動機の
電気、または機械角速度がある値以上の時は前記極性の
変えられた二次鎖交磁束相当量のベクトル成分を積分器
を含む二次巻線抵抗設定器を通して二次巻線の時定数設
定値とするとともに、二次鎖交磁束相当量のうち、トル
ク分電流の方向と同一ベクトル成分値に比例補償器によ
つて所定の乗数を掛け、該比例補償器の出力である周波
数補正値を電気角速度に加えるようにしたことを特徴と
する特許請求の範囲第1項記載の誘導電動機の制御装置
(3) Among the outputs of the secondary flux linkage equivalent amount calculator, the polarity of the vector component that is the same as the direction of the torque component current is changed depending on the polarity of the torque component current, and the electric power of the three-phase induction motor or When the mechanical angular velocity is above a certain value, the vector component of the amount equivalent to the secondary interlinkage flux whose polarity has been changed is passed through a secondary winding resistance setting device including an integrator, and is set as the time constant setting value of the secondary winding. , among the secondary linkage magnetic flux equivalent, the vector component value that is the same as the direction of the torque component current is multiplied by a predetermined multiplier by a proportional compensator, and the frequency correction value that is the output of the proportional compensator is added to the electrical angular velocity. A control device for an induction motor according to claim 1, characterized in that the control device for an induction motor is configured as follows.
JP60182707A 1985-08-20 1985-08-20 Controller of induction motor Pending JPS6244088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60182707A JPS6244088A (en) 1985-08-20 1985-08-20 Controller of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60182707A JPS6244088A (en) 1985-08-20 1985-08-20 Controller of induction motor

Publications (1)

Publication Number Publication Date
JPS6244088A true JPS6244088A (en) 1987-02-26

Family

ID=16123027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60182707A Pending JPS6244088A (en) 1985-08-20 1985-08-20 Controller of induction motor

Country Status (1)

Country Link
JP (1) JPS6244088A (en)

Similar Documents

Publication Publication Date Title
JPS58123394A (en) Controller for ac motor
JPH07110160B2 (en) Induction motor controller
JPH09182499A (en) Controller of synchronous motor
JPS6244088A (en) Controller of induction motor
JPS60219984A (en) Controller for induction motor
JPH0870598A (en) Sensorless vector control apparatus for induction motor speed
JP2712632B2 (en) Variable speed control device for induction motor
JP3252634B2 (en) Inverter circuit output voltage control method
JPS6159071B2 (en)
JPH08168300A (en) Device for controlling vector of induction motor
JPH0787800A (en) Automatic torque boost control of inverter and slip compensation controller
JP3770286B2 (en) Vector control method for induction motor
JPH05146191A (en) Controller for synchronous motor
JPH0568391A (en) Slip compensation circuit in vector control of induction motor
JPH0570395B2 (en)
JP2001086799A (en) Speed sensorless control device
JP2560006B2 (en) Induction motor controller
JPS6330236Y2 (en)
JPS62135288A (en) Flux vector operation unit for induction motor
SU809461A1 (en) Induction electric drive
JPS63268489A (en) Variable speed driving device of induction motor
JPS6115582A (en) Controlling method of induction motor
JPH11206200A (en) Induction motor control equipment
JPH1118497A (en) Speed control method for induction motor
JPH0546794B2 (en)