JPS6244034B2 - - Google Patents

Info

Publication number
JPS6244034B2
JPS6244034B2 JP58100201A JP10020183A JPS6244034B2 JP S6244034 B2 JPS6244034 B2 JP S6244034B2 JP 58100201 A JP58100201 A JP 58100201A JP 10020183 A JP10020183 A JP 10020183A JP S6244034 B2 JPS6244034 B2 JP S6244034B2
Authority
JP
Japan
Prior art keywords
phosphor
fluorescent lamp
weight
activated
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58100201A
Other languages
Japanese (ja)
Other versions
JPS59226087A (en
Inventor
Yoshio Kimura
Kenji Terajima
Hisami Shinra
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58100201A priority Critical patent/JPS59226087A/en
Priority to GB08413985A priority patent/GB2142775B/en
Priority to KR1019840003064A priority patent/KR890001231B1/en
Priority to HU842175A priority patent/HU187992B/en
Priority to CS844289A priority patent/CS247082B2/en
Publication of JPS59226087A publication Critical patent/JPS59226087A/en
Publication of JPS6244034B2 publication Critical patent/JPS6244034B2/ja
Priority to SG140/88A priority patent/SG14088G/en
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7777Phosphates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
    • H01J61/44Devices characterised by the luminescent material

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の目的〕 (産業上の利用分野) この発明は3波長方式螢光ランプの改良に関す
る。 (従来の技術) 螢光ランプの効率を犠性にしないで演色性を改
善させる一つの方法として、発光スペクトルのピ
ーク波長がそれぞれ450nm,540nm,610nm付近
であり、発光スペクトルの半値巾が比較的狭い三
種の螢光体を使用する所謂、三波長方式が知られ
ている。この三波長方式では、発光スペクトルの
ピーク波長が450nm附近にある青色発光螢光体と
して、2価のEu付活ハロ硼燐酸塩螢光体例えば
2価のEu付活ハロ硼燐酸ストロンチウム,マグ
ネシウム,カルシウム,セリウム螢光体が、発光
ピーク波長が540nm付近にある緑色発光螢光体と
してCeおよびTb共付活珪燐酸塩螢光体、例えば
CeおよびTb共付活珪燐酸ランタン螢光体、又
は、CeおよびTb共付活燐酸塩螢光体例えばCeお
よびTb共付活燐酸ランタン螢光体が、さらに発
光スペクトルのピーク波長が610nm付近にある赤
色発光螢光体としてEu付活酸化イツトリウム螢
光体が用いられている。三波長方式螢光ランプの
他の例としては、青色発光螢光体が(Ba,Mg,
Eu)O・bAl2O3、緑色発光螢光体がMgO・
B2O3:Ce,Tb、赤色発光螢光体が(Y,Eu)2O3
の組合せのものも知られている。 また近年、螢光ランプの価格低減と発光効率を
向上させる目的でランプ管径を小さくする傾向に
ある。一般的にランプ管径が小さくなるとランプ
の管壁負荷が大きくなるために、ランプ点灯中に
ランプの管端が黒くなる所謂黒化現象を呈しやす
くなる。黒化現象を呈した螢光ランプは明るさが
低下する。 前記従来の青色,緑色,赤色各発光螢光体を用
いた3波長方式の螢光ランプでは、特にランプ管
経が26mmφ以下になると黒化現象が現われ始め、
その結果商品価値を著しく損うばかりでなく明る
さが低下する欠点となつていた。 (発明が解決しようとする問題点) 以上の通り、従来の3波長方式螢光ランプには
管端黒化現象が見られ、その対策が望まれてい
た。 そこで本発明は、管端黒化の少ない3波長方式
螢光ランプを提供することを目的とする。 〔発明の構成〕 (問題点を解決するための手段及び作用) 上記目的を達成するために発明者等は各発光色
の螢光体について、種々実験を行うなかで、青色
発光螢光体として、従来の青色発光螢光体である
2価のEu付活ハロ硼燐酸塩螢光体の代りに2価
のEu又はEuとマンガン(Mn)で付活したアルミ
ン酸塩螢光体の少なくとも1種を選択し、この青
色発光螢光体と前記従来の緑色発光及び赤色発光
螢光体とを組合わせた3波長方式の螢光ランプに
おいてのみ相乗効果によつてランプの管経が26mm
φ以下になつた場合でも管端黒化現象を大幅に改
善することを発見し、この発明を完成した。 本発明に用いられる螢光体はいずれも公知のも
のであり単独に螢光ランプに用いると働程中に管
端黒化現象を呈するが、本発明の如く特定螢光体
を組合わせると単独使用では予想できない程、黒
化現象が減少する。これは本発明に示した各色螢
光体の組合わせによる相乗効果によるものと考え
られる。 本発明に用いる青色発光螢光体は一般式がa
(M,Eu)O・bAl2O3又はa(M,Eu,Mn)
O・bAl2O3(但しMはZn,Mg,Ca,Sr,Ba,
Li2,Rb2,Cs2の少なくとも1種、a≠O,b≠
O)で表わされる2価のEu又は2価のEu付活ア
ルミン酸塩螢光体の少なくとも一種であり、特開
昭56―152882号公報,特開昭56―152883号公報,
特公昭56―52072号公報で知られている。 緑色発光螢光体は一般式がd(Ln〓,Ce,
Tb)2O3・eSiO2・P2O5(但し、Ln〓はY,
La,Gd,Lu,Smの少なくとも1種d≠O,e
≠O,≠O)で表わされるCeおよびTb共付活
希土類珪燐酸塩螢光体である。 赤色発光螢光体は一般式が(Ln〓,Eu)2O3
(但し、Ln〓はCe,La,Gd,Y,Tb,Smの少
なくとも1種)で表わされるEu付活希土類酸化
物螢光体の少なくとも一種である。 即ち、この発明は、 一般式がa(M,Eu)O・bAl2O3(但し、M
はZn,Mg,Ca,Sr,Ba,Li2,Rb2,Cs2の少な
くとも1種、a≠O,b≠O)で表わされる2価
のEu付活アルミン酸螢光体(b)と、 一般式がa(Ln〓,Ce,Tb)2O3・eSiO2
P2O5(但し、Ln〓はY,La,Gd,Lu,Smの少
なくとも1種d≠O,e≠O,≠O)で表わさ
れるCeおよびTb共付活希土類珪燐酸塩螢光体
(g)と、 一般式が(Ln〓,Eu)2O3(但し、Ln〓はY,
La,Gd,Ce,Tb,Smの少なくとも1種)で表
わされるEu付活希土類酸化物螢光体(r)とか
ら成る螢光膜体を具備した螢光ランプである。
尚、上記螢光体(B)において、Mで代表される
金属の一部をMnで置換してもさしつかえない。 特に好ましい組合わせは螢光体(b)がa
(M,Eu)O・bAl2O3,螢光体(g)がa(Ln
〓,Ce,Tb)2O3・eSiO2・PaO,螢光体(r)
が(Ln〓,En)2O3の組合わせで、管端黒化が最
も少なく、明るい螢光ランプが得られる。 螢光膜体は、各色発光螢光体の全量を100重量
%とするとき、螢光体(b)が0.1〜40重量%、
螢光体(g)が20〜73重量%、螢光体(r)が5
〜65重量%占める組成から成るものが好ましい。 この発明の螢光ランプは前記三波長方式螢光ラ
ンプの管端黒化を改良する。 管端黒化とは、螢光ランプ点灯中にランプの管
端が黒くなる所謂黒化現象のことであり、この現
象を呈いするランプ外観を著しく損うために商品
価値を著しく低下させる。 管端黒化は放電下の活性化状態のもとで、螢光
体、陰極からの飛散物質、管中不純ガスの種類に
より異るのであるが、発生位置は常に電極付近の
定位置である。 この管端黒化を評価するには、黒化発生位置で
ガラスおよび螢光膜を含む一定面積を切り取り、
ガラスおよび螢光膜の可視光透過率を測定すれば
よい。管端黒化の程度が進むと可視光透過率は小
さくなる。 このような螢光膜体を具備したこの発明の40ワ
ツト形螢光ランプ(管経25mmφ)について管端黒
化の程度を表わす可視光透過率を測定し、青色発
光螢光体の二価のEu付活ハロ硼燐酸ストロンチ
ウム・カルシウム・マグネシウム・セリウム・螢
光体に変更した比較例螢光ランプと比較してみ
た。 この場合比較例螢光ランプの可視光透過率が
100%であるのに対して、この発明の螢光ランプ
の可視光透過率は115%であり、黒化の程度は比
較例ランプの15%分だけ低減している。但し、管
端黒化の測定は、長時間点灯による黒化の状態を
比較的短時間の点灯で得るために実施例、比較例
各螢光ランプ共に、40ワツト螢光ランプ定格負荷
の130%の高負荷状態で1500時間点灯させた後に
行つた。管端黒化発生部、すなわち、ランプ発光
部端から30mmの部位から45mmにかけて、たて15
mm、よこ15mmの部位を切り取つて試料片とし、可
視光透過率はベツクマン透過率測定器による測定
値である。 三波長方式螢光ランプが高演色性螢光ランプと
して実用に適する性能は、平均演色評価数
(Ra)が80以上でランプ効率80m/W以上であ
ることが一応の目安となつている。この性能を満
足させるため前記螢光体(b)、螢光体(g)、螢
光体(r)の割合は100重量%を螢光体(b)が
0.1〜40重量%、螢光体(g)が20〜73重量%、
螢光体(r)が5〜65重量%占める組成から成ら
なければならない。 また、各螢光体に少量のアルカリ金属,酸化硼
素,酸化ガリウム等が導入されることは公知であ
るが、このような螢光体においても本発明の効果
は何んら影響を受けない。 〔発明の実施例〕 以下、実施例によりこの発明を詳細に説明す
る。 実施例 (1) 青色発光螢光体(b)として3(Ba,Mg,
Eu)O・8Al2O3で示される二価のEu付活アルミ
ン酸バリウム・マグネシウム・ネシウム螢光体を
用いるものとする。この螢光体を以降(A)と称
する。螢光体(A)は452nmにピーク波長を持つ
た狭帯域発光を示し、三波長方式青色発光螢光光
体に好適している。 比較例ランプ用として3(Sr,Mg,Eu,Ce)
O・0.92P2O5・0.31CaCl2・0.09B2O3で表わされ
る二価のEu付活ハロ硼燐酸ストロンチウム・マ
グネシウム・セリウム青色発光螢光体を用いるも
のとする。この螢光体を以降(B)と称する。 青色発光螢光体(b)として螢光体(A)を11
重量%、緑色発光螢光体(g)として(La,
Ce,Tb)2O3・0.2SiO2・0.9P2O5で示されるCeお
よびTb共付活珪燐酸ランタン螢光体を67重量
%、赤色発光螢光体(r)として(Y,Eu)2O3
で示されるEu付活酸化イツトリウム螢光体22重
量%を使用し、常法に従つてこの例の管径が25mm
φの40ワツト5000K白色螢光ランプを作製し、
1500時間点灯後の可視光透過率を測定する。 又、比較例螢光ランプとして青色発光螢光体に
螢光体(B)を使用し、CeおよびTb共付活珪燐
酸ランタン緑色発光螢光体、Eu付活酸化イツト
リウム赤色発光螢光体を同様に使用した管径が25
mmφの40ワツト5000K白色螢光体ランプを用い
る。 この実施例螢光ランプの点灯初期における発光
スペクトル分布は第1図に示す通りである。可視
光透過率は比較例螢光ランプ100%に対してこの
実施例螢光ランプは115%であり、15%改良され
ている。 因にそれぞれの螢光体の単独に用いた同種の螢
光ランプを製作し1500時間点灯後の可視光透過率
を測定したところ、螢光体(A)92%、螢光体
(B)は90%(La,Ce,Tb)2O3・0.2SiO2
0.9P2O5は104%、(Y,Eu)2O3は101%であつ
た。又他の比較例として、青色発光体及び赤色発
光螢光体が実施例1と同じで、緑色発光螢光体に
MgO・B2O3:Ce,Tbを用いた螢光ランプを同様
に評価したところ、1500時間点灯後の可視光透過
率は99%であつた。これらの値と、螢光体使用重
量から、3波長螢光ランプの可視光透過率を予測
すると、高々102%程度になるが、実際のランプ
にすると115%にも達するのは、螢光体3つの組
合わせによる特異な作用が生じたものと考えられ
る。 尚点灯初期における平均演色評価数(Ra)は
84、ランプ効率は90m/Wの値を示す。 以上の結果を再びまとめてみて表に示す。 実施例 2〜7 実施例一と同様な方法により螢光体の組合わせ
を本発明の範囲内で変えて螢光ランプを製作し
た。 比較螢光ランプは青色発光螢光体として3
(Sr,Mg,Eu,Ce)O・0.92P2O5・0.31CaCl・
0.09B2O3を用いているが他の条件は各実施例と全
く同一にした。各実施例の可視光透過率、平均演
色評価指数、ランプ効率等を表に出す。可視光透
過率はいずれも比較品の可視光透過率を100%と
した。
[Object of the Invention] (Industrial Application Field) This invention relates to an improvement in a three-wavelength fluorescent lamp. (Prior art) One way to improve the color rendering properties without sacrificing the efficiency of a fluorescent lamp is to improve the color rendition of a fluorescent lamp by adjusting the peak wavelengths of the emission spectrum to be around 450 nm, 540 nm, and 610 nm, respectively, and the half-width of the emission spectrum to be relatively low. A so-called three-wavelength method using three types of narrow phosphors is known. In this three-wavelength system, a divalent Eu-activated haloborophosphate phosphor such as divalent Eu-activated haloborophosphate strontium, magnesium, Calcium, cerium phosphors are used as green-emitting phosphors with an emission peak wavelength around 540 nm, while Ce and Tb co-activated silicophosphate phosphors, e.g.
Ce and Tb co-activated lanthanum silicate phosphor or Ce and Tb co-activated phosphate phosphor For example, Ce and Tb co-activated lanthanum phosphate phosphor has an emission spectrum with a peak wavelength of around 610 nm. An Eu-activated yttrium oxide phosphor is used as a red-emitting phosphor. Other examples of three-wavelength fluorescent lamps include blue-emitting phosphors (Ba, Mg,
Eu) O・bAl 2 O 3 , green-emitting phosphor is MgO・
B 2 O 3 :Ce, Tb, red emitting phosphor (Y, Eu) 2 O 3
Combinations of these are also known. In addition, in recent years, there has been a trend to reduce the diameter of the lamp tube in order to reduce the cost and improve the luminous efficiency of fluorescent lamps. Generally, as the diameter of the lamp tube decreases, the load on the tube wall of the lamp increases, so that the so-called blackening phenomenon, in which the end of the lamp tube becomes black during lamp operation, is more likely to occur. The brightness of a fluorescent lamp that exhibits a blackening phenomenon decreases. In the conventional three-wavelength fluorescent lamp using blue, green, and red light-emitting phosphors, a blackening phenomenon begins to appear, especially when the lamp tube diameter is less than 26 mmφ.
As a result, the product value not only deteriorates significantly, but also the brightness decreases. (Problems to be Solved by the Invention) As described above, the conventional three-wavelength fluorescent lamp suffers from the tube end blackening phenomenon, and a countermeasure for this phenomenon has been desired. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a three-wavelength type fluorescent lamp with less blackening at the tube end. [Structure of the invention] (Means and effects for solving the problems) In order to achieve the above object, the inventors conducted various experiments on phosphors of various emission colors, and found that a blue-emitting phosphor. , at least one of divalent Eu or an aluminate phosphor activated with Eu and manganese (Mn) in place of the conventional blue-emitting phosphor, a divalent Eu-activated haloborophosphate phosphor. Only in a three-wavelength type fluorescent lamp that combines this blue-emitting phosphor with the conventional green- and red-emitting phosphors, the tube diameter of the lamp can be increased to 26 mm due to the synergistic effect.
They discovered that the tube end blackening phenomenon can be significantly improved even when the diameter is less than φ, and this invention has been completed. All of the phosphors used in the present invention are known, and when used alone in a fluorescent lamp, the end of the tube darkens during the working process. However, when specific phosphors are combined as in the present invention, With use, the darkening phenomenon is reduced to an extent that cannot be predicted. This is considered to be due to the synergistic effect of the combination of the various color phosphors shown in the present invention. The blue-emitting phosphor used in the present invention has a general formula of a
(M, Eu)O・bAl 2 O 3 or a(M, Eu, Mn)
O・bAl 2 O 3 (M is Zn, Mg, Ca, Sr, Ba,
At least one of Li 2 , Rb 2 , Cs 2 , a≠O, b≠
O) is at least one type of divalent Eu or divalent Eu-activated aluminate phosphor represented by JP-A-56-152882, JP-A-56-152883,
It is known from Special Publication No. 56-52072. The general formula of the green-emitting phosphor is d(Ln〓,Ce,
Tb) 2 O 3・eSiO 2・P 2 O 5 (However, Ln〓 is Y,
At least one of La, Gd, Lu, Sm d≠O, e
Ce and Tb co-activated rare earth silicate phosphor represented by ≠O, ≠O). The general formula for red-emitting phosphor is (Ln〓,Eu) 2 O 3
(However, Ln〓 is at least one type of Eu-activated rare earth oxide phosphor represented by at least one of Ce, La, Gd, Y, Tb, and Sm). That is, in this invention, the general formula is a(M,Eu)O・bAl 2 O 3 (However, M
is a divalent Eu-activated aluminate phosphor (b) represented by at least one of Zn, Mg, Ca, Sr, Ba, Li 2 , Rb 2 , Cs 2 (a≠O, b≠O); , the general formula is a(Ln〓,Ce,Tb) 2 O 3・eSiO 2
P 2 O 5 (However, Ln〓 is at least one of Y, La, Gd, Lu, Sm d≠O, e≠O, ≠O) Ce and Tb co-activated rare earth silicate phosphor (g), the general formula is (Ln〓,Eu) 2 O 3 (Ln〓 is Y,
This is a fluorescent lamp equipped with a fluorescent film body consisting of an Eu-activated rare earth oxide phosphor (r) represented by at least one of La, Gd, Ce, Tb, and Sm.
In addition, in the above-mentioned phosphor (B), a part of the metal represented by M may be replaced with Mn. A particularly preferred combination is that the phosphor (b) is a
(M, Eu)O・bAl 2 O 3 , phosphor (g) is a(Ln
〓, Ce, Tb) 2 O 3・eSiO 2・PaO, phosphor (r)
The combination of (Ln〓,En) 2 O 3 produces a bright fluorescent lamp with the least amount of blackening at the tube end. When the total amount of each color emitting phosphor is 100% by weight, the phosphor film body contains 0.1 to 40% by weight of phosphor (b),
20 to 73% by weight of phosphor (g), 5% of phosphor (r)
Preferably, the composition comprises 65% by weight. The fluorescent lamp of the present invention improves tube end blackening of the three-wavelength fluorescent lamp. Tube end blackening is a so-called blackening phenomenon in which the end of a lamp tube becomes black during lighting of a fluorescent lamp, and this phenomenon significantly impairs the appearance of lamps, thereby significantly lowering their commercial value. Blackening at the tube end varies depending on the type of phosphor, the substances scattered from the cathode, and the impure gas in the tube under the activated state of discharge, but it always occurs at a fixed position near the electrode. . To evaluate this tube end blackening, cut out a certain area including the glass and fluorescent film at the position where the blackening occurs.
What is necessary is to measure the visible light transmittance of glass and fluorescent film. As the degree of tube end blackening progresses, the visible light transmittance decreases. The visible light transmittance, which indicates the degree of blackening at the end of the tube, was measured for the 40 watt type fluorescent lamp (tube diameter 25 mmφ) of the present invention equipped with such a fluorescent film body, and the bivalent value of the blue-emitting phosphor was measured. I compared it with a comparative fluorescent lamp that was changed to Eu-activated strontium/calcium/magnesium/cerium haloborophosphate phosphor. In this case, the visible light transmittance of the comparative fluorescent lamp is
In contrast, the visible light transmittance of the fluorescent lamp of the present invention was 115%, and the degree of blackening was reduced by 15% of that of the comparative lamp. However, in order to measure the blackening at the end of the tube by lighting it for a relatively short period of time to simulate the blackening caused by lighting it for a long period of time, the fluorescent lamps of the Examples and Comparative Examples were measured at 130% of the rated load of the 40 Watt fluorescent lamp. This test was carried out after 1500 hours of lighting under high load conditions. 15 mm vertically from the part where blackening occurs at the tube end, that is, from the part 30 mm from the end of the lamp emitting part to 45 mm.
A sample piece was cut out with a width of 15 mm, and the visible light transmittance was measured using a Beckman transmittance meter. For a three-wavelength fluorescent lamp to be suitable for practical use as a high color rendering fluorescent lamp, it is generally assumed that the average color rendering index (Ra) is 80 or more and the lamp efficiency is 80 m/W or more. In order to satisfy this performance, the ratio of the phosphor (b), phosphor (g), and phosphor (r) is such that 100% by weight of the phosphor (b) is
0.1-40% by weight, phosphor (g) 20-73% by weight,
The composition must consist of 5 to 65% by weight of phosphor (r). Furthermore, although it is known that small amounts of alkali metals, boron oxide, gallium oxide, etc. are introduced into each phosphor, the effects of the present invention are not affected in any way by such phosphors. [Examples of the Invention] The present invention will be described in detail below with reference to Examples. Example (1) 3 (Ba, Mg,
A divalent Eu-activated barium-magnesium-nesium aluminate phosphor represented by Eu)O.8Al 2 O 3 shall be used. This phosphor is hereinafter referred to as (A). The phosphor (A) exhibits narrow band emission with a peak wavelength of 452 nm, and is suitable as a three-wavelength blue-emitting phosphor. 3 (Sr, Mg, Eu, Ce) for comparative lamps
A divalent Eu-activated strontium-magnesium-cerium haloborophosphate blue-emitting phosphor represented by O.0.92P 2 O 5 .0.31CaCl 2.0.09B 2 O 3 is used. This phosphor is hereinafter referred to as (B). 11 Fluorescent material (A) as blue-emitting fluorescent material (b)
Weight %, as green-emitting phosphor (g) (La,
Ce, Tb) 2 O 3 0.2SiO 2 0.9P 2 O 5 67% by weight of Ce and Tb co-activated lanthanum silicate phosphor, red emitting phosphor (r) (Y, Eu ) 2 O 3
Using 22% by weight of the Eu-activated yttrium oxide phosphor shown in
Fabricated a φ 40W 5000K white fluorescent lamp,
Measure the visible light transmittance after lighting for 1500 hours. In addition, as a comparative fluorescent lamp, phosphor (B) was used as a blue-emitting phosphor, a Ce- and Tb-coactivated lanthanum silicate phosphor green-emitting phosphor, and an Eu-activated yttrium oxide red-emitting phosphor. Similarly, the pipe diameter used was 25
A 40 watt 5000K white phosphor lamp with mmφ is used. The emission spectrum distribution of this example fluorescent lamp at the initial stage of lighting is as shown in FIG. The visible light transmittance of this example fluorescent lamp was 115% compared to 100% of the comparative example fluorescent lamp, which is a 15% improvement. Incidentally, when we manufactured fluorescent lamps of the same type using each phosphor alone and measured the visible light transmittance after 1500 hours of lighting, it was 92% for phosphor (A) and 92% for phosphor (B). 90% (La, Ce, Tb) 2 O 3・0.2SiO 2
0.9P 2 O 5 was 104%, and (Y, Eu) 2 O 3 was 101%. As another comparative example, the blue light emitting body and the red light emitting phosphor were the same as in Example 1, but the green light emitting phosphor was
When a fluorescent lamp using MgO.B 2 O 3 :Ce and Tb was similarly evaluated, the visible light transmittance after 1500 hours of lighting was 99%. If we predict the visible light transmittance of a three-wavelength fluorescent lamp from these values and the weight of the phosphor used, it will be around 102% at most, but in actual lamps it will reach 115%. It is thought that the unique effect was caused by the combination of the three. The average color rendering index (Ra) at the initial stage of lighting is
84, the lamp efficiency shows a value of 90m/W. The above results are summarized again and shown in the table. Examples 2 to 7 Fluorescent lamps were manufactured in the same manner as in Example 1 by changing the combination of phosphors within the scope of the present invention. Comparative fluorescent lamps are 3 as blue-emitting phosphors.
(Sr, Mg, Eu, Ce)O・0.92P 2 O 5・0.31CaCl・
0.09B 2 O 3 was used, but the other conditions were exactly the same as in each example. The visible light transmittance, average color rendering index, lamp efficiency, etc. of each example are listed. For all visible light transmittances, the visible light transmittance of the comparative product was taken as 100%.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、管端黒化の少な
い3波長方式螢光ランプを実現することができ
る。
As described above, according to the present invention, it is possible to realize a three-wavelength type fluorescent lamp with less blackening at the tube end.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の螢光ランプの点灯初期におけ
る発光スペクトル分布図である。
FIG. 1 is an emission spectrum distribution diagram of the fluorescent lamp of the example at the initial stage of lighting.

Claims (1)

【特許請求の範囲】 1 一般式がa(M,Eu)O・bAl2O3(但し、
Mは亜鉛(Zn),マグネシウム(Mg),カルシウ
ム(Ca),ストロンチウム(Sr),バリウム
(Ba),リチウム(Li2)ルビジウム(Rb2),セシ
ウム(CS2)の少なくとも1種、a≠O,b≠
O)で表わされる二価のユーロピウム(Eu)付
活アルミン酸塩螢光体(b)と、 一般式がd(Ln〓,Ce,Tb)2O3・eSiO2
P2O5(但し、Ln〓はイツトリウム(Y),ランタ
ン(La),ガドリウム(Gd),ルテシウム
(Lu),サマリウム(Sm),の少なくとも1種、
d≠O,e≠O,f≠O)で表わされるセリウム
およびテルビウム共付活希土類珪燐酸塩螢光体
(g)と、 一般式が(Ln〓,Eu)2O3(但し、Ln〓はY,
La,Gd,Ce,Tb,Smの少なくとも1種)で表
わされるユーロピウム付活希土類酸化物螢光体
(r)とから成る螢光膜体を具備し、螢光体
(b),(g),(r)の総重量を100重量%とすると
き、螢光体(b)が0.1〜40重量%、螢光体
(g)が20〜73重量%、螢光体(r)が5〜65重
量%内にあることを特徴とする螢光ランプ。
[Claims] 1. The general formula is a(M,Eu)O・bAl 2 O 3 (However,
M is at least one of zinc (Zn), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), lithium (Li 2 ), rubidium (Rb 2 ), and cesium (CS 2 ), a≠ O,b≠
A divalent europium ( Eu) -activated aluminate phosphor (b) represented by
P 2 O 5 (However, Ln〓 is at least one of yttrium (Y), lanthanum (La), gadolinium (Gd), lutetium (Lu), samarium (Sm),
d≠O, e≠O, f≠O) and a cerium and terbium co-activated rare earth silicate phosphor (g) whose general formula is (Ln〓, Eu) 2 O 3 (however, Ln〓 is Y,
a europium-activated rare earth oxide phosphor (r) represented by at least one of La, Gd, Ce, Tb, and Sm; , (r) is 100% by weight, the phosphor (b) is 0.1 to 40% by weight, the phosphor (g) is 20 to 73% by weight, and the phosphor (r) is 5 to 40% by weight. A fluorescent lamp characterized in that within 65% by weight.
JP58100201A 1983-06-07 1983-06-07 Fluorescent lamp Granted JPS59226087A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP58100201A JPS59226087A (en) 1983-06-07 1983-06-07 Fluorescent lamp
GB08413985A GB2142775B (en) 1983-06-07 1984-06-01 Fluorescent lamp
KR1019840003064A KR890001231B1 (en) 1983-06-07 1984-06-01 Fluorescent lamp
HU842175A HU187992B (en) 1983-06-07 1984-06-05 Fluorescent lamp
CS844289A CS247082B2 (en) 1983-06-07 1984-06-06 Luminescent material
SG140/88A SG14088G (en) 1983-06-07 1988-03-01 Fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58100201A JPS59226087A (en) 1983-06-07 1983-06-07 Fluorescent lamp

Publications (2)

Publication Number Publication Date
JPS59226087A JPS59226087A (en) 1984-12-19
JPS6244034B2 true JPS6244034B2 (en) 1987-09-17

Family

ID=14267684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58100201A Granted JPS59226087A (en) 1983-06-07 1983-06-07 Fluorescent lamp

Country Status (6)

Country Link
JP (1) JPS59226087A (en)
KR (1) KR890001231B1 (en)
CS (1) CS247082B2 (en)
GB (1) GB2142775B (en)
HU (1) HU187992B (en)
SG (1) SG14088G (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623816A (en) * 1985-04-22 1986-11-18 General Electric Company Fluorescent lamp using multi-layer phosphor coating
JPS61258891A (en) * 1985-05-10 1986-11-17 Matsushita Electronics Corp Fluorescent material
JPS61258892A (en) * 1985-05-13 1986-11-17 Matsushita Electronics Corp Fluorescent lamp
JPH0794658B2 (en) * 1986-02-14 1995-10-11 化成オプトニクス株式会社 High color rendering fluorescent lamp
JPH0735510B2 (en) * 1986-03-20 1995-04-19 松下電子工業株式会社 Fluorescent lamp
NL8700876A (en) * 1987-04-14 1988-11-01 Philips Nv LUMINESCENT BARIUM-HEXA ALUMINATE, LUMINESCENT SCREEN EQUIPPED WITH SUCH ALUMINATE AND LOW-PRESSURE VAPOR DISCHARGE LAMP EQUIPPED WITH SUCH SCREEN.
JPS6412455A (en) * 1987-07-07 1989-01-17 Matsushita Electronics Corp Electric bulb color fluorescent lamp
JP2790673B2 (en) * 1989-09-20 1998-08-27 化成オプトニクス株式会社 Aluminate phosphor
JP2653576B2 (en) * 1990-08-31 1997-09-17 株式会社東芝 Low pressure mercury vapor discharge lamp
EP0529956A1 (en) * 1991-08-23 1993-03-03 Kabushiki Kaisha Toshiba Blue phosphor and fluorescent lamp using the same
WO1994029403A1 (en) * 1993-01-13 1994-12-22 Mickellsun Pty. Ltd. Luminescent material
DE4240899A1 (en) * 1992-12-04 1994-06-09 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Samarium-doped phosphor
JP2543825B2 (en) * 1993-04-28 1996-10-16 根本特殊化学株式会社 Luminescent phosphor
JP3405049B2 (en) * 1995-05-29 2003-05-12 日亜化学工業株式会社 Afterglow lamp
US6157126A (en) * 1997-03-13 2000-12-05 Matsushita Electric Industrial Co., Ltd. Warm white fluorescent lamp
JP2002285147A (en) * 2001-03-22 2002-10-03 Nec Lighting Ltd Fluorescent substance and lamp using the same
DE10123236A1 (en) * 2001-05-12 2002-11-14 Philips Corp Intellectual Pty Plasma screen with blue fluorescent
WO2004030009A1 (en) * 2002-09-27 2004-04-08 Matsushita Electric Industrial Co., Ltd. Plasma display
US7329371B2 (en) * 2005-04-19 2008-02-12 Lumination Llc Red phosphor for LED based lighting

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740853A (en) * 1980-08-22 1982-03-06 Nichia Denshi Kagaku Kk Mercury vapor discharge lamp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740853A (en) * 1980-08-22 1982-03-06 Nichia Denshi Kagaku Kk Mercury vapor discharge lamp

Also Published As

Publication number Publication date
KR890001231B1 (en) 1989-04-27
SG14088G (en) 1988-07-08
HU187992B (en) 1986-03-28
CS247082B2 (en) 1986-11-13
GB2142775B (en) 1986-09-17
JPS59226087A (en) 1984-12-19
GB8413985D0 (en) 1984-07-04
HUT34640A (en) 1985-03-28
GB2142775A (en) 1985-01-23
KR850000772A (en) 1985-03-09

Similar Documents

Publication Publication Date Title
US5350971A (en) Blue-emitting phosphor for use in fluorescent lamps and fluorescent lamp employing the same
JPS6244034B2 (en)
US20090002603A1 (en) Blue Emitting Alkaline Earth Chlorophosphate Phosphor for Cold Cathode Fluorescent Lamp, and Cold Cathode Fluorescent Lamp and Color Liquid Crystal Display Using Same
EP0100122B1 (en) Low-pressure mercury vapour discharge lamp
US4716337A (en) Fluorescent lamp
JP4561194B2 (en) Alkaline earth aluminate phosphor for cold cathode fluorescent lamp and cold cathode fluorescent lamp
EP0114441B1 (en) Low-pressure mercury vapour discharge lamp
JP2001512625A (en) Low-pressure discharge lamp with several luminescent substances
US5994831A (en) Low-pressure mercury discharge lamp with luminescent layer
JP2894654B2 (en) Aluminate phosphor and fluorescent lamp using the same
JP3515737B2 (en) Phosphor and fluorescent lamp using the same
JP2589491B2 (en) Fluorescent lamp
JPH03177491A (en) Fluorescent substance and fluorescent lamp
JP2001172625A (en) Vacuum ultraviolet excitable fluorescent substance and light emitting device using the same
JPH0633052A (en) Three-band fluorescent material and fluorescent lamp produced by using the material
JP2009068001A (en) Fluorescent substance and fluorescent lamp using it
JPH0794658B2 (en) High color rendering fluorescent lamp
JP2009102524A (en) Fluorescent body and fluorescent lamp using the same
JP3436161B2 (en) Fluorescent lamp
JPH04270782A (en) Stimulable phosphor and fluorescent lamp using the same
JPS628470B2 (en)
JPH06240252A (en) Green emitting phosphor for fluorescent lamp
JP5168017B2 (en) Phosphor and fluorescent lamp using the same
JPH01217096A (en) Fluorescent material and fluorescent lamp
JPH0335354B2 (en)