JPS59226087A - Fluorescent lamp - Google Patents

Fluorescent lamp

Info

Publication number
JPS59226087A
JPS59226087A JP58100201A JP10020183A JPS59226087A JP S59226087 A JPS59226087 A JP S59226087A JP 58100201 A JP58100201 A JP 58100201A JP 10020183 A JP10020183 A JP 10020183A JP S59226087 A JPS59226087 A JP S59226087A
Authority
JP
Japan
Prior art keywords
phosphor
emitting phosphor
fluorescent lamp
lamp
fluorescent material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58100201A
Other languages
Japanese (ja)
Other versions
JPS6244034B2 (en
Inventor
Yoshio Kimura
吉雄 木村
Kenji Terajima
賢二 寺島
Hisami Shinra
新羅 久美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58100201A priority Critical patent/JPS59226087A/en
Priority to GB08413985A priority patent/GB2142775B/en
Priority to KR1019840003064A priority patent/KR890001231B1/en
Priority to HU842175A priority patent/HU187992B/en
Priority to CS844289A priority patent/CS247082B2/en
Publication of JPS59226087A publication Critical patent/JPS59226087A/en
Publication of JPS6244034B2 publication Critical patent/JPS6244034B2/ja
Priority to SG140/88A priority patent/SG14088G/en
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7777Phosphates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
    • H01J61/44Devices characterised by the luminescent material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PURPOSE:To obtain a fluorecent lamp having high luminance, good appearance and suppressed blackening tendency at the tube ends and furnished with a fluorescent layer composed of a specific aluminate fluorescent material doped with Eu and a specific rare earth silicophosphate fluorescent material codoped with Ce and Tb, etc. CONSTITUTION:The objective fluorescent lamp is furnished with a fluorescent layer composed of (A) an aluminate fluorescent material of formula I (M is Zn, Mg, Ca, Sr, Ba, Li2, Rb2 or Cs2; anot equal to 0; bnot equal to 0) doped with Eu<2+> and/or an aluminate fluorescent material of formula II doped with Eu<2+> and/or an aluminate fluorescent material of formula II doped with Eu<2+> and Mn<2+>, (B) green light- emitting fluorescent material composed of a rare earth silicophosphate fluorescent material of formula III (LnI is Y, La, Gd, Lu or Sm; dnot equal to 0; enot equal to 0; fnot equal to 0) doped with Ce and Tb and/or a rare earth phosphate fluorescent material of formula IVdoped with Ce and Tb, and (C) a rare earth oxide fluorescent material of formula V (LnII is Y, La, Gd, Ge, Tb or Sm) doped with Eu.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は蛍光ランプの改良に関する。[Detailed description of the invention] [Technical field of invention] This invention relates to improvements in fluorescent lamps.

〔発明の技術的背景及びその問題点〕[Technical background of the invention and its problems]

蛍光ランプの効率を犠牲(二しないで演色性を改善させ
る一つの方法として、発光スペクトルのピーク波長がそ
れぞれ450 nIn 、 540 nm、 610 
nm 付近であり、発光スペクトルの半値巾が比較的狭
い三種の蛍光体を使用する所謂、三波長方式が仰られて
いる。仁の三波長方式では、発光スペクトルのピーク波
長が450nm+i近にある青色発光蛍光体として、2
価のEu付活ハロ硼燐酸塩蛍光体例えは、シウム、カル
シウム、セリウム蛍光体が、発光ピーク波長が540n
m付近にある緑色発光蛍光体としてCeおよびTb共付
活珪燐酸塩蛍光体、例えばCeおよびTb共付活珪隣酸
ランタン蛍光体、又は、CeおよびTb共付活燐酸塩蛍
光体例えばCeおよびTb共付活燐酸ランタン蛍光体が
、ざら(二発光スペクトルのピーク波長が610nm付
近(二ある赤色発光蛍光体としてEu付付活酸化フッ 
IJウム蛍光体が用いられている。
One way to improve the color rendering properties without sacrificing the efficiency of fluorescent lamps is to increase the peak wavelength of the emission spectrum to 450 nIn, 540 nm, and 610 nm, respectively.
A so-called three-wavelength method using three types of phosphors whose emission spectrum has a relatively narrow half-width in the vicinity of nm has been proposed. Jin's three-wavelength method uses 2 as a blue-emitting phosphor whose emission spectrum has a peak wavelength near 450 nm+i.
For example, sium, calcium, and cerium phosphors have an emission peak wavelength of 540 nm.
Ce and Tb coactivated silicophosphate phosphors, such as Ce and Tb coactivated lanthanum silicate phosphors, or Ce and Tb coactivated phosphate phosphors such as Ce and The Tb-coactivated lanthanum phosphate phosphor has a peak wavelength of around 610 nm (the peak wavelength of the two emission spectra is around 610 nm).
IJum phosphor is used.

また近年、蛍光ランプの価格低減と発光効率を向上させ
る目的でランプ管経を小さくする傾向にある。一般的C
:ランプ管経が小さくなるとランプの管壁負荷が大きく
なるため(二、ランプ点灯中にランプの管端が黒くなる
所謂黒化現象を呈しやすぐなる。黒化現象を呈し九蛍光
ランプは明るさが低下する。
In addition, in recent years, there has been a trend to reduce the length of the lamp tube in order to reduce the price of fluorescent lamps and improve luminous efficiency. General C
:As the lamp tube diameter becomes smaller, the load on the lamp tube wall becomes larger (2. The end of the lamp tube becomes black while the lamp is on, which is a so-called blackening phenomenon. 9. Fluorescent lamps are brighter. The quality decreases.

前記従来の青色、緑色、赤色発光蛍光体を用いた3波長
方式の蛍光ランプでは、特にランプ管経が26話φ以下
になると黒化現象が現われ始め、明るさが低下する欠点
を有していた。
The conventional three-wavelength fluorescent lamp using blue, green, and red light-emitting phosphors has the disadvantage that blackening begins to appear and the brightness decreases, especially when the lamp tube length becomes 26 mm or less. Ta.

〔発明の目的〕[Purpose of the invention]

この発明は前記欠点を改善するため(=なされたもので
、管端黒化を生じない明るい蛍光ランプを提供すること
を目的とする。
The present invention has been made in order to improve the above-mentioned drawbacks, and an object of the present invention is to provide a bright fluorescent lamp that does not cause blackening at the tube end.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために発明者等は各発光色の蛍光体
(二ついて、種々実験を行うなかで、青色発光蛍光体と
して、従来の青色発光蛍光体である2価のEu付活ハロ
硼燐酸塩蛍光体の代り(;2価のHu又はEuとマンガ
ン(Mn)で付活したアルミン酸塩蛍光体の少なくとも
1種を選択し、この青色発光蛍光体と前記従来の緑色発
光及び赤色発光蛍光体とを組合わせ7’C3波長方式の
蛍光ランプ(二Zいてのみランプの3経が26 mmφ
以下になった場合でも管端黒化現象を呈しないことを発
見し、この発明を完成した。
In order to achieve the above objective, the inventors developed phosphors for each color of light (two), and through various experiments, discovered that they had developed a conventional blue-emitting phosphor, divalent Eu-activated halofluoride, as a blue-emitting phosphor. Instead of a phosphate phosphor (at least one type of aluminate phosphor activated with divalent Hu or Eu and manganese (Mn) is selected, and this blue-emitting phosphor is combined with the conventional green-emitting and red-emitting Combined with a phosphor, a 7'C3 wavelength fluorescent lamp (the 3rd dimension of the lamp is 26 mmφ)
It was discovered that the tube end blackening phenomenon does not occur even under the following conditions, and this invention was completed.

この青色発光蛍光体は一般式が a(M、Eu)O−bAJlo、又はa (M、 Eu
 、 Mn ) O−bk120゜(但しfvltIi
Zn、Mg、Ca、Sr、Ba、Li、、Rb、、Cs
、O少なくとも1樋、a嫉o、b4o)で表わされる2
価のnu又は2師のEuとMn付活アルミン酸塩蛍光体
の少なくとも一種であり、特開昭56−1!12882
 号公報、特開昭56−152883 号公報9%公昭
56−52072号公報で知られている。
This blue-emitting phosphor has a general formula a(M,Eu)O-bAJlo, or a(M,Eu
, Mn) O-bk120゜(However, fvltIi
Zn, Mg, Ca, Sr, Ba, Li, , Rb, , Cs
, O at least one gutter, a jealous o, b4 o) 2
It is at least one kind of aluminate phosphor activated with nu or Mn of nu and Mn, and is disclosed in JP-A-56-1!12882.
It is known from Japanese Patent Laid-Open No. 56-152883 and 9% Publication No. 56-52072.

緑色発光蛍光体は一般式がd(Lni、Ce、Tb)ρ
、。
The general formula of the green-emitting phosphor is d(Lni, Ce, Tb)ρ
,.

es io、 −fP、 O,(但し、LniはY、L
a、Gd、Lu、Smの少なくともt櫨、d ”、O、
e ’Ki、O、f ’qO)で表わされるCe:J6
よびTb共付活希土類珪燐酸塩蛍光体、一般式が(Ln
I、Ce、Tb)PO,で表わされるCeおよびTb共
付活希土類燐酸塩蛍光本の少なくとも1種である。
es io, -fP, O, (However, Lni is Y, L
a, Gd, Lu, Sm at least t, d'', O,
Ce expressed as e 'Ki, O, f 'qO): J6
and Tb coactivated rare earth silicate phosphor, whose general formula is (Ln
It is at least one type of Ce and Tb co-activated rare earth phosphate fluorescent material represented by I, Ce, Tb)PO.

赤色発光蛍光体は一般式が(LnIr: 、 Eu )
20.  (但し、Ln[はCe、La、Gd、Y、T
b、Smの少なくとも1種)で表わされるnuu活希土
類酸化物蛍光体の少なくとも−lである。
The general formula of red-emitting phosphor is (LnIr: , Eu)
20. (However, Ln[ is Ce, La, Gd, Y, T
b, Sm) of the nuu active rare earth oxide phosphor.

即ち、この発明は、 一般式がa(M、Eu)0−bAl!20. (但し、
MはZn。
That is, in this invention, the general formula is a(M,Eu)0-bAl! 20. (however,
M is Zn.

−Mg、Ca、Sr、Ba、Li、、Rb、、Cs、 
CD少なくとも1種、a X Oe b S O)で表
わされる2価のEu付活アルミン酸塩宵色発光蛍光体、 一般式カa(M、Eu、Mn)O−bA/20gで表わ
される2価のEuおよびMn共付活アルミン酸塩青緑色
発光蛍光体の少なくとも1種と、一般式がa(LnI、
Ce。
-Mg, Ca, Sr, Ba, Li, , Rb, , Cs,
At least one type of CD, a divalent Eu-activated aluminate evening-emitting phosphor represented by a at least one type of Eu and Mn co-activated aluminate blue-green emitting phosphor having a general formula of a(LnI,
Ce.

Tb )、’ 0.− e8102− fP、O,(但
し、LniはY、La、Gd。
Tb),'0. - e8102- fP, O, (However, Lni is Y, La, Gd.

Lu 、 Smの少なくとも1種、d40.e+0.、
f”qO)で表わされるCeおよびTb共付活希土類珪
燐酸塩緑色発光蛍光体、一般式が(LnI、Ce、Tb
)PO。
At least one of Lu, Sm, d40. e+0. ,
Ce and Tb co-activated rare earth silicophosphate green emitting phosphor with the general formula (LnI,Ce,Tb
) P.O.

で表わされるCeおよびTb共付活希土類燐酸塩緑色発
光蛍光体の少なくとも1種である緑色発光蛍光体と、一
般式が(LnlI、Eu)20g (但し、LnlIV
iy。
A green-emitting phosphor which is at least one kind of Ce and Tb co-activated rare earth phosphate green-emitting phosphor represented by
iy.

La、Gd、Ce、Tb、Smの少なくとも1種)で表
わされるELI付活希土類酸化物赤色発光蛍光体とから
成る蛍光膜体を具備した蛍光ランプでのる。
The fluorescent lamp is equipped with a fluorescent film comprising an ELI-activated rare earth oxide red-emitting phosphor represented by at least one of La, Gd, Ce, Tb, and Sm.

蛍光膜体は、各色発光蛍光体の全量を100重量%とす
るとき、青色発光蛍光体が旧〜4o重t%、緑色発光蛍
光体が20〜73重量%、赤色発光蛍光体が5〜65重
ffi%占める組成から成るものが好ましい。
In the phosphor film, when the total amount of each color light-emitting phosphor is 100% by weight, the blue-emitting phosphor is 40% by weight, the green-emitting phosphor is 20-73% by weight, and the red-emitting phosphor is 5-65% by weight. It is preferable that the composition be composed of heavy ffi%.

この発明の蛍光ランプは前記三波長方式蛍光ランプの管
端黒化を改良する。
The fluorescent lamp of the present invention improves tube end blackening of the three-wavelength fluorescent lamp.

管端黒化とは、蛍光ランプ点灯中にランプの管端が黒く
なる所謂黒化現象のことであり・、この現象を呈する。
Tube end blackening refers to a so-called blackening phenomenon in which the tube end of a fluorescent lamp becomes black during lighting, and this phenomenon occurs.

とランプ外観を著しく損うために商品価値を著しく低下
させる。
This significantly impairs the appearance of the lamp and significantly reduces its commercial value.

管端黒化は放電下の活性化状態のもとで、蛍光体、電極
からの飛散物質、管内不純ガスの種類により異るのであ
るが、発生位置は常に電極付近の定位置である。
Blackening at the tube end varies depending on the type of phosphor, substances scattered from the electrodes, and impurity gas in the tube under the activated state of discharge, but the position where it occurs is always at a fixed position near the electrode.

との管端黒化を評価するには、黒化発生位置でガラスお
よび蛍光膜を含む一定面積を切り取り、ガラスおよび蛍
光膜の可視光透過率を測定すればよい。管端黒化の程度
が進むと可視光透過率は小さくなる。
To evaluate tube end blackening, it is sufficient to cut out a certain area including the glass and fluorescent film at the position where the blackening occurs, and measure the visible light transmittance of the glass and fluorescent film. As the degree of tube end blackening progresses, the visible light transmittance decreases.

このような蛍光膜体を具備したこの発明の40ワツト形
蛍光ランプ(管経25mφ)(二ついて管端黒化の程度
を表わす可視光透過率を測定し、青色発光蛍光体の二価
のEu付活ハロ硼燐酸ストロンチウム・カルシウム・マ
グネシウム・セリウム・蛍光体(二変更した比較例蛍光
ランプと比較してみた。
The 40 watt type fluorescent lamp (tube diameter 25 mφ) of the present invention equipped with such a fluorescent film body was measured for visible light transmittance indicating the degree of blackening at the end of the tube. Activated haloborophosphate strontium, calcium, magnesium, cerium, phosphor (comparative example fluorescent lamp with two changes) was compared.

この場合比較例蛍光ランプの可視光透過率がioo s
であるのに対して、この発明の蛍光ランプの可視光透過
率は115チであり、黒化の程度は比較例ランプの15
−分だけ低減している。但し、管端黒化の測定は、長時
間点灯1:よる黒化の状態を比較的短時間の点灯で得る
ために実施例、比較例ランプランプ共(=、40ワツト
蛍光ランプ定格負荷の130%の高負荷状態で1500
時間点灯させた後に行った。管端黒化発生部、すなわち
、ランプ発光部端から3011I+の部位から45mに
かけて、たて15B。
In this case, the visible light transmittance of the comparative example fluorescent lamp is ioo s
In contrast, the visible light transmittance of the fluorescent lamp of the present invention is 115 cm, and the degree of blackening is 15 cm of the comparative lamp.
It has been reduced by -. However, the measurement of tube end blackening was carried out for both the Example and Comparative Example lamps (=, 130 watts of the rated load of the 40 watt fluorescent lamp) in order to obtain the same blackening state with a relatively short period of lighting. 1500 under high load condition
I went after leaving the lights on for an hour. Vertical 15B from the tube end blackening occurrence area, that is, 45m from the 3011I+ site from the end of the lamp light emitting part.

よと15薫の部位を切り取って試料片とし、可視光透過
率はベックマン透過率測定器C:よる測定値である。
A sample piece was cut out from a 15-inch section, and the visible light transmittance was measured using a Beckman transmittance meter C:.

三波長方式蛍光ランプが高演色性蛍光ランプとして実用
(二速する性能は、平均演色評価数(几a)が80以上
でランプ効率801!m/w以上であることが一応の目
安となっている。この性能を満足させるために前記青色
発光蛍光体、緑色発光蛍光体、赤色発光蛍光体の割合は
100重量%な青色発光蛍光体がo、i〜4.0重量%
、緑色発光蛍光体が20〜73重量%、赤色発光蛍光体
が5〜65重量%占める組成から成らなければならない
Three-wavelength fluorescent lamps are put into practical use as high color rendering fluorescent lamps (for two-speed performance, the average color rendering index (A) is 80 or more and the lamp efficiency is 801!m/w or more). In order to satisfy this performance, the ratio of the blue-emitting phosphor, green-emitting phosphor, and red-emitting phosphor is 100% by weight, and the blue-emitting phosphor is o, i to 4.0% by weight.
, the composition should be comprised of 20-73% by weight of green-emitting phosphor and 5-65% by weight of red-emitting phosphor.

また、青色2M色、赤色発光蛍光体・に少遺のアルカリ
金属、酸化硼素、酸化ガリウム等が導入されることは公
知であるが、このような蛍光体においても本発明の効果
は何んら影響を受は外い。
Furthermore, it is known that small amounts of alkali metals, boron oxide, gallium oxide, etc. are introduced into blue 2M color and red light-emitting phosphors, but even in such phosphors, the effects of the present invention are not affected in any way. Not affected by it.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例によりこの発明の詳細な説明する。 Hereinafter, this invention will be explained in detail with reference to Examples.

実施例(1) 青色発光蛍光体として3(Ba、Mg、Eu)0・8A
l!2Q。
Example (1) 3 (Ba, Mg, Eu) 0.8A as a blue-emitting phosphor
l! 2Q.

で示される二価のEu付活アルミン酸バリウム・マグネ
シウム蛍光体を用いるものとする。この蛍光体を以降(
5)と称する。蛍光体(A)は452%mにピーク波長
を持った狭帯域発光を示し、三波長方式青色発光蛍光体
に好適している。
A divalent Eu-activated barium/magnesium aluminate phosphor shown in is used. After this phosphor (
5). The phosphor (A) exhibits narrow band emission with a peak wavelength at 452%m, and is suitable for a three-wavelength blue-emitting phosphor.

比較例ランプ用とり、、テ3(Sr、A(g、Eu、C
e)0−Q、92P、O,−0,31CaC/、・0.
09B、0.で表わされる二価のEu付活ハロ硼燐酸ス
トロンチウム・マグネシウム・セリウム青色発光蛍光体
を用いるものとする。この蛍光体を以降(B)と称する
Comparative example lamp tray, Te3 (Sr, A(g, Eu, C
e) 0-Q,92P,O,-0,31CaC/, .0.
09B, 0. A divalent Eu-activated strontium-magnesium-cerium haloborophosphate blue-emitting phosphor represented by is used. This phosphor is hereinafter referred to as (B).

青色発光蛍光体として蛍光体(へを11憲is、緑色発
光蛍光体トシテ(La、Ce、Tb)20.−U、2S
iO,−0,9P2O,で示されるCeおよびTb共付
活珪漬酸ランタン蛍光体を67重量%、赤色発光蛍光体
として(Y、Ru)、へで示されるEu付付活酸化フッ
 IJウム蛍光体22重量%を使用し、常法に従ってこ
の例の管経が5朋φの40ワット5oooK白色蛍元ラ
ンプを作製し、1500時間点灯後の可視光透過率を測
定する。
As a blue-emitting phosphor, a phosphor (Hewo 11 is used), a green-emitting phosphor (La, Ce, Tb) 20.-U, 2S
67% by weight of Ce and Tb co-activated lanthanum silicate phosphor denoted by iO, -0,9P2O, (Y, Ru) as a red-emitting phosphor, Eu-activated fluorocarbon IJ phosphor denoted by Using 22% by weight of the phosphor, a 40-watt, 5oooK white fluorescent lamp of this example with a tube diameter of 5 mm was prepared according to a conventional method, and the visible light transmittance was measured after lighting for 1500 hours.

又、比較例蛍光ランプとして青色発光蛍光体(二蛍光体
郵)を使用し、CeおよびTb共付活珪燐酸ランタン緑
色発光蛍光体、Eu付付活酸化フッ IJつ、へ赤色発
光蛍光体を同様(二使用した・d経が25朋φの40ワ
ツト5000に白色蛍光ランプを用いる。
In addition, a blue-emitting phosphor (two-phosphor type) was used as a comparative example fluorescent lamp, and a red-emitting phosphor was added to a Ce- and Tb-coactivated lanthanum silicate phosphate green-emitting phosphor, an Eu-activated fluorine oxide IJ, and a red-emitting phosphor. Similarly, a white fluorescent lamp of 40 watts and 5,000 watts with a diameter of 25 mm was used.

この実施例蛍光ランプの点灯初期における発光スペクト
ル分布は第1図に示す通りである。可視光透過率は比較
例蛍光ランプ100%に対してこの実施例蛍光ランプは
115 %であり、15チ改良されている。
The emission spectrum distribution of this example fluorescent lamp at the initial stage of lighting is as shown in FIG. The visible light transmittance of this example fluorescent lamp was 115% compared to 100% of the comparative example fluorescent lamp, which is an improvement of 15 points.

又、点灯初期における平均演色評価数(fLa)は84
、ランプ効率は90 /m/wの値を示す。
In addition, the average color rendering index (fLa) at the initial stage of lighting is 84.
, the lamp efficiency shows a value of 90 /m/w.

以上の結果を再びまとめて表に示す。The above results are summarized again in the table.

実施例2〜7 実施例1と同様な方法により蛍光体の組合せを本発明の
範囲内で変えて蛍光ランプを製作した。
Examples 2 to 7 Fluorescent lamps were manufactured in the same manner as in Example 1 by changing the combination of phosphors within the scope of the present invention.

比較蛍光ランプは青色発光蛍光体と−して3(S’IM
g、Eu、Ce)0−0.92P、O,−0,31Ca
Cj、−0,09BtOsを用いているが他の条件は各
実施例と全く同一ベニした。各実施例の可視光透過率、
平均演色評価指数、ランプ効率等を表に示す。可視光透
過率はいずれも比較品の可視光透過率を100%とした
The comparative fluorescent lamp was 3 (S'IM) as a blue-emitting phosphor.
g, Eu, Ce) 0-0.92P, O, -0,31Ca
Cj and -0,09BtOs were used, but the other conditions were exactly the same as in each example. Visible light transmittance of each example,
Average color rendering index, lamp efficiency, etc. are shown in the table. For the visible light transmittance, the visible light transmittance of the comparative product was taken as 100%.

(以下余白)(Margin below)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の蛍光ランプの点灯゛初期における発光
スペクトル分布図である。 代理人弁理士 則近憲佑(ほか1名) 手続補正書(自発) 特許庁長官殿 1、事件の表示 特願昭58−100201号 2、発明の名称 螢光ランプ 3、 補正をする者 事件との関係 特許出願人 (307)東京芝浦電気株式会社 4、代理人 〒100 東京都千代田区内幸町1−1−6 東京芝浦電気株式会社東京事務所内 明細書全文 6、 補正の内容 別紙の通り 訂正明細書 1、発明の名称 螢光ランプ 2、特許請求の範囲 (1)  一般式がa (M 、 Eu)ObAA!1
01 (但し、Mは亜鉛(Zn) # マグネシウム(
Mg) e カルシウム(Ca) 。 ストロンチウム<sr> #バリウム(Ba) 、  
リチウム(Lit)、ルビジウム(i’t’b t )
−セシウム(C11りの少なくとも1種、a〜0.b〜
0)で表わされる二価のユーロピウム(F!u)付活ア
ルミン酸塩螢光体、一般式がa(M、Eu、Mn)Ob
A120g (但し、Mは亜鉛ムとマンガン(Mn)付
活アルミン酸塩螢光体の少なくとも1種と、 一般式がd(Ln、、ce、’rb)、o、−esto
、−fp、o、 (但し、LnIはイツトリウム(Yl
 、ランタン(La) 、ガドリムウ、ム11(Xl+
4)$)ルテシウ4 (L’u)、サマリ・ラム(8m
) 、の少なくとも1種、d〜O,e〜o + /←0
)で表わされるセリウムおよびテルビウム共付活希土類
表わされるセリウムおよびテルビウム共付活希土類燐酸
塩螢光体の少なくとも1種である緑色発光La、Gd、
Ce、Tb、amの少なくとも1種)で表わされるユー
ロピウム付活希土類酸化物螢光体とから成る螢光膜体を
具備したことを特徴とする螢光ランプ。 3、発明の詳細な説明 〔発明の技術分野〕 この発明は螢光ランプの改良に関する。 〔発明の技術的背景及びその問題点〕 螢光ランプの効率を儀性にしないで演色性を改善させる
一つの方法として、発光スペクトルのピーク波長がそれ
ぞれ450nm 、 540nm、610nm付近であ
り、発光スペクトルの半値中が比較的狭い三種の螢光体
を使用する所謂、三波長方式が知られている。この三波
長方式では、発光スペクトルの“ピーク波長が450n
m付近にある青色発光螢光体として、2価のBu付活八
へ硼燐酸塩螢光体例えば、2価のEu付活ハロ硼燐酸ス
トロンチウム、マグネシウム、カルシウム、セリウム螢
光体が、発光ピーク波長が540nm付近にある緑色発
光螢光体としてCeおよびTb共付活珪燐酸塩螢光体、
例えばCeおよびTb共付活珪燐酸ランタン螢光体、又
は、CeおよびTb共付活燐酸塩螢光体例えばCeおよ
びTb共付活燐酸ランタン螢光体が、さらに発光スペク
トルのピーク波長が610nm付近にある赤色発光螢光
体としてEu付付活酸化フッ9ラム螢光体が用いられて
いる。 また近年、螢光ランプの価格低減と発光効率を向上させ
る目的でランプ管径を小さくする傾向にある。一般的に
ランプ管径が小さくなるとランプの管壁負荷が大きくな
るために、ランプ点灯中にランプの管端が黒くなる所謂
黒化現象を呈しやすくなる。黒化現象を呈した螢光ラン
プは明るさカー低下する。 前記従来の青色、緑色、赤色発光螢光体を用いた3波長
方式の螢光ランプでは、特ζニランプ管径が26顛φ以
下になると黒化現象が現われ始め、その結果商品価値を
著しく損うばかりでなく明るさが低下する欠点となって
いた。 〔発明の目的〕 この発明は前記欠点を改善するためシーなされたもので
、管端黒化を大幅に改善した明るく、商品価値の高い螢
光ランプを提供することを目的とする。 〔発明の概要〕 上記目的を達成するために発明者等は各発光色の螢光体
について、種々実験を行うなかで、青色発光螢光体とし
て、従来の青色発光螢光体である2価のEu付活ハロ硼
燐酸塩螢光体の代りに2価のNu又はEuとマンガン(
Mn)で付活したアルミン酸塩螢光体の少なくとも1種
を選択し、この青色発光螢光体と前記従来の緑色発光及
び赤色発光螢光体とを組合わせた3波長方式の螢光ラン
プにおいてのみ相乗効果によってランプの管径が26朋
φ以下になった場合でも管端黒化現象を大幅に改善する
ことを発見し、この発明を完成した。 本発明に用いられる螢光体はいずれも公知のものであり
単独に螢光ランプに用いると働錐中に管端黒化現象を呈
するが、本発明の如く特定螢光体を組合わせると単独使
用では予想できない程、黒化現象が減少する。これは本
発明に示した各色螢光体の組合わせによる相乗効果によ
るものと考えられる。、・ 本発明に用いる青色発光螢光体は一般式がa(M、Eu
)0・bA120B又はa(M、Eu、Mn)0*bA
J203(但しMはZn、Mg、Ca、8r、Ba、L
i t、Rb!y”!の少なくとも1種、a←0.b〜
0)で表わされる2価のBu又は2価のBuとMn付活
アルミン酸塩螢光体の少なくとも一種であり、特開昭5
6−152882号公報。 特開昭56−152883号公報、特公昭56−520
72号公報で知られている。 緑色発光螢光体は一般式がd(Lnl 、Ce、Tb)
20B・e8i01・/P10g (但し、LnIはY
、La、Gd、Lu、8mの少なくとも1種、d〜O,
eへO,/〜0)で表わされるCeおよびTb共付活希
土類珪燐酸塩螢光体、一般式が(Lnl、Ce、Tb)
PO4で表わされるCeおよびTb共付活希土類燐酸塩
螢光体の少なくとも1種である。 赤色発光螢光体は一般式が(Lnl、Eu)tos (
但し、LnlはCe、La、Gd、Y、Tb、Smの少
なくとも1種)で表わされるEu付活希土類酸化物螢光
体の少なくとも一種である。 即ち、この発明は、 一般式がa(M、Eu)O・bA40g (但し、Mは
Zn、Mg。 Ca、8r、Ba、Li2.Rbl、Csl  の少な
くとも1種、a+0、b〜0)で表わされる2価のBu
付活アルミン酸塩青色発光螢光体、 一般式がa(M、Eu、Mn)O・bAA!10B  
で表わされる2価のBuおよびMn共付活アルミン酸塩
青緑色発光螢光体の少なくとも1種と、一般式がa(L
nl、Ce、Tb)10B ・e8102−/P、OI
l、(:但し、LnlはY、ha、Gd、Lu、amの
少なくとも1種、d〜0.e〜O,/へO)で表わされ
るCeおよびTb共付活希土類−珪燐酸塩緑色発光螢光
体、一般式が(LnI、Ce、Tb)PO+で表わされ
るCeおよびTb共付活希土類燐酸塩緑色発光螢光体の
少なくとも1種である緑色発光螢光体と、一般式が(L
n 1 、 Ell)!O3(但し、Ln、はY、La
、Gd、Ce。 Tb、amの少なくとも1種)で表わされるFiu付活
希土類酸化物赤色発光螢光体とから成る螢光膜体を具備
した螢光ランプである。 特に好ましい組合せは青色発光螢光体がa(M。 Eu 、Mn)O” bA1203 、緑色発光螢光体
がa(Lnl、Ce、Tb)z08・eSI02・fP
20.赤色発光螢光体が(Lnl 、En) Aの組合
せで、管端黒化が最も少なく、明るい螢光ランプが得ら
れる。 螢光膜体は、各色発光螢光体の全量を100重量%とす
るとき、青色発光螢光体が0.1〜40重量%、緑色発
光螢光体が20〜73重1%、赤色発光螢光体が5〜6
5重量%占める組成から成るものが好ましい。 この発明の螢光ランプは前記三波長方式螢光ランプの管
端黒化を改良する。 管端黒化とは、螢光ランプ点灯中にランプの管端が黒く
なる所謂黒化現象のことであり、この現象を呈するとラ
ンプ外観を著しく損った′めに商品価値を著しく低下さ
せる。 管端黒化は放電下の活性化状態のもとで、螢光体、陰極
からの飛散物質、管内不純ガスの種類により異るのであ
るが、発生位置は常に電極付近の定位置である。 この管端黒化を評価するには、黒化発生位置でガラスお
よび螢光膜を含む一定面積を切り取り、ガラスおよび螢
光膜の可視光透過率を測定すればよい。管端黒化の程度
が進むと可視光透過率は小さくなる。 このような螢光膜体を具備したこの発明の40ワツト形
螢光ランプ(管径25藤φ)について管端黒化の程度を
表わす可視光透過率を測定し、青色発光螢光体の二価の
Eu付活ハロ硼燐酸ストロンチウム・カルシウム・マグ
ネシウム・セリウム・螢光体に変更した比較例螢光ラン
プと比較してみた。 この場合比較例螢光ランプの可視光透過率が100%で
あるのに対して、この発明の螢光ランプの可視光透過率
は115%であり、黒化の程度は比較例ランプの15%
分だけ低減している。但し、管端黒化の測定は、長時間
点灯による黒化の状態を比較的短時間の点灯で得るため
に実施例、比較例ランプランプ共に、40ワツト螢光ラ
ンプ定格負荷の130%の高負荷状態で1500時間点
灯させた後に行った。管端黒化発生部、すなわち、ラン
プ発光部端から301mの部位から45鴎にかけて、た
て15朋、よこ15朋の部位を切り収って試料片とし、
可視光透過率はベックマン透過率測定器による測定値で
ある。 三波長方式螢光ランプが高演色性螢光ランプとして実用
に適する性能は、平均演色評価数(Ra )が80以上
でランプ効率801rrv’w以上であることが一応の
目安となっている。この性能を満足させるために前記青
色発光螢光体、緑色発光螢光体、赤色発光螢光体の割合
は100重量%を青色発光螢光体が0.1〜40重量%
、緑色発光螢光体が20〜73重量%、赤色発光螢光体
が5〜65重麓%占める組成から成らなければならない
。 また、青色、緑色、赤色発光螢光体に少量のアルカリ金
属、酸化硼素、酸化ガリウム等が導入されることは公知
であるが、このような螢光体においても本発明の効果は
何んら影響を受けない。 〔発明の実施例〕 以下、実施例によりこの発明の詳細な説明する。 実施例(1) 青色発光螢光体として3(Ba、Mg、Eu)0・8A
120gで示される二価のEu付活アルミン酸バリウム
・マグネシウム螢光体を用いるものとする。この螢光体
を以降(A)と称する。螢光体間は452mmにピーク
波長を持った狭帯域発光を示し、三波長方式青色発光螢
光体に好適している。 比較例ランプ用として3(8r、Mg、Eu、Ce)0
・0.92p、o、・0.31 CaCJff、 6 
o、o 9 B2O5で表わされる二価のEu付活八へ
硼燐酸ストロンチウム・マグネシウム・セリウム青色発
光螢光体を用いるものとする。 この螢光体を以降(B)と称する。 青色発光螢光体として螢光体(4)を11重量%、緑色
発光螢光体として(La、Ce、Tb)101 m 0
.28402 eo、9PtO,で示されるCeおよび
Tb共付活珪燐酸ランタン螢光体を67重量%、赤色発
光螢光体として(、Y p Bu% 01で示されるE
a付活酸化イツトリウム螢光体22重量%を使用し、常
法に従ってこの例の管径が25龍φの40ワツ)500
0に白色螢光ランプを作製し、1500時間点灯後0可
視光透過率を測定する。 又、比較例螢光ランプとして青色発光螢光体に螢光体(
B)を使用し、CeおよびTb共付活珪燐酸ランタン緑
色発光螢光体、Eu付活酸化インドリウム赤色発光螢光
体を同様に使用した管路が25M11dの40ワッl−
5000に白色螢光ランプを用いる。 この実施例螢光ランプの点灯初期における発光スペクト
ル分布は第1図に示す通りである。可視光透過率は比較
例螢光ランプ1.00%に対してこの実施例螢光ランプ
は115%であり、15%改良されている。 因にそれぞれの螢光体の単独に用いた同種の螢光ランプ
を製作し1500時間点灯後0可視光透過率を測定した
ところ、螢光体(A)は92%、螢光体(B>は90%
(La、Ce、Tb)203 ・0.25i02 ・0
.9 P2O6は104%、(Y 、 Eu )20g
は101%であった。これらの値と、螢光体使用重量か
ら、3波長螢光ランプの可視光透過率を予測すると、高
々102%程度になるが、実際のランプにすると115
%にも達するのは、螢光体3つの組合せによる特異な作
用が生じたものと考えられる。 ゛尚点灯初期゛における平均演色評価数(Ra)は84
、ランプ効率は901rrv’wの値を示す。 テ、 以上の精巣を再びまとめて表に串す。 実施例2〜7 実施例1と同様な方法により螢光体の組合せを本発明の
範囲内で変えて螢光ランプを製作した。 比較螢光ランプは青色発光螢光体として3(Sr。 Mg 、Bu 、Ce)O” 0.92 P2()1 
” 0.31 CaC4” 0.09 B103を用い
ているが他の条件は各実施例と全く同一にした。各実施
例の可視光透過率、平均演色評価指数、ランプ効率等を
表に出す。可視光透過率はいずれも比較品の可視光透過
率を100%とした。 4、図面の簡単な説明 第1図は実施例の螢光ランプの点灯初期における発光ス
ペクトル分布図である。 代理人 弁理士 則 近 憲 佑 手続補正書(自発) ■、事件の表示 特願昭 58−100201  号 2、発明の名称 蛍光ランプ 8、補正をする者 事件との関係  特許出願人 (307)東京芝浦亀気株式会社 番0代理人 〒100 東京都千代田区内幸町1−1−6 東京芝浦電気株式会社東京事務所内 1) 明細書第3頁第15行と第16行の間に「三波長
方式蛍光ランプの他の例としては、青色発光蛍光体が(
Ba、Mg、 Eu )O・bA120.、緑色発光蛍
光体がMgO−B、03: Ce 、 Tb 、赤色発
光蛍光体が(Y。 I FXu )t% の組合せのものも知られている。(特
開昭57−128778号公報)。」を抽入する。 2) 同第12貞第3行。「・・・は】01%であった
。」の次に「又他の比較例として、賀色発光体及び赤色
発光蛍光体が実施例1と同じで、緑色発光蛍光体にMg
O−B20. : Ce 、 Tbを用いた蛍光ランプ
を同様に評価したところ、1500時間点灯後の可視光
透過率は99%であった。」を挿入する。 以上 539−
FIG. 1 is an emission spectrum distribution diagram of the fluorescent lamp of the example at the initial stage of lighting. Representative Patent Attorney Kensuke Norichika (and 1 other person) Procedural amendment (voluntary) Commissioner of the Japan Patent Office 1, Indication of the case Patent Application No. 1982-100201 2, Name of the invention fluorescent lamp 3, Person making the amendment Case Relationship with Patent Applicant (307) Tokyo Shibaura Electric Co., Ltd. 4, Agent Address: 1-1-6 Uchisaiwai-cho, Chiyoda-ku, Tokyo 100 Tokyo Shibaura Electric Co., Ltd. Tokyo Office Full text of the specification 6. Contents of amendments Corrections as per attached sheet Description 1, Title of the invention Fluorescent lamp 2, Claims (1) The general formula is a (M, Eu)ObAA! 1
01 (However, M is zinc (Zn) # magnesium (
Mg) e Calcium (Ca). Strontium <sr>#Barium (Ba),
Lithium (Lit), rubidium (i't'b t )
- Cesium (at least one type of C11, a~0.b~
0), a divalent europium (F!u) activated aluminate phosphor with the general formula a(M,Eu,Mn)Ob
A120g (However, M is at least one of zinc and manganese (Mn) activated aluminate phosphors, and the general formula is d(Ln,,ce,'rb), o, -esto
, -fp,o, (However, LnI is yttrium (Yl
, Lantern (La), Gadrimu, Mu11 (Xl+
4) $) L'u, Samari Ram (8m
), at least one of d~O, e~o + /←0
) Green-emitting La, Gd, which is at least one of the cerium and terbium coactivated rare earth phosphors represented by cerium and terbium coactivated rare earth phosphors;
1. A fluorescent lamp comprising a fluorescent film body comprising a europium-activated rare earth oxide phosphor represented by at least one of Ce, Tb, and am. 3. Detailed Description of the Invention [Technical Field of the Invention] This invention relates to improvements in fluorescent lamps. [Technical background of the invention and its problems] One method of improving the color rendering properties without making the efficiency of a fluorescent lamp a priority is to improve the emission spectrum by adjusting the peak wavelengths of the emission spectrum to around 450 nm, 540 nm, and 610 nm, respectively. A so-called three-wavelength method is known that uses three types of phosphors whose half-values are relatively narrow. In this three-wavelength method, the "peak wavelength" of the emission spectrum is 450 nm.
As a blue-emitting phosphor near m, a divalent Bu-activated octaboborophosphate phosphor, for example, a divalent Eu-activated haloborostrontium, magnesium, calcium, cerium phosphor, is used. Ce and Tb co-activated silicophosphate phosphor as a green-emitting phosphor with a wavelength around 540 nm;
For example, a Ce and Tb coactivated lanthanum silicate phosphor, or a Ce and Tb coactivated phosphate phosphor, such as a Ce and Tb coactivated lanthanum phosphate phosphor, further has an emission spectrum with a peak wavelength of around 610 nm. An Eu-activated fluorine oxide 9-luminescent phosphor is used as the red-emitting phosphor. In addition, in recent years, there has been a trend to reduce the diameter of the lamp tube in order to reduce the cost and improve the luminous efficiency of fluorescent lamps. Generally, as the diameter of the lamp tube decreases, the load on the tube wall of the lamp increases, so that the so-called blackening phenomenon, in which the end of the lamp tube becomes black during lamp operation, is more likely to occur. The brightness of a fluorescent lamp that exhibits a blackening phenomenon decreases. In the conventional three-wavelength fluorescent lamp using blue, green, and red light-emitting phosphors, a blackening phenomenon begins to appear when the special lamp tube diameter becomes 26 mm or less, resulting in a significant loss of commercial value. This had the disadvantage that not only did the brightness increase, but also the brightness decreased. [Object of the Invention] The present invention has been made in order to improve the above-mentioned drawbacks, and an object of the present invention is to provide a fluorescent lamp which is bright and has a high commercial value, in which the blackening of the tube end is significantly improved. [Summary of the Invention] In order to achieve the above object, the inventors conducted various experiments on phosphors of various emission colors, and found that a bivalent phosphor, which is a conventional blue-emitting phosphor, was used as a blue-emitting phosphor. Divalent Nu or Eu and manganese (
A three-wavelength type fluorescent lamp in which at least one type of aluminate phosphor activated with Mn) is selected, and this blue-emitting phosphor is combined with the conventional green-emitting and red-emitting phosphors. It was discovered that the phenomenon of tube end blackening can be significantly improved even when the tube diameter of the lamp is 26 mm or less due to a synergistic effect, and this invention was completed. All of the phosphors used in the present invention are known, and when used alone in a fluorescent lamp, a tube end blackening phenomenon occurs in the working cone. However, when specific phosphors are combined as in the present invention, With use, the darkening phenomenon is reduced to an extent that cannot be predicted. This is considered to be due to the synergistic effect of the combination of the various color phosphors shown in the present invention. ,・The blue-emitting phosphor used in the present invention has a general formula a(M, Eu
)0・bA120B or a(M, Eu, Mn)0*bA
J203 (M is Zn, Mg, Ca, 8r, Ba, L
It, Rb! At least one type of y"!, a←0.b~
At least one kind of divalent Bu or divalent Bu and Mn-activated aluminate phosphor represented by
Publication No. 6-152882. Japanese Patent Application Publication No. 56-152883, Japanese Patent Publication No. 56-520
It is known from Publication No. 72. The general formula of the green-emitting phosphor is d(Lnl, Ce, Tb)
20B・e8i01・/P10g (However, LnI is Y
, La, Gd, Lu, at least one of 8m, d~O,
Ce and Tb co-activated rare earth silicophosphate phosphor represented by O,/~0), whose general formula is (Lnl,Ce,Tb)
At least one Ce and Tb coactivated rare earth phosphate phosphor represented by PO4. The general formula of the red-emitting phosphor is (Lnl, Eu)tos (
However, Lnl is at least one type of Eu-activated rare earth oxide phosphor represented by at least one of Ce, La, Gd, Y, Tb, and Sm. That is, the present invention has a general formula of a(M, Eu)O.bA40g (where M is at least one of Zn, Mg, Ca, 8r, Ba, Li2.Rbl, Csl, a+0, b~0). Divalent Bu expressed
Activated aluminate blue-emitting phosphor, general formula is a(M, Eu, Mn)O・bAA! 10B
At least one type of divalent Bu and Mn coactivated aluminate blue-green emitting phosphor represented by
nl, Ce, Tb) 10B ・e8102-/P, OI
Ce and Tb co-activated rare earth-silicon phosphate green luminescence represented by l, (where Lnl is at least one of Y, ha, Gd, Lu, am, d~0.e~O,/toO) A green-emitting phosphor, which is at least one type of Ce and Tb co-activated rare earth phosphate green-emitting phosphor, whose general formula is (LnI,Ce,Tb)PO+;
n1, Ell)! O3 (However, Ln, is Y, La
, Gd, Ce. The present invention is a fluorescent lamp equipped with a fluorescent film body comprising a Fiu-activated rare earth oxide red-emitting phosphor represented by at least one of Tb and am. A particularly preferred combination is that the blue-emitting phosphor is a(M.Eu,Mn)O'' bA1203 and the green-emitting phosphor is a(Lnl, Ce, Tb)z08・eSI02・fP.
20. A combination of (Lnl, En)A with red light-emitting phosphors produces a bright fluorescent lamp with the least amount of blackening at the tube end. When the total amount of each color emitting phosphor is 100% by weight, the phosphor film contains 0.1-40% by weight of blue-emitting phosphor, 20-73% by weight of green-emitting phosphor, and 1% by weight of red-emitting phosphor. 5 to 6 phosphors
A composition comprising 5% by weight is preferred. The fluorescent lamp of the present invention improves tube end blackening of the three-wavelength fluorescent lamp. Tube end blackening is a so-called blackening phenomenon in which the end of the lamp tube becomes black while the fluorescent lamp is on.When this phenomenon occurs, the appearance of the lamp is significantly damaged, and the product value is significantly reduced. . Blackening at the tube end varies depending on the type of phosphor, substances scattered from the cathode, and impurity gas in the tube under the activated state of discharge, but the position where it occurs is always at a fixed position near the electrode. In order to evaluate this tube end blackening, it is sufficient to cut out a certain area including the glass and the fluorescent film at the position where the blackening occurs and measure the visible light transmittance of the glass and the fluorescent film. As the degree of tube end blackening progresses, the visible light transmittance decreases. The visible light transmittance, which indicates the degree of tube end blackening, was measured for the 40 watt type fluorescent lamp (tube diameter: 25 mm) of the present invention equipped with such a fluorescent film body, and the two of the blue-emitting phosphors were measured. A comparison was made with a comparative example fluorescent lamp in which the fluorescent material was changed to Eu-activated strontium/calcium/magnesium/cerium haloborophosphate. In this case, the visible light transmittance of the comparative example fluorescent lamp is 100%, while the visible light transmittance of the fluorescent lamp of the present invention is 115%, and the degree of blackening is 15% of that of the comparative example lamp.
It has been reduced by that amount. However, in order to measure the blackening at the end of the tube, in order to obtain the blackening state caused by long-time lighting with a relatively short lighting time, both the Example and Comparative Example lamps were used at a high temperature of 130% of the rated load of the 40 Watt fluorescent lamp. The test was carried out after being lit for 1500 hours under load. A sample piece was obtained by cutting off a section measuring 15 mm vertically and 15 mm horizontally from the area where blackening occurred at the tube end, that is, from the area 301 m from the end of the lamp light emitting part to 45 mm.
The visible light transmittance is a value measured using a Beckman transmittance meter. For a three-wavelength fluorescent lamp to be suitable for practical use as a high color rendering fluorescent lamp, it is generally assumed that the average color rendering index (Ra) is 80 or more and the lamp efficiency is 801rrv'w or more. In order to satisfy this performance, the ratio of the blue-emitting phosphor, green-emitting phosphor, and red-emitting phosphor is 100% by weight, and the blue-emitting phosphor is 0.1 to 40% by weight.
The composition should be comprised of 20-73% by weight of the green-emitting phosphor and 5-65% by weight of the red-emitting phosphor. Furthermore, it is known that small amounts of alkali metals, boron oxide, gallium oxide, etc. are introduced into blue, green, and red light-emitting phosphors, but even in such phosphors, the effects of the present invention are not affected in any way. Not affected. [Examples of the Invention] The present invention will be described in detail below with reference to Examples. Example (1) 3 (Ba, Mg, Eu) 0.8A as a blue-emitting phosphor
A divalent Eu-activated barium/magnesium aluminate phosphor weighing 120 g shall be used. This phosphor is hereinafter referred to as (A). The phosphor exhibits narrow band light emission with a peak wavelength at 452 mm, making it suitable for use as a three-wavelength blue-emitting phosphor. 3 (8r, Mg, Eu, Ce) 0 for comparative lamps
・0.92p, o, ・0.31 CaCJff, 6
A divalent Eu-activated strontium-magnesium-cerium borophosphate blue-emitting phosphor represented by o, o 9 B2O5 is used. This phosphor is hereinafter referred to as (B). 11% by weight of phosphor (4) as a blue-emitting phosphor and 101 m 0 as a green-emitting phosphor (La, Ce, Tb)
.. 67% by weight of a Ce and Tb co-activated lanthanum silicate phosphor represented by 28402 eo, 9PtO, as a red-emitting phosphor (E, represented by Y p Bu% 01).
Using 22% by weight of a activated yttrium oxide phosphor, the tube diameter in this example is 25 mm (40 mm) 500 mm according to the usual method.
A white fluorescent lamp was prepared at 0, and the visible light transmittance at 0 was measured after being lit for 1500 hours. In addition, as a comparative fluorescent lamp, a blue-emitting phosphor and a phosphor (
B), a 25M11d 40 watt tube using Ce and Tb co-activated lanthanum silicate green emitting phosphor and Eu activated indium oxide red emitting phosphor.
5000 using a white fluorescent lamp. The emission spectrum distribution of this example fluorescent lamp at the initial stage of lighting is as shown in FIG. The visible light transmittance of the fluorescent lamp of this example was 115% compared to 1.00% of the fluorescent lamp of the comparative example, which is a 15% improvement. Incidentally, when we manufactured fluorescent lamps of the same type using each phosphor alone and measured the zero visible light transmittance after 1500 hours of lighting, we found that phosphor (A) was 92%, phosphor (B> is 90%
(La, Ce, Tb) 203 ・0.25i02 ・0
.. 9 P2O6 is 104%, (Y, Eu) 20g
was 101%. If we predict the visible light transmittance of a three-wavelength fluorescent lamp from these values and the weight of the phosphor used, it will be around 102% at most, but for an actual lamp it will be 115%.
%, it is thought that this is due to the unique effect of the combination of the three phosphors. The average color rendering index (Ra) at the initial stage of lighting is 84.
, the lamp efficiency shows a value of 901rrv'w. Now, gather the testicles together again and skewer them outward. Examples 2 to 7 Fluorescent lamps were manufactured in the same manner as in Example 1 by changing the combination of phosphors within the scope of the present invention. A comparative fluorescent lamp uses 3(Sr. Mg, Bu, Ce)O” 0.92 P2()1 as a blue-emitting phosphor.
"0.31 CaC4" 0.09 B103 was used, but the other conditions were exactly the same as in each example. The visible light transmittance, average color rendering index, lamp efficiency, etc. of each example are listed. For the visible light transmittance, the visible light transmittance of the comparative product was taken as 100%. 4. Brief Description of the Drawings FIG. 1 is a diagram showing the emission spectrum distribution of the fluorescent lamp of the example at the initial stage of lighting. Agent Patent attorney Noriyuki Chika Procedural amendment (voluntary) ■, Indication of the case Patent application No. 58-100201 No. 2, Name of the invention Fluorescent lamp 8, Person making the amendment Relationship to the case Patent applicant (307) Tokyo Shibaura Kamek Co., Ltd. No. 0 Agent Address: 1-1-6 Uchisaiwai-cho, Chiyoda-ku, Tokyo 100, Tokyo Shibaura Electric Co., Ltd. Tokyo Office 1) Between lines 15 and 16 of page 3 of the specification, there is a ``three-wavelength system''. Other examples of fluorescent lamps include blue-emitting phosphors (
Ba, Mg, Eu)O・bA120. A combination of MgO-B as a green-emitting phosphor, 03:Ce, Tb, and (Y.IFXu)t% as a red-emitting phosphor is also known. (Japanese Unexamined Patent Publication No. 128778/1983). ” is extracted. 2) Line 3 of the 12th Sada. ``... was 01%.'' followed by ``As another comparative example, the Hashiki luminescent material and the red luminescent phosphor were the same as in Example 1, and the green luminescent phosphor contained Mg.
O-B20. : When a fluorescent lamp using Ce and Tb was similarly evaluated, the visible light transmittance after being lit for 1500 hours was 99%. ” is inserted. More than 539-

Claims (1)

【特許請求の範囲】[Claims] (1)一般式がa(M、Eu)0−bAl!20.  
(但し、Mは亜鉛(Zn) 、マグネシウム(Mg) 
eカルシウム(Ca)#ストayチウム(Sr)、バリ
ウA (Ba) 。 リチウム(”t) 、ルビジウム(Rbり 、セシウム
(CSz)の少なくとも1種、a(0、b’40)で表
わされる二価のユーロピウム(Eu)付活アルミン酸塩
蛍光体、 一般式がa (M、Eu、Mn)0−bA/、0.で表
わされる二価のユーロピウムとマンガン(Mn)付活ア
ルミン酸塩蛍光体の少なくとも1種と、 一般式がd(LnI、Ce 、’rb)、 o3− e
sio、−fP、0. (但し、LnIはイツトリウム
(1)、ランタン(La) 。 ガドリニウム(Gd) Iルテシウム(Lu) 、サマ
リウム(Sm)、cD少なくとも1種、d(0,e)O
。 f−0)で表わされるセリウムおよびテルビウムTb)
PO,で表わされるセリウムおよびテルビウム共付活希
土類燐酸塩蛍光体の少なくとも1種である緑色発光蛍光
体と、一般式が(LnlI 、 Nu )tOs (但
し、LnlはY、La、Gd、Ce、Tb、Sm (D
少なくとも1種)で表わされるユーロピウム付活布土類
酸化物蛍光体とから成る蛍光膜体を具備したことを特徴
とする蛍光ランプ。
(1) The general formula is a(M, Eu)0-bAl! 20.
(However, M is zinc (Zn), magnesium (Mg)
e Calcium (Ca) #Stayium (Sr), Valium A (Ba). A divalent europium (Eu)-activated aluminate phosphor represented by at least one of lithium ("t), rubidium (Rb), and cesium (CSz), a (0, b'40), whose general formula is a (M, Eu, Mn)0-bA/, 0. At least one kind of divalent europium and manganese (Mn) activated aluminate phosphor represented by d(LnI, Ce, 'rb) and ), o3-e
sio, -fP, 0. (However, LnI is yttrium (1), lanthanum (La), gadolinium (Gd), lutetium (Lu), samarium (Sm), at least one cD, d(0,e)O
. Cerium and terbium Tb) expressed as f-0)
A green-emitting phosphor that is at least one of cerium and terbium coactivated rare earth phosphate phosphors represented by PO, and a green-emitting phosphor having the general formula (LnlI, Nu)tOs (where Lnl is Y, La, Gd, Ce, Tb, Sm (D
What is claimed is: 1. A fluorescent lamp comprising a fluorescent film comprising a europium-activated earth oxide phosphor represented by at least one compound.
JP58100201A 1983-06-07 1983-06-07 Fluorescent lamp Granted JPS59226087A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP58100201A JPS59226087A (en) 1983-06-07 1983-06-07 Fluorescent lamp
GB08413985A GB2142775B (en) 1983-06-07 1984-06-01 Fluorescent lamp
KR1019840003064A KR890001231B1 (en) 1983-06-07 1984-06-01 Fluorescent lamp
HU842175A HU187992B (en) 1983-06-07 1984-06-05 Fluorescent lamp
CS844289A CS247082B2 (en) 1983-06-07 1984-06-06 Luminescent material
SG140/88A SG14088G (en) 1983-06-07 1988-03-01 Fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58100201A JPS59226087A (en) 1983-06-07 1983-06-07 Fluorescent lamp

Publications (2)

Publication Number Publication Date
JPS59226087A true JPS59226087A (en) 1984-12-19
JPS6244034B2 JPS6244034B2 (en) 1987-09-17

Family

ID=14267684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58100201A Granted JPS59226087A (en) 1983-06-07 1983-06-07 Fluorescent lamp

Country Status (6)

Country Link
JP (1) JPS59226087A (en)
KR (1) KR890001231B1 (en)
CS (1) CS247082B2 (en)
GB (1) GB2142775B (en)
HU (1) HU187992B (en)
SG (1) SG14088G (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258891A (en) * 1985-05-10 1986-11-17 Matsushita Electronics Corp Fluorescent material
JPS61258892A (en) * 1985-05-13 1986-11-17 Matsushita Electronics Corp Fluorescent lamp
JPS62187785A (en) * 1986-02-14 1987-08-17 Kasei Optonix Co Ltd Highly color-rendering fluorescent lamp
JPS62220573A (en) * 1986-03-20 1987-09-28 Matsushita Electronics Corp Fluorescent lamp
JPS6412455A (en) * 1987-07-07 1989-01-17 Matsushita Electronics Corp Electric bulb color fluorescent lamp
JPH05325901A (en) * 1990-08-31 1993-12-10 Toshiba Corp Low pressure mercury vapor electric discharge lamp
KR20020075271A (en) * 2001-03-22 2002-10-04 닛폰 덴키(주) Phosphors and fluorescent lamps comprising the phosphors

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623816A (en) * 1985-04-22 1986-11-18 General Electric Company Fluorescent lamp using multi-layer phosphor coating
NL8700876A (en) * 1987-04-14 1988-11-01 Philips Nv LUMINESCENT BARIUM-HEXA ALUMINATE, LUMINESCENT SCREEN EQUIPPED WITH SUCH ALUMINATE AND LOW-PRESSURE VAPOR DISCHARGE LAMP EQUIPPED WITH SUCH SCREEN.
JP2790673B2 (en) * 1989-09-20 1998-08-27 化成オプトニクス株式会社 Aluminate phosphor
EP0529956A1 (en) * 1991-08-23 1993-03-03 Kabushiki Kaisha Toshiba Blue phosphor and fluorescent lamp using the same
WO1994029403A1 (en) * 1993-01-13 1994-12-22 Mickellsun Pty. Ltd. Luminescent material
DE4240899A1 (en) * 1992-12-04 1994-06-09 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Samarium-doped phosphor
JP2543825B2 (en) * 1993-04-28 1996-10-16 根本特殊化学株式会社 Luminescent phosphor
JP3405049B2 (en) * 1995-05-29 2003-05-12 日亜化学工業株式会社 Afterglow lamp
US6157126A (en) * 1997-03-13 2000-12-05 Matsushita Electric Industrial Co., Ltd. Warm white fluorescent lamp
DE10123236A1 (en) * 2001-05-12 2002-11-14 Philips Corp Intellectual Pty Plasma screen with blue fluorescent
WO2004030009A1 (en) * 2002-09-27 2004-04-08 Matsushita Electric Industrial Co., Ltd. Plasma display
US7329371B2 (en) 2005-04-19 2008-02-12 Lumination Llc Red phosphor for LED based lighting

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740853A (en) * 1980-08-22 1982-03-06 Nichia Denshi Kagaku Kk Mercury vapor discharge lamp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740853A (en) * 1980-08-22 1982-03-06 Nichia Denshi Kagaku Kk Mercury vapor discharge lamp

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258891A (en) * 1985-05-10 1986-11-17 Matsushita Electronics Corp Fluorescent material
JPS61258892A (en) * 1985-05-13 1986-11-17 Matsushita Electronics Corp Fluorescent lamp
JPS62187785A (en) * 1986-02-14 1987-08-17 Kasei Optonix Co Ltd Highly color-rendering fluorescent lamp
JPS62220573A (en) * 1986-03-20 1987-09-28 Matsushita Electronics Corp Fluorescent lamp
JPS6412455A (en) * 1987-07-07 1989-01-17 Matsushita Electronics Corp Electric bulb color fluorescent lamp
JPH05325901A (en) * 1990-08-31 1993-12-10 Toshiba Corp Low pressure mercury vapor electric discharge lamp
KR20020075271A (en) * 2001-03-22 2002-10-04 닛폰 덴키(주) Phosphors and fluorescent lamps comprising the phosphors

Also Published As

Publication number Publication date
SG14088G (en) 1988-07-08
KR890001231B1 (en) 1989-04-27
GB2142775A (en) 1985-01-23
KR850000772A (en) 1985-03-09
HUT34640A (en) 1985-03-28
CS247082B2 (en) 1986-11-13
HU187992B (en) 1986-03-28
GB8413985D0 (en) 1984-07-04
JPS6244034B2 (en) 1987-09-17
GB2142775B (en) 1986-09-17

Similar Documents

Publication Publication Date Title
JPS59226087A (en) Fluorescent lamp
US5350971A (en) Blue-emitting phosphor for use in fluorescent lamps and fluorescent lamp employing the same
US6965193B2 (en) Red phosphors for use in high CRI fluorescent lamps
JPH06208845A (en) Low-pressure mercury discharge lamp
EP0100122B1 (en) Low-pressure mercury vapour discharge lamp
EP0229428B1 (en) Low-pressure mercury vapour discharge lamp
TW200828386A (en) Blue luminance alkaline earth chlorophosphate fluorescence useful in cold cathode, cold cathode fluorescent lamp, and color liquid crystal dispaly
EP0124175B1 (en) Low-pressure mercury vapour discharge lamp
JP4905627B2 (en) Green phosphor, white LED, backlight using the same, and liquid crystal display device
JP4561194B2 (en) Alkaline earth aluminate phosphor for cold cathode fluorescent lamp and cold cathode fluorescent lamp
JPS61258892A (en) Fluorescent lamp
JP3515737B2 (en) Phosphor and fluorescent lamp using the same
US4266160A (en) Strontium-calcium fluorapatite phosphors and fluorescent lamp containing the same
JP2589491B2 (en) Fluorescent lamp
JP2004244604A (en) Fluorescent substance and fluorescent lamp
JPS628470B2 (en)
JPS5842942B2 (en) fluorescent lamp
JP2006089692A (en) Green light-emitting fluorophor and mercury fluorescent lamp using the same
JP2011074268A (en) Terbium-activated rare earth magnesium aluminate phosphor, method for producing the same, as well as fluorescent lamp for backlight and liquid crystal display device using the phosphor
JPH0335354B2 (en)
JPH0517954B2 (en)
JPH0517955B2 (en)
JPH02208389A (en) Phosphor and fluorescent lamp
JPH01217096A (en) Fluorescent material and fluorescent lamp
JP2002298787A (en) Fluorescent lamp